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Prefa
eHistory of graph 
olouring.The �rst results about graph 
olouring deal almost ex
lusively with planar graphs inthe form of map 
olouring. When trying to 
olour a map of the 
ounties of England,Fran
is Guthrie postulated the four 
olour 
onje
ture, noting that four 
olours weresu�
ient to 
olour the map, so that no regions sharing a 
ommon border got the same
olour. Guthrie's brother passed on the question to his mathemati
s tea
her Augustusde Morgan at University College London, who mentioned it in a letter to WilliamHamilton in 1852. Arthur Cayley raised the problem at a meeting of the LondonMathemati
al So
iety in 1879. The same year, Alfred Kempe published a paper that
laimed to have settled the question, and for a de
ade the four 
olour problem was
onsidered solved. For his a

omplishment Kempe was ele
ted a fellow of the RoyalSo
iety and later President of the London Mathemati
al So
iety [106℄.In 1890, Heawood pointed out that Kempe's argument was faulty. However, in thatpaper he proved the �ve 
olour theorem, saying that every planar map 
an be 
olouredwith no more than �ve 
olours, using ideas of Kempe. In the following 
entury, avast amount of work and theories were developed to redu
e the number of 
olours tofour, until the four 
olour theorem was �nally proved in 1976 by Kenneth Appel andWolfgang Haken. Perhaps surprisingly, the proof went ba
k to the ideas of Heawoodand Kempe and largely disregarded the intervening developments [156℄. The proof ofthe four 
olour theorem is also noteworthy for being the �rst major 
omputer-aidedproof.In 1912, George David Birkho� introdu
ed the 
hromati
 polynomial to study the
olouring problems, whi
h was generalised to the Tutte polynomial by Tutte, importantstru
tures in algebrai
 graph theory. Kempe had already drawn attention to the general,non-planar 
ase in 1879 [90℄, and many results on generalisations of planar graph
olouring to surfa
es of higher order followed in the early 20th 
entury.Graph 
olouring has been studied as an algorithmi
 problem sin
e the early 1970s.The 
hromati
 number problem is one of Karp's 21 NP-
omplete problems from 1972,around the time of various exponential-time algorithms based on ba
ktra
king andheuristi
s. One of the major appli
ations of graph 
olouring � register allo
ation in
ompilers � was introdu
ed in 1981.This thesis was motivated by Zykov's result in 1949, where he introdu
ed hisdeletion�
ontra
tion re
urren
e theorem in [161; 162℄. Though this theorem is well-vii



viii Contentsknown in the literature, it has not re
eived mu
h attention in the algorithm design �elduntil now. Zykov's approa
h makes a 
onne
tion between di�erent graphs through hisedge deletion and vertex 
ontra
tion operations. From a 
olouring point of view, thesegraphs may have the same properties. As Hell and Ne²et°il des
ribe in their work [85℄ in2004, these operations 
an be expressed through graph homomorphisms. However, thehomomorphism approa
h does not provide any implementation or any algorithm, butthe approa
h motivates algorithmi
 steps. The author designed spe
ial homomorphism
lasses for the graph 
olouring problem with di�erent implementations in ([96�101℄).Despite the implementations being di�erent, a general framework has been worked outto form a basis for a new 
olouring approa
h. This thesis is about the author's resultsand it 
ontains various novel 
olouring strategies within a new framework.István Juhos
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Notation
N the set of all natural numbers
R the set of all real numbers
x 
olumn ve
tor of real numbers
xT transpose of ve
tor x, a row ve
tor
‖x‖i p−norm of ve
tor x: (

∑

i |xi|i)
1
i

‖x‖ Length of ve
tor x: ‖x‖ = ‖x‖2
x ‖ y Ve
tors x and y are parallel: xT y

‖x‖‖y‖ = 1.

x ⊥ y Ve
tors x and y are orthogonal: xT y

‖x‖‖y‖ = 0.
xi i−th 
omponent of ve
tor x

X a matrix of real numbers
‖X‖i Indu
ed i−norm of matrix X: ‖X‖i = max

{

‖Xx‖i

‖x‖i

}

‖X‖ Entrywise 2−norm of matrix X: √

∑

i,j X
2
ij

Xi i−-th row of matrix X
X_j j−th 
olumn of matrix X.
Xij or xij (i, j) element of matrix X: xij := Xij

x ∨ y element-wise or operation between two binary {0, 1}n ve
tors x and y

x · y or 〈x,y〉 dot produ
t of ve
tors x and y: xTy

x⊗ y dyadi
 produ
t of ve
tors x and y: xyT

Diag(x) Zero matrix with x in the main diagonal. Dire
t sum of the elements: ⊕

i xi

e ve
tor of all ones.
I identity matrix: Diag(e).
J matrix with all its entries being one: e⊗ e.
J ij a matrix, where entry Jij = 1, otherwise zero: J ij = Ii ⊗ Ij .
P ij a permutation matrix: I − J ii + J ij.
X ∨ Y element-wise or operation between two binary {0, 1}n×n matri
es X and Y
X • Y or 〈X, Y 〉 sum of element-wise produ
t of matri
es X and Y (see dot produ
t).
X ◦ Y element-wise produ
t of matri
es X and Y (Hadamard-S
hur produ
t).
diag(X) a ve
tor formed by the main diagonal of the X matrix: (X ◦ I) e

G a graph: G = (V,E) or G = (VG, EG)

V vertex set
E edge set: E ⊆ V × V
C 
olour set
AG adja
en
y matrix of graph G (abbreviated form: A)
(·)col sele
t 
oloured obje
ts, e.g. 
oloured verti
es V col

(·)unc sele
t un
oloured obje
ts, e.g. un
oloured verti
es V uncxiii



n number of verti
es: |V |
m number of edges: |E|
k number of 
olours: |C|
χ 
hromati
 number
ω 
lique number
α independen
e number
θ Lovász-theta
π permutation of {1,2,...,n} elements
[x = y] The Krone
ker delta fun
tion. [x = x] = 1 and if y 6= x, then [x = y] = 0.
f(x) = O(g(x)) |f(x)| ≤ c · |g(x)|, where c ≥ 0 for x > x0, f and g are fun
tions of x
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Chapter 1
Introdu
tion
1.1 Contributions of the thesisThis thesis o�ers a general framework for graph 
olouring methods, where the tra-ditional 
olouring s
heme is de�ned via spe
ial graph homomorphisms motivated by[85; 161; 162℄. These spe
ial homomorphisms proved useful in the design of algorithmsby the author ([94; 96�102℄). Three main reasons 
an be given for why this frameworkis useful.First, this approa
h in general provides a potential de
rease of the 
omputational
ost of 
olouring algorithms. In order to a
hieve this goal, spe
ial homomorphismsare applied whi
h subsequently redu
e the problem. In a parallel implementation, theseredu
tion steps 
an be performed as one atomi
 operation, hen
e they do not introdu
eany extra 
omputational e�ort. This helps algorithms to run faster.Se
ond, it provides a uniform and 
ompa
t way in whi
h algorithms 
an be de�ned.Embedding algorithms in the same 
ommon framework supports both their stru
turaland performan
e 
omparison, whi
h 
an be anyway problemati
. Furthermore, it maygive a deeper and 
omparable insight into the stru
ture of algorithms. The frameworkitself generalises the formal 
olouring approa
h. With this generalisation an algorithm
an be extended in a natural way, whi
h may result in new algorithms.Third, it opens the way to novel appli
ations that extra
t useful information to helpalgorithms during their sear
h. On one hand, a problem redu
tion step may reveal theskeleton of the problem and this may lead to a re
onsideration of previous assumptionsin a strategy. Hen
e existing algorithms 
an be enhan
ed after being embedded in theframework. On the other hand, the novel problem des
ription results in novel informa-tion that 
an be used to extra
t and support a new s
heme of the 
olouring pro
esswhere new aspe
ts 
an be identi�ed.This thesis has been organised so as to demonstrate and highlight these advantages viaexamples, experimental results and theoreti
al observations.1



2 Introdu
tion1.2 Overview of the ThesisThis thesis summarises the results obtained by the author over the past few years.The results 
an be separated into di�erent groups a

ording to the parts of the graph
olouring framework developed by the author :Con
ept The author de�ned the problem via 
ertain graph homomorphisms. Theauthor 
alled these Quotient and Power methods.Model The author des
ribed the 
on
epts by 
on
rete representations with suitableoperations, resulting in his Merge Models with his nomen
lature. Merge Modelsprovide a novel des
ription of the 
olouring problem. The operations, i.e. theMerge Operations, subsequently 
hange the state of the model and dire
t it to apossible solution of the original graph 
olouring problem.Strategy The author developed strategies in the model (Merge Strategies), whi
hde�ne possible dire
tions toward a solution.Algorithm The author 
onstru
ted general frameworks (Merge Frameworks) in whi
hstrategies 
an be embedded. These frameworks in 
onjun
tion with the strate-gies form 
olouring algorithms (Merge Algorithms). Su
h algorithms generate asequen
e of model operations a

ording to the strategy to provide a 
andidatesolution for the original problem.Thesis points a

ording to the author 's publi
ations [94�102℄Thesis 1 The author, applying 
ertain graph homomorphisms, de�ned two gen-eral 
on
epts to rede�ne the graph 
olouring problem, namely the Quotientand Power methods [96; 99; 100℄. He provided a 
on
rete des
ription ofthe general methods using matrix representations and Merge Operation ofthe rows or 
olumns. He 
alled these des
riptions Merge Models. Basedon the Merge Models the original problem undergoes an evolution and pro-du
es homomorphi
 graph images. These models 
an be a basis of noveland existing algorithms too. Embedding an algorithm into a Merge Modelmay 
onsiderably de
rease its 
omputational e�orts. Moreover, su
h anembedding supports the stru
tural analysis of the algorithms in a 
ommonway and makes available a natural extension of them, whi
h may result inan in
rease in their performan
e. Traditional 
olouring s
hemes distinguishbetween the 
olours and the verti
es of the graph. Merge Models integratethem into one single obje
t. This anti
ipates a uniform algorithm design,where 
olour 
hoi
es do not di�er from the vertex 
hoi
es.Thesis 2 Based on the Merge Models of the 
olouring, the author uni�ed andgeneralised the formal sequential 
olouring model in three di�erent MergeFrameworks [100; 101℄. These frameworks provide a uniform and 
om-pa
t des
ription in whi
h algorithms 
an be de�ned and analysed in the



1.2 Overview of the Thesis 3same systemati
 way. Furthermore, exploiting the uniform des
ription, hesket
hed some explanations of how the stru
ture of algorithms 
an have anin�uen
e on the overall performan
e. Existing sequential 
olouring algo-rithms �t into one of the Merge Frameworks, and the frameworks providenovel approa
hes for algorithm design.Thesis 3 The author provided a way to redu
e the 
omputational 
ost of 
olour-ing algorithms after embedding them into a Merge Framework [97; 99℄.This improvement was demonstrated and analysed via experiments as well.In the experiments he analysed the phase transitions of di�erent algorithmsimplemented in di�erent Merge Frameworks. Furthermore, the author pro-vided a natural extension of sequential 
olouring algorithms in the MergeFramework, whi
h results in an in
rease in their e�
ien
y.Thesis 4 In ea
h Merge Model the 
olouring operation is repla
ed by a MergeOperation. Several Merge Strategies were developed by the author. Sin
ethe models use matrix representations, he was able to de�ne some of hisstrategies by applying spe
ial matrix row operations as well as matrix norms.The novel strategies of the author are listed below:� Extended Hajnal; Extended Welsh-Powell (∞�norm) [97℄� Spe
tral norm[101℄� Spe
tral norm approximations [101℄� Dot produ
t (entrywise norms) [97℄� Cosine [97℄� Zykov-tree and Lovász-theta [94; 102℄These strategies 
an be 
ombined with di�erent Merge Models and MergeFrameworks to form di�erent algorithms. The performan
e analysis ofthese strategies are given. The novel algorithms are 
ompared with sev-eral well-known ben
hmark algorithms. The novel algorithms outperformedthe well-known algorithms in a standard ben
hmark set of graph instan
es.Moreover, their e�
ien
y revealed in a more di�
ult-to-solve graph in-stan
e set, where the graphs are generated during the phase transitionregion, where �nding a solution be
omes really hard. In this 
ase, the
omparison is fair; that is, it 
annot be manipulated by a good 
hoi
e ofthe ben
hmark instan
es sin
e the generated instan
es represent well allinstan
es from di�
ult-to-solve graph 
lasses.Thesis 5 The author introdu
ed the notion of a Merge Path in [101℄. A MergePath arises from the properties of the dynami
ally 
hanging model duringits evolution. Elements of su
h a path are asso
iated with 
olouring steps.He was able to des
ribe an abstra
t graph 
olouring approa
h based onMerge Paths, whi
h allows the appli
ation of arti�
ial intelligen
e methodsin graph 
olouring e.g.:



4 Introdu
tion� Using a training set of known graphs, a supervised learning algorithm[95℄ 
an learn 
ertain optimal Merge Paths that are asso
iated with optimal
olouring steps. Then using the learnt knowledge, 
olouring steps for anunknown graph instan
e 
an be predi
ted.� In an unsupervised learning task optimal Merge Paths of knowngraphs are 
lustered. Then unknown graphs, whi
h are not involved inthe 
lustering, 
an be 
lassi�ed in order to predi
t their properties su
h astheir 
hromati
 number.Thesis 6 He embedded his 
olouring strategies into a meta heuristi
, an evo-lutionary algorithm and 
reated the following evolutionary operators for
olouring [96�98; 101℄ :� A mutation operator by a
quiring di�
ult verti
es in a 
andidatesolution and for
ing their early 
olouring� A �tness fun
tion whi
h solves the �tness granularity problem of the
olouringThese novel meta heuristi
 algorithms performed well in an experimental
omparison with di�erent ben
hmark algorithms, on di�erent ben
hmarkgraphs and di�
ult-to-solve generated problem sets as well.Table 1.1 
ontains 
ross-referen
es between thesis points and publi
ations.[95℄ [96℄ [97℄ [98℄ [99℄ [100℄ [101℄ [102℄Thesis-1 • • •Thesis-2 • •Thesis-3 • •Thesis-4 • • •Thesis-5 • •Thesis-6 • • • •Table 1.1: Cross-referen
e between thesis points and publi
ations



1.3 Overview of the 
hapters 51.3 Overview of the 
haptersThis se
tion provides an overview of how the publi
ations of the author are related tothe 
hapters of the thesis as well as to the thesis points.Chapter 1 gives an overview of the thesis.Chapter 2 summarises ne
essary de�nitions whi
h will be used in this thesis.Chapter 3 introdu
es the Graph Colouring Problem. It 
onsists of de�nitionsand analyses it from several aspe
ts. It details important stru
tural proper-ties of graphs whi
h may have an in�uen
e on the solution of the problem.Exploiting some stru
tural features, we o�er some simpli�
ation te
hniquesof the original problem. Furthermore, we give an insight into the problemdi�
ulty by 
omplexity results and 
hara
terise hard-to-solve problem in-stan
es, whi
h are a basis of our experimental investigations. In our analysisvarious bounds are provided to restri
t the sear
h spa
e exploration. Weoverview the possible sear
h spa
es of the di�erent representations of theproblem.Chapter 4 outlines the related work published in this �eld in the literature. Itdis
usses some important real-life appli
ations of graph 
olouring, providinggraph instan
es from di�erent sour
es. We des
ribe various approa
hesavailable to solve the Graph Colouring Problem. Afterwards, we dis
ussseveral well-known graph 
olouring algorithms. The algorithms detailedwith the provided graph instan
es serve as ben
hmarks in our experimentalinvestigations.Chapter 5 dis
usses graph homomorphism approa
hes of the Graph ColouringProblem and its 
onsequen
es.Chapter 6 introdu
es spe
ial graph homomorphisms for the 
olouring problemforming the Quotient and Power methods for the Graph Colouring Problemde�ned by the author in [96; 99; 100℄.Chapter 7 des
ribes the modelling of spe
ial graph homomorphisms by the so-
alled Merge Models using spe
ial matrix representations and matrix op-erations devised by the author in [96; 99; 100℄. This 
hapter introdu
esdi�erent stru
tures whi
h may help 
olouring algorithms and whi
h employMerge Models.Chapter 8 de�nes Merge Frameworks based on the Merge Models (see Juhoset al. [100; 102℄). These frameworks are generalisations of the traditionalsequential 
olouring s
hemes. They provide a general algorithm frame toassist the design and implementation of 
olouring algorithms. These frame-works also 
ontain abstra
t strategies for the algorithm steps.



6 Introdu
tionChapter 9 introdu
es novel strategies for the algorithm steps whi
h 
an beembedded into a Merge Framework to form an algorithm de�ned by theauthor in [95�98; 101; 102℄. It 
onsists of the analysis of the strategies be-sides their de�nition. The analysis shows a natural enhan
ement possibilityof existing strategies when they are embedded into a Merge Framework.Example extensions are provided based on two well-known strategies. Inanother result of the analysis, a general idea for the strategy design is in-
luded, whi
h o�ers a way for the appli
ation arti�
ial intelligen
e methodsin the 
olouring pro
ess.Chapter 10 
ontains di�erent novel Merge Algorithms introdu
ed by the authorin [96�98; 101; 102℄. A Merge Framework with 
on
rete Merge Strategiesform Merge Algorithms (
olouring algorithms). A de�nition of well-knownben
hmark algorithms in a suitable Merge Framework is provided as well.A thorough experimental investigation 
ompares the ben
hmark algorithmswith the novel Merge Algorithms on several standard ben
hmark problemsets.Chapter 11 analyses the novel Merge Models and Merge Algorithms from vari-ous aspe
ts, providing proofs for their e�
ien
y. It in
ludes e�
ient hard-ware and software implementation details as well [99; 100℄.Chapter 12 This 
hapter 
onsists of an appendix providing further interestingdetails about the Graph Colouring Problem and a summary of the thesis inEnglish and in Hungarian.Table 1.2 shows 
ross-referen
es between the 
hapters and the publi
ations.[95℄ [96℄ [97℄ [98℄ [99℄ [100℄ [101℄ [102℄Ch. 6 • • • Quotient and Power methodsCh. 7 • • • Merge ModelsCh. 8 • • Merge FrameworksCh. 9 • • • • • • Merge StrategiesCh.10 • • • • • Merge AlgorithmsCh.11 • • AnalysisTable 1.2: Cross-referen
e between 
hapters and publi
ations



Chapter 2Preliminary de�nitionsThis 
hapter summarises de�nitions whi
h will be used in this thesis in a

ordan
e with[49; 138; 150℄. Some general de�nitions have a slight restri
tions for the sake of betterutilisation in our topi
.De�nition 2.1 (Graph) A graph is a pair G = (V,E) of disjoint �nite sets, where
E ⊆ V × V . The elements of V are the verti
es of the graph G, the elements of Eare its edges.
VG denotes the vertex set and EG denotes the edge set of the graph G, if the graph Gmust be emphasised in the notation. An edge between the verti
es v and w is denotedby vw.De�nition 2.2 (Isomorphi
) G = (V,E) and G′ = (V ′, E ′) are isomorphi
 graphs,if there is a bije
tion ϕ : V → V ′ with vw ∈ E ⇔ ϕ(v)ϕ(w) ∈ E ′De�nition 2.3 (Undire
ted and dire
ted graph) A graph G is said to be undi-re
ted, if the relation E ⊆ V × V is symmetri
; otherwise, the graph is said to bedire
ted.Unless it is expli
itly stated, a graph is undire
ted. The edges of an undire
ted graphare 
alled undire
ted edges and the edges of a dire
ted graph are 
alled dire
ted edges.De�nition 2.4 (Loop edge) The edge e ∈ E of a graph G is a loop edge, if e = vv,where v ∈ V .De�nition 2.5 (In
ident) A vertex v is in
ident with an edge e if v ∈ e; then e isan edge at v.The two verti
es in
ident with an edge are its endverti
es or ends, and an edge joins or
onne
ts its ends.De�nition 2.6 (Adja
ent or neighbour verti
es) Two verti
es v and w of G areadja
ent, or neighbours, if vw ∈ E. 7



8 Preliminary de�nitionsDe�nition 2.7 (Edge density) Let G = (V,E) be a graph. The number |E|
(n

2)
is theedge density of G.Note that the value of (

n
2

) is the maximum number of edges in a graph.De�nition 2.8 (Empty graph) The empty graph is either the graph with no verti
esand hen
e no edges or any graph with no edges.De�nition 2.9 (Complete graph) G is a 
omplete graph if all its verti
es are pair-wise adja
ent. A 
omplete graph on n verti
es will be denoted by Kn.De�nition 2.10 (Regular graph) A regular graph is a graph where ea
h vertex hasthe same number of neighbours.De�nition 2.11 (Simple graph) A simple graph G is an undire
ted graph, whi
hhas no loop edge.An example of a simple graph 
an be seen in Figure 2.1.
V = {v1, v2, v3, v4, v5, v6}

E = {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v3v1, v3v6}

v1

v2

v3

v4

v5

v6

Figure 2.1: A simple graphDe�nition 2.12 (Multigraph) A multigraph is a pair (V, E), whi
h 
ontains a vertexset V and an edge multiset E . Where E 
onsist of edges between any two verti
es andmultiple edges are permitted.If V ′ ⊆ V , then G− V ′ is obtained from G by deleting all the verti
es in V ′ ∩ V andtheir in
ident edges. If V ′ = {v} is a singleton, G− v is written rather than G− {v}.For E ′ ⊆ V × V , G − E ′ = (V,E \ E ′) and G + E ′ = (V,E ∪ E ′); furthermore for
e ∈ E, G− {e} and G+ {e} are abbreviated to G− e and G + e.De�nition 2.13 (Complement graph) Ḡ is the 
omplement graph of graph G, if
VḠ = VG and EḠ = VG × VG \ EG.De�nition 2.14 (Sub-graph) G′(V ′, E ′) is a sub-graph of G = (V,E), if V ′ ⊆ Vand E ′ ⊆ E. Denote it by G′ ⊆ G.



9For example H = (V ′, E ′) is a sub-graph of Figure 2.1, if V ′ = {v1, v2, v3} and
E ′ = {{v1, v2}, {v2, v3}, {v3, v1}}. The graph H is a 
omplete graph on three verti
es,namely the K3.De�nition 2.15 (Clique) A 
lique is a 
omplete sub-graph of a graph.Sin
e H is a 
omplete sub-graph of G, therefore it is a 
lique in G.De�nition 2.16 (Maximal 
lique) A maximal 
lique is a 
omplete sub-graph thatis not 
ontained in any other 
omplete sub-graphDe�nition 2.17 (Maximum 
lique) A maximum 
lique is a 
lique 
ontaining thelargest possible number of verti
es.A maximum 
lique is ne
essarily maximal, but the 
onverse does not hold. Take v4 and
v5 verti
es of Figure 2.1 with the edge between them. They form a 
omplete graphon two verti
es, 
alled K2. This K2 is not part of a larger 
lique in G, hen
e it is amaximal 
lique, but not a maximum be
ause graph H , whi
h is a K3 is larger 
lique.
H is the largest 
lique, and hen
e it is a maximal 
lique. Although, H is not unique.There may be more than one maximum and 
onsequently several maximal 
liques ina graph. Verti
es v1, v3, v6 with edges between them also form a K3 
lique, whi
h ismaximal too.De�nition 2.18 (Independent set) An independent set of a graph is a subset ofverti
es su
h that no two of them are mutually adja
ent.There is a strong 
onne
tion between 
liques and independent sets sin
e an independentset of a graph is a 
lique in the 
omplement graph.De�nition 2.19 (Maximal independent set) A maximal independent set is an in-dependent set that is not a subset of any other independent set.A graph may have di�erent maximal independent sets of widely varying sizes as we sawin the 
ase of 
liques.De�nition 2.20 (Maximum independent set) A maximum independent set is anindependent set 
ontaining the largest possible number of verti
es.A vertex whi
h is not in a maximum independent set must be 
onne
ted to a memberof the set. Otherwise, the vertex in question should be member of the maximal inde-pendent set. Take an example vertex set S = {v1, v3, v5} from our example graph inFigure 2.1. It is a maximum independent set and the verti
es whi
h are not in
luded
{v2, v4, v6} are adja
ent to one of the vertex in this set and form another maximalindependent set.De�nition 2.21 (Neighbour set) Let G be a graph and v ∈ V . Neighbour set isthe set of neighbour verti
es of v and denoted by N(v): N(v) = {w : vw ∈ E}.



10 Preliminary de�nitions
N(.) 
an be extended to set of verti
es. If S is a set of verti
es, thenN(S) =

⋃

v∈S N(v).If S is a maximum independent set of graph G, then V \S = N(S) Otherwise, if therewas a vertex u /∈ N(S) then S would not be maximum, sin
e S ∪ u would be a largerindependent set.De�nition 2.22 (Vertex degree) The degree of a vertex v is the number of itsneighbours: d(v) = |N(v)|.The minimal vertex degree in a graph is denoted by δ, while the maximum is denotedby ∆. From now on an we will use an abbreviated form of d(vi), denoted by di, where
vi ∈ V .De�nition 2.23 (Dominating Set) D is a dominating set of verti
es of a graph G,if D ⊂ VG and N(D) = VG \D.A dominating set 
overs all verti
es of a graph whi
h are not in
luded. Dominatingsets are 
losely related to independent sets. An independent set is also a dominatingset if and only if it is a maximal independent set. Hen
e, any maximal independent setin a graph is ne
essarily a minimal dominating set as well.De�nition 2.24 (Dominated and dominant vertex) v is a dominated vertex bya set of verti
es D ⊂ VG of a graph G, if N(v) = N(v) ∩N(D). A dominated vertexhas neighbours whi
h are all adja
ent to some other vertex, the dominant vertex.De�nition 2.25 (Partition) A set {V1, . . . , Vk} of disjoint subsets 1 of a set V is apartition of V if V =

⋃k
i=1 Vi and Vi 6= ∅ for every i.De�nition 2.26 (Vertex 
ontra
tion) Vertex 
ontra
tion is an operation where twoverti
es are repla
ed by one single vertex. If u, v ∈ V , then G/{u, v} or G/uv repre-sents the graph after 
ontra
tion of the u, v verti
es.A vertex 
ontra
tion 
an result in multiple edges when the 
ontra
ted verti
es were
onne
ted to the same vertex. Multiple edges 
reated by a vertex 
ontra
tion 
an beeither kept or 
ollapsed into one single edge. Keeping or 
ollapsing will be marked, ifit is not 
lear from the 
ontext.De�nition 2.27 (Edge 
ontra
tion) Edge 
ontra
tion is the vertex 
ontra
tion oftwo adja
ent verti
es. If e ∈ E, then G/e is the appropriate graph after the edgemerge.From here on vertex 
ontra
tion will mean 
ontra
ting un
onne
ted verti
es only, oth-erwise we will use the term edge 
ontra
tion. All these de�nitions will appear in someform in the thesis, but for our topi
, vertex 
ontra
tion will be the most important onethat will 
rop up many times throughout this thesis.1∀ i, j Vi ∩ Vj = ∅, i 6= j



Chapter 3Graph Colouring ProblemThe graph 
olouring problem (GCP) is an important subset of 
onstraint satisfa
tionproblems [35; 62; 104; 145℄. It has many real-world appli
ations su
h as s
heduling,register allo
ation in 
ompilers, frequen
y assignment and pattern mat
hing [1; 18; 25�27; 31; 36; 47; 61; 108; 129; 130; 135℄. Here the problem will now be de�ned asfollows:De�nition 3.1 (Graph vertex k-
olouring) LetG be a graph and C a set of 
olours,where |C| = k. Graph k-
olouring is a map of verti
es to 
olours:
c : V

sur−−→ C , vi 7→ c(vi)Put brie�y, graph vertex k-
olouring (or simply graph k-
olouring) is an assignment of
olours for ea
h vertex. The problem o

urs in the 
olouring pro
ess when we 
onsideredges as 
onstraints.De�nition 3.2 (Proper graph vertex k-
olouring) A proper graph vertex k-
o-louring, if it exists, is a k-
olouring where adja
ent verti
es are assigned di�erent 
olours:
c : V

sur−−→ C , vi 7→ c(vi) , ∀(vi, vj) ∈ E ⇒ c(vi) 6= c(vj)De�nition 3.3 (Graph minimum vertex 
olouring) Graph minimum vertex χ-
o-louring is a proper χ-
olouring where χ is the smallest integer needed to get a proper
olouring.The smallest number of 
olours that 
an properly 
olour verti
es is 
alled the 
hro-mati
 number of a graph and will be denoted by χ. A graph G is k-
olourable if itsverti
es 
an be 
oloured properly by k 
olours; in other words, if its 
hromati
 number;is at most k. It will be 
alled k-
hromati
 if k is its 
hromati
 number. In a parti
ular
olouring, a subset of verti
es assigned to the same 
olour is 
alled a 
olour 
lass. Fig-ure 3.1 shows a proper 
olouring, whi
h is minimum as well. Sets {v1, v5}, {v2, v4, v6}and {v3} are the 
olour 
lasses in Figure 3.1. De�nition of k-
olouring 
onsists ofa 
ondition for the existen
e of su
h an assignment. The parameter k plays very im-portant role on the feasibility of a k-
olouring. Se
tion 3.4 provides several bounds onthe feasibility. Without any quali�
ation, the 
olouring of a graph is always a propervertex 
olouring so that no two adja
ent verti
es re
eive the same 
olour as seen in11



12 Graph Colouring ProblemFigure 3.1. Although, Se
tion 3.1.1 des
ribes other type of 
olourings as well. Sin
e avertex with a loop edge 
ould never be 
oloured properly, it is understood that graphsin this 
ontext are loopless. Moreover, it is reasonable to restri
t the 
olouring tosimple graphs, where the edges are undire
ted. However, di�erent graph types 
an beseen in several generalisations of the problem. The terminology of using 
olours goesba
k to map 
olouring initiated and analysed by the following authors in the periodof 1852-1890: Guthrie and De Morgan and Hamilton and Heawood and Cayley andKempe and Heawood [4; 8; 65; 83; 84; 157℄. Colours like red and blue are only usedwhen the number of 
olours is small, but generally 
olour names are substituted bynumbers 1, 2, 3, . . . , however they will be referred as 
olours. Unless stated otherwise,the unquali�ed term 'graph' usually refers to a simple graph. Without loss of generalitywe shall only 
onsider 
onne
ted graphs1, that is when there is only one 
omponent.Figure 3.1 shows a proper 
olouring. Colours are shown as di�erent angle 
oloured half
ir
les in 
ertain �gures where 
olours are used for the sake of 
larity.
v1

v2

v3

v4

v5

v6

Figure 3.1: A proper 
olouring of a graph.A 
olouring using at most k 
olours is 
alled a k-
olouring. There are three mainquestions:1. Can a graph be 
oloured with k 
olours?2. What is a k-
olouring of a graph, if it exists?3. How many k-
olourings exist for a graph?This thesis 
on
entrates on the algorithmi
 aspe
ts of the 
olouring, hen
e we willmostly be 
on
erned with answering question 2, but we 
annot ignore the other twoquestions stated above. The two other questions 
an assist us in algorithm design.However, providing a k−
olouring (question 2.) serves to answer the k−
olourability(question 1), but sometimes the k−
olourability itself 
an be answered more easily,without providing any 
olouring. It is often important to know whether a graph is
k−
olourable or not, e.g. before starting an expensive k−
olouring algorithm. Severalmethods have been developed to qui
kly determine a k−
olourability. These methodsusually provide bounds for k, and some of these bounds 
an be found in Se
tion 3.4. Atrivial example, when the answer to question 1 is straightforward, is when k is greater1There is a path from any vertex to any other vertex in the graph.



3.1 Graph 
olouring de�nitions 13than the maximum vertex degree. In this 
ase k 
olours are quite su�
ient for aproper 
olouring as ea
h vertex has fewer neighbours than the available number of
olours. Non-trivial examples are the perfe
t graphs where the 
hromati
 number is
omputable in polynomial time a

ording to [105; 110; 111℄. Usually, when task isthe k−
olouring, �nding one solution for a 
olour assignment is enough. Nevertheless,Se
tion 3.1.4 shows how important is to analyse the whole set of solutions before wedesign an e�
ient 
olouring algorithm. This 
hapter 
olle
ts ne
essary and interestinginformation about graph 
olouring to motivate and help understanding the rest of thethesis. To have better insight into the problem, it provides problem analysis besidesthe introdu
tion of de�nitions and 
on
epts.3.1 Graph 
olouring de�nitions3.1.1 Improper 
olouring and semi
olouringWe saw an example of a proper 
olouring in Figure 3.1. Now we shall fo
us on proper
olourings, but �rst we shall mention other 
olouring types as well be
ause they 
anbe also useful in the design of proper 
olouring algorithms. One possibility is when analgorithm tries to exploit the features where not only proper but improper 
olouringsare also available.De�nition 3.4 (Graph vertex improper 
olouring) An improper 
olouring is a 
olour-ing where at least one 
onstraint is violated:
c : V

sur−−→ C , vi 7→ c(vi) , ∃(vi, vj) ∈ E ⇒ c(vi) = c(vj)Solvers whi
h apply improper 
olouring have to 
ope with the violated 
olouring, so theyhave to 
orre
t the 
olouring to get a proper 
olouring. On the one hand, this relaxationof the problem, where improper 
olourings are available leads to broader sear
h spa
e.This has its drawba
ks sin
e it is more likely that we will not �nd a solution. Onthe other hand, it removes the 
onstraints temporarily in the spa
e exploration whi
hsupports more �exible algorithm design. We 
an design sear
h paths through thoseelements of the spa
e whi
h are not available in proper 
olouring. These paths 
anprovide a short
ut to a solution.De�nition 3.5 (Graph vertex k-semi
olouring [103℄) A graph k-
olouring is a
k-semi
olouring if at least half of the verti
es are 
oloured properly.
c : V

sur−−→ C, vi 7→ c(vi), ∀(vi, vj) ∈ E ′ ⇒ c(vi) 6= c(vj), E
′ ⊆ E, |E|/2 ≤ |E ′|Relying on a semi
olouring, one 
an design an O(k(n) log2 n)-
olouring algorithmsa

ording to the following [103℄.Lemma 3.1.1 If an algorithm 
an k(n)-semi
olour any n-vertex graph G, where k(n)in
reases with n, then it 
ould be used to O(k(n) log2 n)-
olour G.
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all our previous statements, G is a simple graph and k-
olouring means proper k-
olouring. Moreover, 
ontra
ting two verti
es refers to un
onne
ted verti
es and edge
ontra
tion will identify 
ontra
tion of 
onne
ted verti
es. Multiple edges 
reated bya vertex 
ontra
tion 
an be either kept or 
ollapsed into one single edge. Keeping or
ollapsing will be marked if it is not 
lear from the 
ontext.3.1.2 Chromati
 and A
hromati
 numberMinimum 
olouring 
an be de�ned as �nding a partition of the vertex set into minimumnumber of independent sets. Consequently, the union of su
h two independent setsresults in a non-independent set, otherwise we would be able to redu
e the number of
omponents in the partition.
χ = min{k : {Vi}ki=1 partition of V, Vi ∩ E = ∅ , (Vi ∪ Vj) ∩ E 6= ∅} (3.3)The maximisation of this expression (Eq. 3.3) leads to another important numbernamely the a
hromati
 number.
ψ = max{k : {Vi}ki=1 partition of V, Vi ∩ E = ∅ , (Vi ∪ Vj) ∩E 6= ∅}The a
hromati
 number tells us how badly a 
olouring algorithm 
an perform. Thenumber of 
olours used by and algorithm is between these two numbers, but they rarelyattain these bounds (see Se
tion 3.3). There are two additional numbers whi
h 
anhave a big in�uen
e on the performan
e of an algorithm, namely the 
lique and theindependen
e number.3.1.3 Clique and independen
e numberDe�nition 3.6 (Clique Number) The 
lique number ω(G) of a graphG is the num-ber of verti
es in a maximum 
lique of G.The problem of 
omputing the 
lique number for a given graph is an NP -
ompleteproblem ([82; 139℄). Sin
e a 
lique is a 
omplete sub-graph, a 
omplete graph requiresas many 
olours as the number of its verti
es for a proper 
olouring. Hen
e at least asmany 
olours are needed for a proper 
olouring of a graph as the size of its maximum
lique. This holds ω ≤ χ. A

ording to Motzkin and Straus, formulation [66; 127℄
liques 
an be 
hara
terised by a submatrix in the adja
en
y matrix (Figure 3.2(a) and3.3). The submatrix of an adja
en
y matrix A whi
h belongs to a 
lique is a matrixwith every entry equal to one ex
ept the main diagonal, whi
h has zeros 2 (Figure3.2(a)). To mask out this submatrix one 
an use a 
hara
teristi
 matrix of the edgesof the 
lique (Figure 3.2(b)) whi
h has ones in the appropriate positions, otherwiseit 
ontains zeros. The problem of 
lique �nding turns into the problem of �nding anappropriate 
lique mask whi
h masks out a 
lique submatrix from the adja
en
y matrix.2The 0-s have been repla
ed by dots for the sake of 
larity.
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v1 v2 v3 v4 v5 v6

v1 0 1 1 · · 1
v2 1 0 1 · · ·
v3 1 1 0 1 · 1
v4 · · 1 · 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·(a) A 
lique submatrix in the adja
en
ymatrix

x1 x2 x3 x4 x5 x6

x1 1 1 1 · · ·
x2 1 1 1 · · ·
x3 1 1 1 · · ·
x4 · · · · · ·
x5 · · · · · ·
x6 · · · · · ·(b) Chara
teristi
 matrix of the 
lique.Figure 3.2: Matri
es belongs to 
lique of {v1, v2, v3} verti
es.De�nition 3.7 (Independen
e number) The independen
e number α(G) of a graph

G is the 
ardinality of the largest independent set of G.Finding a maximum independent set in essen
e means �nding of a maximum 
liquein the 
omplementer graph. Consequently, the problem tight is the same, i.e. NP -
omplete. As k-
olouring de�nes a partition of V into k-independent sets {Vi}ki=1, thefollowing holds χ ≤ |V |
α(G)

. Colour 
lasses are independent sets in a minimum 
olouring.One 
an think of �nding suitable independent sets whi
h form appropriate partition ofthe vertex set. Therefore it is reasonable to examine the number of independent sets ina graph. The number of independent sets also represent the number of maximal 
liquesdue to their 
omplementary nature. The number of di�erent size maximal independentsets as well as the number of maximal 
liques is between n− logn−O(log log n) and
n− log n a

ording to Erd®s [54℄. A similar formulation 
an be given for independentsets as for 
liques using the adja
en
y matrix of the 
omplementer graph. The submatrixof an adja
en
y matrix whi
h 
orresponds to an independent set is a matrix with allentries equal to zero, i.e. the opposite of the 
lique submatrix 
ase (see Figure 9.8).Ordering the rows and relevant 
olumns of an adja
en
y matrix a

ording to 
olour
lasses in a k-
olouring, we get the k number of zero blo
ks in the main diagonal.Hen
e, a 
olouring problem 
an be formulated by these zero blo
ks, as des
ribed inSe
tion 3.1.4.3.1.4 Colouring matri
esA

ording to Se
tion 3.1.3, the submatrix of the adja
en
y matrix whi
h 
orrespondsto an independent set is an all zero matrix. Colour 
lasses form independent setswith the asso
iated zero submatri
es. The entries of these zero submatri
es de�ne the
orresponding 
olouring, where the verti
es belongs to an all zero submatrix get thesame 
olour. These relations 
an be expressed by a 
olouring matrix X = (xij), whi
his a {0, 1} matrix. It is de�ned by the 
onditions

xij =

{

1 if c(vi) = c(vj)

0 otherwise (3.5)An extreme example is the identity matrix, whi
h 
olours ea
h vertex di�erently. In



16 Graph Colouring Problem
ontrast, the matrix of all ones assigns just one 
olour for ea
h vertex. With a 
ompletegraph needs identity 
olouring matrix for proper 
olouring, the 
olouring matrix withall one entries is suitable for the empty graph only. Consider the {Vi}ki=1 partition ofverti
es into k independent sets, whi
h provides a k-
olouring, where Vi is the i-th
olour 
lass of ni number of verti
es. Taking verti
es in the order of the 
olour 
lasses,we 
an des
ribe the 
olouring by a 
olouring matrix whi
h has 1 blo
ks in the maindiagonal and zeros elsewhere. A few examples 
an be found in Figure 9.9. We notethat su
h a matrix has the following properties ([51; 124℄): (vi, vj) ∈ E ⇒ xij = 0; Xis symmetri
; X is positive semi-de�nite: X � 0.
3.2 Number of 
olouringsFor a graph there may be several possible k-
olourings. The following se
tion is 
on-
erned with their 
ardinality. The number of 
olours in a k-
olouring 
an be expressedby a polynomial, 
alled the 
hromati
 polynomial. The 
hromati
 polynomial is de�nedas the unique polynomial of degree n through the points (k, p(k)) for k = 0, 1, . . . , n.De�nition 3.8 (Chromati
 polynomial) The 
hromati
 polynomial 
ounts the num-ber of ways a graph 
an be 
oloured using no more than a given number of 
olours. Ifthe number of 
olours is k then the 
hromati
 polynomial is denoted by p(k).The values of the polynomial 
ount the equivalent 
olourings as well (see an examplein Se
tion 11.7). The 
hromati
 polynomial 
ontains as mu
h information about the
olourability of G as the 
hromati
 number does. Indeed, the 
hromati
 number is thesmallest positive integer that is not a root of the 
hromati
 polynomial. Thus χ =

min{k : p(k) > 0}. Se
tion 11.8 
ontains an example for the 
hromati
 polynomial.
3.3 ComplexityUnfortunately, there is no known 
onvenient method for determining the 
hromati
number of an arbitrary graph. Determining whether a graph admits k−
olouring is di�-
ult in general. However there is a polynomial time algorithm for 
ases k = 1 and k = 2,but for k ≥ 3 the problem be
omes NP -
omplete [80; 104; 138℄. Thus �nding the
hromati
 number is, 
omputationally, a hard problem. It is not only NP−
omplete,but there is also no polynominal time algorithm that 
an 
olour every graph G usingfewer than nǫχ 
olours for a spe
i�
 small positive 
onstant ǫ [160℄. To understandthe di�
ulties involved better, the authors of [73; 144℄ demonstrated that 
olouring
3−
olourable graph with 4 
olours is still NP−hard. As for the a
hromati
 number,determining it is NP−hard as well (see [62℄).
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hromati
 number 173.4 Bounds of the 
hromati
 numberIn Se
tion 3.3 we saw how di�
ult is to approximate the 
hromati
 number in general[160℄, but there are polynomial time 
omputable bounds of the 
hromati
 number whi
happroximate well the 
hromati
 number in parti
ular 
ases. Moreover, the bounds allowus to relate the 
hromati
 number and the stru
tural properties of a graph. This se
tionwill des
ribe su
h bounds.Brooks' theorem states a relationship between the degree of a graph and its 
hro-mati
 number. A

ording to the theorem, for a graph where every vertex has at most
∆ neighbours, the verti
es may be 
oloured with just ∆ 
olours, ex
ept for two 
ases.Complete graphs and 
y
le graphs of odd length require ∆ + 1 
olours.Brooks' [20℄. If the graph is not 
omplete or not an odd 
y
le, it has the followingbound

χ ≤ ∆ (3.6)In Se
tion 3.1.3 we gave bounds where the 
hromati
 number is 
hara
terised by thesize of the maximum 
lique and independen
e set.Clique number and independen
e number.
ω ≤ χ ≤ n

α
(3.7)The di�eren
e between the ω and χ 
an be arbitrarily large [70; 128℄. However, thereis no e�e
tive way to determine the 
lique number, be
ause it requires mu
h e�ort asthat for the 
hromati
 number. But there is a graph property whi
h 
an be e�
iently
omputed. This property provides a better lower bound for the 
hromati
 numberthan the 
lique number. Nevertheless, the di�eren
e between this property and the
hromati
 number 
an still be large [56℄. Lovász introdu
ed a graph property 
alled θ̄whi
h is 
omputable in polynomial time and gives a better lower bound than ω. θ̄(G)is 
omputed in the 
omplementer graph Ḡ, whi
h explains the 'bar' symbol. In fa
t,it serves as the ve
tor 
hromati
 number, whi
h is the solution of a relaxed graph
olouring problem (see Se
tion 9.9).Lovász [109℄.

ω ≤ θ̄ ≤ χ (3.8)The result is tight for perfe
t graphs where ω = θ̄ = χ Not only is the value of theproperty important, but the way it obtained 
an be very useful too (see Se
tion 9.9). Astudy of θ̄ provides helpful information about graphs. It also has appli
ations in otherareas besides graph 
olouring.Ho�man and Wilf [88; 154℄.
1 +

λmax

−λmin

≤ χ ≤ λmax + 1 (3.9)The di�eren
e between the λmax and χ 
an be large (see Se
tion 3.7), but in Se
tion 9.5we shall see that this bound is useful in 
olouring algorithm design. Also, a relationship



18 Graph Colouring Problemmay be seen when we examine the relations between indu
ed matrix norms. The spe
tralnorm is the smallest among the indu
ed norms. For graphs the spe
tral norm is equalto the largest eigenvalue λmax. Sin
e ∆ = ||A||1 = ||A||∞ and λmax ≤ ∆, hen
e
χ ≤ λmax + 1 ≤ ∆ + 1 (3.10)For regular graphs the equality λmax = ∆ holds. Both lower and upper bounds 
anhelp in algorithm design. Identifying the target 
olouring and the starting k 
an bean important in a 
olouring pro
ess. This 
an be a
hieved by determining an upperbound value. Knowing the lower bound may also be useful in the preparatory step ofthe 
olouring pro
ess, where a graph 
an be simpli�ed by applying this bound. Verti
eswith degree lower than a lower bound value 
an be removed (see [29℄), while an upperbound 
an be a target 
olour in the beginning of a minimal 
olouring pro
ess.3.5 Chara
teristi
 polynomialMany bound estimates in Se
tion 3.4 were obtained from an algebrai
 analysis of the
olouring problem. Usually, the analysis is based on some matrix whi
h 
hara
terisesthe problem. Di�erent matri
es may be asso
iated with a graph. One obvious exampleis the adja
en
y matrix, whi
h is illustrated in Figure 3.3. This matrix en
odes the

v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

v1 · 1 1 · · 1
v2 1 · 1 · · ·
v3 1 1 · 1 · 1
v4 · · 1 · 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·Figure 3.3: A graph G and its adja
en
y matrix.graph en
oding important properties. Most notably its eigenvalues, its determinant andits tra
e. The eigenvalue problem for this is

Av = λv → (λI − A)v = 0 (3.11)Let the eigenvalues of this equation be λi, where λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin,and let v1,v2, . . .vn be the eigenve
tors, respe
tively. This is a well studied equationin the literature and there are several solvers whi
h 
an 
ompute all the solutionse�
iently. Owing to the de�nition of the tra
e and the relation with the sum ofeigenvalues, the following 
ondition holds trA =
∑

i aii =
∑

i λi = 0. For non-bipartite graphs λmax > −λmin [45℄, while for bipartite graphs the absolute values ofthe eigenvalues are equal. In Se
tion 3.4 we showed how the eigenvalues 
an be usedto set bounds on the 
hromati
 number. Also, in se
tions 9.4.2 and 9.5 we des
ribe
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h spa
es 19e�
ient 
olouring strategies based on the the prin
ipal (the largest) eigenvalue and theprin
ipal eigenve
tor. The eigenvalues as roots of a polynomial pA(x) = Πi(x − λi)give the 
hara
teristi
 polynomial of A.De�nition 3.9 (Chara
teristi
 polynomial) The 
hara
teristi
 polynomial of a ma-trix is de�ned by
pA(x) = det(A− xI) (3.12)The 
hara
teristi
 polynomial of a graph is the 
hara
teristi
 polynomial of its adja
en
ymatrix. It is a graph invariant, i.e. isomorphi
 graphs have the same 
hara
teristi
polynomial, hen
e it is more interesting in the light of the great symmetry of theproblem (see an example in Se
tion 11.7). Next, write pA in the form

pa(x) = det(xI −A) = xn − c1xn+1 + · · ·+ (−1)ncn (3.13)The polynomial 
oe�
ients also en
ode interesting features of the graph whi
h 
anbe of help in the 
olouring pro
ess as well. Se
tion 9.7 des
ribes an appli
ation for
olouring. From [9℄, the 
oe�
ients of the 
hara
teristi
 polynomial of a graph satisfythe 
onditions: c1 = 0, −c2 = |E|, −c3
2
, (−1)ncn = Πiλi = detA. Se
tion 11.8
ontains an example for the 
hara
teristi
 polynomial.3.6 Sear
h spa
esThis se
tion des
ribes sear
h spa
es whi
h generally arise in graph 
olouring algorithmdesign.3.6.1 Permutation spa
eUsing a greedy 
olour assignment, there is always a permutation of a verti
es whi
hgenerates a solution. Se
tion 4.2 
ontains more details about the greedy 
olour assign-ment problem. Next, let us see a solution (Figure 3.1) and order verti
es a

ordingto its 
olour 
lass identi�er, where the same 
olour verti
es appear in a natural order(Figure 3.4). Note that the 
olour 
lass identi�ers may be 
hanged without 
hanginga solution. The verti
es belonging to a 
olour 
lass 
an be listed in not only a natural,but arbitrary order. Hen
e several permutations 
an result in the same performan
e
olouring, produ
ing a symmetry in the spa
e. After 
reating a permutation of verti
es,we do a greedy 
olour assignment to the verti
es, in the order of their appearan
e in thepermutation. Greedy 
olouring produ
es a 
olouring whi
h requires no more 
oloursthan the original solution. This pro
edure may lead to di�erent 
olourings. This isbe
ause a low degree vertex whi
h does not have any neighbour in any 
olour 
lass
an get di�erent 
olours, resulting in another optimal 
olouring. However they 
anbe removed before starting a 
olouring (see Se
tion 3.4). Based on this approa
h, analgorithm must sear
h in the permutation spa
e of the verti
es. Even though the size ofthis sear
h spa
e is large (n!), it has been proved a better representation for sequential
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olouring s
hemes in [7; 52℄ than the ve
torial 
olour assignment s
heme, whi
h has knelements (see Se
tion 3.6.3). The graph 
olouring problem has large symmetries (seean example in Se
tion 11.7), thus the n! spa
e will be redu
ed 
onsiderably. Re
allthat the verti
es belonging to the same 
olour 
lass 
an appear in an arbitrary order.Hen
e, several permutations may result in the same 
andidate solution. An algorithm,whi
h sear
hes in the permutation spa
e, always targets the minimum 
olouring 
ase.
π = (v1, v5, v2, v4, v6, v3) cg = (1, 1, 2, 2, 2, 3)Figure 3.4: A solution represented as a permutation π in a greedy 
olouring cg.3.6.2 Independent set spa
eSin
e the 
olour 
lasses form independent sets, a sear
h 
an be performed in thisspa
e. The sear
h itself may be a sear
h of an appropriate 
hara
teristi
 ve
tor whi
hsele
ts a suitable subset of the set of all independent sets. Although it assumes thegeneration of all independent sets, whi
h is time and spa
e 
onsuming task as thenumber of independents sets 
an be huge (see Se
tion 3.1.3). Therefore, a dynami
generation approa
h 
an be applied instead of the stati
 one, whi
h generates all setsin advan
e. Hen
e a sear
h must be done in a dynami
ally 
hanging environment,starting with e.g. the one-size independent sets, namely, the verti
es. An algorithm
an sequentially 
ombine independent sets by performing a union of some of them. Theinterpretation of this approa
h in a 
olouring language might be a re-
olouring s
hemewhere the starting 
olour palette is n, whi
h 
olours ea
h verti
es di�erently. In orderto redu
e the number of 
olours used, an algorithm must properly re-
olour the verti
esby using an (n− 1)-
olour palette. This pro
ess is 
ontinued until no further redu
tionis possible. Usually, a greedy variation of this approa
h is applied in the literature[70; 72; 77; 103; 152℄. Namely, a 
olour is 
hosen in advan
e and some vertex 
hoi
estrategy is applied. The 
olour 
hosen is assigned to ea
h possible vertex. When nofurther su
h assignment is possible, an algorithm gets another 
olour and goes on inthe same fashion for the remaining verti
es, not a�e
ted by the previous 
olourings. Inan independent set formulation, it means that one 
an �nd an independent set, that isa dominating set and where no further vertex 
an be en
ompassed. Then removing thedominating set, the algorithm 
ontinues this same strategy for the remaining verti
es.Figure 3.5 shows the 
olour 
lasses (independent sets) of the 
olouring of Figure 3.1.

S1 = {v1, v5} S2 = {v2, v4, v6} S3 = {v3}Figure 3.5: A solution represented as a set of independent sets.3.6.3 Ve
tor spa
eIn Se
tion 3.6.2 we introdu
ed a sear
h spa
e where independent sets, i.e. 
olour 
lasseswere generated as 
onstituents of the 
olouring. These approa
hes require a {0, 1} 
har-a
teristi
 ve
tor x with k non-zero 
omponent whi
h designates k independent sets,if the goal is a k−
olouring. See a 
olouring in Figure 3.6 and its representation as
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hara
teristi
 ve
tor in Figure 3.6. In the 
ase of minimum 
olouring, the spa
e ofall possible {0, 1} ve
tors, whose dimension is the number of possible independent sets(see in Se
tion 3.1.3). Although this approa
h is quite time-
onsuming. Unfortunately,it assumes the generation of all independent sets in a graph in advan
e, whi
h requires
2n independent set examinations, using a brute for
e approa
h. Furthermore a sophis-ti
ated generation of the independent sets may require extra 
omputation e�ort. Thebene�t of this formulation is that it is possible for an algebrai
 method to be appliedon a relaxed version of the problem, where x is no longer binary {0, 1} valued but realvalued. The 
hara
teristi
 ve
tor x 
an be de
omposed into k 
hara
teristi
 ve
tors
{vi}ki=1 that form a polyhedron. Ea
h of these ve
tors have only one non-zero element,whi
h designates an independent set. Hen
e, ea
h vi represents only one independentset. A 
olour assignment to a vertex may be simply interpreted as a dis
rete 
olour

{S1 S2 S3 S4 . . . }
( 1 1 1 0 . . . )Figure 3.6: Chara
teristi
s ve
tor of independent sets S1, S2, S3 of a solution in the setof all independent sets.assignment fun
tion. The assignment 
an be represented by an n-tuple, an integerve
tor on n elements. The size of the sear
h spa
e is kn in the 
ase of k−
olouringand nn if we desire minimum 
olouring. However nn 
an be redu
ed based on the upperbounds and lower bounds of the problem (
f. the bounds given in Se
tion 3.4).

3.7 Random Gn,pe graphsThere are many 
lasses of graphs that 
ould and should be used to test 
olouringalgorithms. The most natural 
lass is perhaps the 
lass Gn,pe, the random graphs,where n is the number of verti
es, and for ea
h pair of verti
es an edge is assignedwith probability pe, i.e. an edge probability. This 
lass of graphs has been extensivelystudied from a 
olouring aspe
t, espe
ially for pe = 1
2
, where the number of the possibleinstan
es is the biggest. A

ording to [12; 13; 58; 71℄, asymptoti
ally, for a �xedprobability pe and b = 1

1−pe
, the 
hromati
 number is almost surely be

χ ∼ n

2 logb n
(3.14)Furthermore, if d =

P

i di

n
is the average degree in the graph, then the following holds

χ ∼ d
2 ln d

. The average degree in a graph is a lower bound for the largest eigenvalue[45; 46℄ 3 and hen
e the gap between the largest eigenvalue and the 
hromati
 number
an be arbitrary large.3d =
P

i di

n = 1
T A1

1T 1
≤ maxx

x
T Ax

xT x
= λmax



22 Graph Colouring Problem3.8 Phase transitionGraph k−
olouring exhibits a phase transition depending on the ratio of 
onstraints tothe maximum number of possible 
onstraints (

n
k

), where the number of solvable probleminstan
es qui
kly drops to zero. At that transition 
onstraint solvers require the mostsear
h e�ort to �nd solutions for solvable problem instan
es. Re
ent investigations[43℄ have shown a good explanation towards explaining the rise in di�
ulty duringthe phase transition. To demonstrate the existen
e of the phase transition, takea 
lass of k−
olourable random graphs, where the graph stru
ture is known. Let
Geq,n=200,pe,k=5 be the set of 5−
olourable equipartite random graphs on 200 verti
es.In the 
ase of equipartite graphs, ea
h 
olour 
lass has nearly the same number ofverti
es. Moreover, pe de�nes the edge probability (see random graphs in Se
tion 3.7);whose value des
ribes the number of the edges in the graph. Se
tion 4.1 provides furtherdetails about equipartite graphs. A sequen
e of graphs are generated by modifyingthe edge probabilities from 0 to 1 in a systemati
 way. Hen
e the number of edges ofthe generated graphs is varied in a region 
alled the phase transition. This is wherehard-to-solve problem instan
es are generally found, whi
h is shown using the typi
aleasy-hard-easy pattern in Figure 3.7. The graphs are all equipartite, whi
h means that ina solution ea
h 
olour is used approximately as mu
h as any other. The demonstrationgraphs are generated using a well-known graph k−
olouring generator of Culberson[44℄. The graph set 
onsists of groups a

ording to the following edge probabilities
pe ∈ {0.01, 0.03, 0.05, . . . , 0.98}. Ea
h group has ten graph instan
es generated byusing the same pe, but di�erent random seeds {1, 2, . . . , 10} in the generation. Thesame random order of the verti
es is �xed for ea
h graph. Then a greedy 
olourassignment is applied for ea
h graph; that is, taking the ordered verti
es of a graph,the �rst vertex get the �rst 
olour and all following verti
es get the �rst available 
olourwhi
h produ
ed proper 
olouring. Se
tion 4.2.2 
ontains more information about thegreedy 
olouring and its analysis. This pro
edure is repeated nine times to get tendi�erent random orders. Hen
e, there were ten 
olourings for ea
h graph instan
es.The number of 
olours of the 
olourings was averaged for ea
h pe groups, i.e. numberof 
olours of ten 
olourings for ten graphs of a pe group resulted in 200 values. Theseaverages with 95% 
on�den
e intervals are plotted in Figure 3.7. A 
ompetition graphset in the literature may 
ontain only parti
ular instan
es of graph families. Therefore,generated instan
es, whi
h in
lude the phase transition region, are ne
essary in anexperimental 
omparison of di�erent 
olouring algorithms.3.9 SummaryIn this 
hapter we provided an insight into the graph vertex k−
olouring problem andinvestigated it from several angles. In the next 
hapter we will give an overview of thework done on this problem in the literature.
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Chapter 4Related workGraph 
olouring has a wide range of real-world appli
ations to solve 
onstraint satisfa
-tion problems, hen
e its results are of great intrest for resear
hers. Sin
e the problem�rst appeared in the literature, a lot of resear
h has been done in this �eld. This 
hap-ter reviews the major appli
ation areas of graph 
olouring and des
ribes approa
hes forsolving the problem. In addition, interesting graph instan
es and 
on
rete algorithmsare given with whi
h the various approa
hes 
an be 
ompared experimentally.4.1 Ben
hmark graphsThis se
tion des
ribes a set of ben
hmark graph instan
es used in the experimentsperformed in Chapter 10. They are drawn from a large number of sour
es. Their de-s
ription reveals how a real-world problem 
an be de�ned as a graph 
olouring problem.The DIMACS ar
hive. A 
ommon repository was 
reated for testing 
olouringalgorithms in the Se
ond DIMACS Challenge [93℄ in 1992. Graph 
olouring was oneof the problems addressed in the 
hallenge. The purpose of the 
ompetition was toen
ourage and 
oordinate resear
h in the experimental analysis of algorithms. Laterthe repository was extended by Tri
k adding other instan
es [143℄.Random k-equipartite graphs. Next, de�ne the following 
lass of graphs to provideanother testbed for our algorithms. Let Geq,n,pe,k be the set of su
h Gn,pe randomgraphs (see Se
tion 3.7), where the vertex set of G is partitioned into k as nearlyequal sized sets. These graphs form the 
lass of random equipartite graphs. They areone of the most di�
ult to solve instan
es be
ause they have the largest symmetryand the largest number of instan
es in the Gn,pe 
lass. To get an instan
e in this
lass one 
an k−partite verti
es and draw edges only between the members of di�erentsubsets with a 
ertain probability, i.e. an edge probability pe. Of 
ourse, the 
hromati
number of su
h an instan
e is not greater than k, but it strongly depends on the edgeprobability. Indeed, for a zero edge probability the 
hromati
 number drops to one. Theedge probability of a k−partite graph lies in the inequality range 0 ≤ pe ≤ (k−1)
(n−1)

· n
k
.Varying p systemati
ally, experiments may reveal those regions where algorithms havedi�
ulties, namely the phase transition region. In order to produ
e test instan
es ofequipartite graphs, Culberson's graph generator [44℄ was used here.25



26 Related work4.2 Ben
hmark algorithmsThis se
tion provides ben
hmark algorithms whi
h are 
ommonly used to 
ompare theperforman
e of methods [17; 48; 70; 75; 151℄. The performan
e of these methods servesas referen
e in the experimental 
omparison of the algorithms des
ribed in this thesis.Finding a solution of the 
olouring problem is hard in general, as shown in Se
tion 3.3.Hen
e one 
an rely on heuristi
s whi
h do not provide an exa
t solution, but only anapproximate one. However, several algorithms have been developed to solve the graphvertex 
olouring problem, but none of them is optimal, their performan
e is alwaysdepending on the investigated problem. There are several polynomial time algorithms(see [70; 75; 77; 103; 151; 152℄) that provide a guarantee for the approximate solutionof the 
olouring for a given number of 
olours. Some of our ben
hmark algorithmshave this guarantee, but for 
ertain problems their performan
e 
an be worse thanthose algorithms whi
h do not ensure su
h a guarantee.4.2.1 Traditional sequential 
olouring s
hemesA

ording to the authors of [70℄, there are two traditional sequential 
olouring ap-proa
hes. The �rst is the sequential 
olour assignments, where verti
es get 
olours ina greedy manner; that is, ea
h vertex gets the earliest available 
olour. Algorithms inthis s
heme take un
oloured verti
es in order via some strategy then apply a sequentialgreedy 
olour assignment to the verti
es, as des
ribed in Se
tion 4.2.2. The sear
h spa
eis the spa
e of vertex permutations, as seen in Se
tion 3.6. This greedy 
olouring ap-proa
h works well with several vertex ordering strategies, as shown in [17; 48; 75; 151℄.These algorithms use some heuristi
s and usually without any guarantee of the numberof 
olours to be used. Furthermore, there is always an order of the verti
es whi
hresults in an optimal 
olouring with the greedy 
olouring approa
h. See Se
tion 4.2.2for further details. The se
ond approa
h is the maximal independent set pro
edure,where instead of un
oloured verti
es, the 
olours or 
olour 
lasses are taken step bystep. Colour 
lasses form independent sets. At the start, there are no 
olour 
lasses,hen
e it starts with an empty 
olour 
lass, i.e. an independent set. Then it �lls thisset with un
oloured verti
es, a

ording to a vertex 
hoosing strategy, until its satu-rated; that is, no more un
oloured verti
es 
an be en
ompassed. Saturation o

urswhen the set be
omes a dominating set; that is, ea
h external vertex is 
onne
ted toone of the internal verti
es. In terms of a 
olour assignment, take the �rst 
olour and
olour as many verti
es as possible with the same 
olour. If a 
olour 
lass is saturated,then it 
reates a new one and 
ontinues in the same fashion, That is, when no moreun
oloured verti
es 
an be 
oloured with the 
urrent 
olour, take a new 
olour and
olour with the new 
olour as many un
oloured verti
es as possible, repeating this stepuntil un
oloured vertex exists. Algorithms whi
h provide a guarantee for a maximumnumber of 
olours used in their 
olouring apply this approa
h [70; 77; 103; 151; 152℄.This above approa
h 
an be interpreted as a maximal independent set strategy [70℄.In fa
t, a 
olour 
hoi
e is a 
hoi
e of a 
olour 
lass, whi
h is an independent set. Withthis strategy, an empty independent set � a new 
olour � is 
reated and �lled with
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es until it be
omes maximal, i.e. when no more vertex addition is possible. Toillustrate this, start with a single vertex, a one-element independent set and put asmany non-neighbour verti
es into this set as possible in order to in
rease the size of theindependent set to its maximum. After a while the set be
omes a maximal independentset, i.e. ea
h non-in
luded vertex will have a neighbour vertex in the independent set.Then 
ontinue with the rest of the verti
es in the same fashion. In traditional se-quential 
olouring s
hemes one is 
on
erned with 
oloured and un
oloured sub-graphs,denoted by Gcol and Gcol respe
tively. Algorithms exploit information taken from bothsub-graphs. Hen
e we shall now de�ne some of their important properties:De�nition 4.1 (Un
oloured degree) The un
oloured degree of a vertex v is thenumber of un
oloured neighbours of v: dunc(v) = |{vj | vj ∈ N(v) , vj ∈ Gunc}|.De�nition 4.2 (Coloured degree) The 
oloured degree of a vertex v is the numberof 
oloured neighbours of v: dcol(v) = |{vj | vj ∈ N(v) , vj ∈ Gcol}|De�nition 4.3 (Colour saturation degree) The 
oloured saturation degree of avertex v is the number of di�erent neighbour 
olours of v: dsat(v) = |{c(vj) | vj ∈
N(v) , vj ∈ Gcol}|The same notation is used for their maximum and minimum as for the maximum degree
∆ and minimum degree δ, with the in
lusion of the appropriate supers
ripts unc,col ,sat.4.2.2 Greedy 
olouring s
heme (∆ + 1)Greedy 
olouring takes an order of the verti
es and assigns 
olours sequentially to themin a greedy manner. That is, a vertex gets the earliest available 
olour. Ve
tor x
ontains the sort keys of the ordering of the verti
es. It is predetermined by a vertexordering strategy.Greedy 
olouring algorithm(G,C,x)1 for t← 1 to n2 do3 v← [arg maxvi{xi | vi ∈ V unc}]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]The greedy 
olouring method takes the un
oloured vertex v whi
h has the maximumvalue in the sort key ve
tor x. Then it �nds the earliest available 
olour c, then assigns
c to v. The �rst available 
olour is that 
olour whi
h has a minimum index and is notassigned to any of the neighbours of v. Note that C = {1, . . . , k} and every 
olourassignment implies that theGcol = Gcol+v andGunc = Gunc−v sub-graphs are updatedea
h time. There may be the same degree verti
es and they form a ve
tor of 
urrently
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hosen verti
es v in the order of their 
hoi
e. The algorithm always 
hooses the �rst
v1 among them. The greedy 
olouring pro
edure does not provide any strategy forordering the verti
es. Many heuristi
s exploit the power of the greedy performan
e andtry to further re�ne the upper bound of the number of 
olours used. These heuristi
sexplore the spa
e of the vertex permutations. The vertex 
hoi
e of these heuristi
s 
anresult in a set of verti
es if no other 
hoi
e is present, the �rst being 
hosen amongthem by taking a natural order. A vertex ordering heuristi
s whi
h uses greedy 
olouring
annot perform worse than ∆ + 1 as they keep the 
olouring below the Brook's bound(see Se
tion 3.4). Nevertheless, for parti
ular graphs the greedy performan
e variesgreatly, but for large Gn,pe random graphs, almost surely, it 
onsumes approximately

n
logb n


olours, where b = 1
1−pe

([70; 71℄); that is, approximately twi
e as many asthe 
hromati
 number (see Se
tion 3.7). Se
tion 3.8 detailed an experiment wheregreedy 
olouring was performed by taking 5−
olourable equipartite random graphs on
200 verti
es. The phase transition o

urred when the edge probability approa
hed
pe = 0.4; that is the performan
e of the greedy 
olouring be
ame worse in this region.The expe
ted number of 
olours is n

logb n
= 200

log1.6̇ 200
= 19.28, whi
h seems quite goodafter analysing the plot of Figure 3.7. However, for other pe−s, the expression givesover and underestimations: for pe = 0.2 it is 8.42 and for pe = 0.8 it gives 60.75. Notethat the expression belongs to random graphs and our analysis 
overs only randomequipartite graphs on 200 verti
es. Nevertheless, this expression 
hara
terises well thegreedy 
olouring at the peak of the phase transition.4.2.3 Welsh-Powell (maxi min{di + 1, i})The Welsh-Powell heuristi
 approa
h [151℄ is based on the greedy algorithm. The basisof the un
oloured vertex 
hoi
e is the degree. This variant of the greedy 
olouringapplies a vertex ordering. Verti
es are ordered a

ording to de
reasing vertex degrees.The di = d(vi) is the degree of the vertex in the i-th position in the ordering. Thengreedy 
olouring is applied to the verti
es in order, whi
h uses at most maxi min{di +

1, i}. Let [ . ] be an operation whi
h generates a ve
tor from the elements of a set,taking a natural order.Welsh-Powell 
olouring algorithm(G,C)1 for t← 1 to n2 do3 v← [arg maxvi∈V
unc dG(vi)]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]The 
olouring 
onstraints are spe
i�ed by the edges. The Welsh-Powell heuristi
 
on-siders the highest degree vertex as the most 
onstrained one. i.e the most di�
ult oneto 
olour. However, during a sequential 
olouring the 
olouring 
onstraints are spe
i�edby the number of neighbouring 
olours. It is a variant of the greedy 
olouring wherethe x = d, where d 
ontains the degrees of the verti
es.
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hmark algorithms 294.2.4 Hajnal (λmax + 1)The Hajnal heuristi
 approa
h [75; 153℄ applies a similar assumption as the Welsh-Powell heuristi
 approa
h, but its bound may be better than ∆ + 1. The maximumnumber of 
olours used by this heuristi
 is equal to the maximum 1, i.e. the prin
ipal(the largest) eigenvalue λmax of the adja
en
y matrix of G. This bound is providedby a greedy 
olour assignment where the order of the verti
es is determined by the
omponents of the prin
ipal eigenve
tor 2. Ea
h eigenve
tor 
omponent is asso
iatedwith a vertex a

ording to the 
orresponding adja
en
y matrix rows/
olumns. Thisvariant of the greedy 
olouring de�nes the sort key ve
tor x by the 
omponents of theprin
ipal eigenve
tor.Hajnal Colouring Algorithm(G,C,x)1 for t← 1 to n2 do3 v← [arg maxvi{xi | vi ∈ V unc}]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]

4.2.5 DSatur of BrèlazThe DSatur heuristi
 [17℄ rely on the 
olour or 
olour saturation degree dsat of verti
esin the 
urrent state of the 
olouring, i.e the number of di�erent neighbour 
olours ofa vertex. The Welsh-Powell and the Hajnal heuristi
 do not 
onsider the state of the
urrent 
olouring, but DSatur does it. Hen
e it is reasonable to distinguish between the
oloured and un
oloured sub-graphs of the original graph G. Obje
ts belonging to the
oloured or un
oloured sub-graphs are denoted by col and unc subs
ripts, respe
tively,e.g. V col and V unc = V \V col. DSatur 
hooses the most 
onstrained vertex in terms ofthe 
olour degree; that is, it 
hooses the maximum 
olour degree vertex and performsa greedy 
olouring on it. Sin
e DSatur does not re-
olour, there is no sense in usingthe 
olour degree for the already 
oloured verti
es. For tie breaking, when more thanone vertex has the same 
olour degree, the Welsh-Powell heuristi
 is applied in the
Gunc graph. It looks for the vertex that has the highest un
oloured degree ∆unc amongthe un
oloured verti
es. The un
oloured degree dunc = dGunc is then 
al
ulated in theun
oloured graph Gunc, i.e. the edges of 
oloured verti
es are not taken into a

ount.1For graphs λmax ≥ −λmin, equality o

urs only in the 
ase of bipartite-graphs.2The adja
en
y matrix is symmetri
, hen
e the right and the left eigenve
tors are the same.



30 Related workDSatur 
olouring algorithm(G,C)1 for i← 1 to n2 do3 U ← {vi | dsat(vi) = ∆sat, vi ∈ V unc}4 v← [vi | dunc(vi) = ∆unc, vi ∈ U ]5 v = v16 c = 1 + minC \ {c(vj) | vj ∈ N(v)}7 c(v) = c8 return [{c(vi)}ni=1]Dsatur put the most saturated verti
es into the U set. If there are more than onesu
h vertex, then applies a trial for tie breaking by the degrees of the elements of U .The �nal tie breaking is performed by 
hoosing the �rst of the same maximum degreeverti
es of U as seen in the greedy 
olouring s
heme. Then a the vertex 
hosen gets a
olour by a greedy 
olour assignment.4.2.6 Erd®s (O(n logn))The Erd®s heuristi
 makes similar assumptions as DSatur but in the opposite way,however he re
ommended it for a theoreti
al analysis, and several algorithms apply hisprin
iple or similar assumptions [77; 152℄. An Erd®s O(n/ logn) heuristi
 [70, p. 245℄works as follows. First, take the �rst 
olour and assign it to the vertex v that has theminimum degree. Vertex v and its neighbours are removed from the graph. Continuethis in the remaining sub-graph in the same fashion until the sub-graph be
omes empty,then take the next 
olour and use the algorithm for the non-
oloured verti
es and soon until ea
h vertex is assigned a 
olour. This approa
h guarantees O(n/ logχ(n))number of 
olours in the worst 
ase. However, an algorithm whi
h has proved boundsfor the number of 
olours used in a 
olouring makes an exa
t analysis possible, but otheralgorithms without su
h a bound 
an perform better in many 
ases. Next, separatethe 
oloured and un
oloured sub-graphs as well, as des
ribed in Se
tion 4.2.5 for theDSatur heuristi
s. Here the minimum degree of the un
oloured verti
es will be denotedby δunc(v) = δGunc(v) = mini{dunc(vi) | vi ∈ V unc}.Let Vc be the 
olour 
lass of c, i.e. the set of the same 
oloured verti
es.Erd®s 
olouring algorithm(G,C)1 c← 12 for i← 1 to n3 do4 v← [vi | dunc(vi) = δunc, N(vi) ∩ Vc = ∅, vi ∈ V unc]5 if v = [ ]6 then c← c + 17 else v ← v18 c(v) = c // v be
omes the member of Vc9 return [{c(vi)}ni=1]The ve
tor v 
onsists of the un
oloured minimum degree verti
es, whi
h 
an get the
urrent 
olour c, keeping the rule of the proper 
olouring; that is, the neighbours of
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es 
annot be in the 
olour 
lass Vc. The �rst vertex of these verti
es issele
ted and c is assigned to it. The last 
olour c is updated only when v is empty, i.e.there is no further vertex whi
h 
an get a 
olour c.4.2.7 Evolutionary algorithm � standard �tnessAn evolutionary algorithm (EA) is a subset of evolutionary 
omputation, a generi
population-based metaheuristi
 optimisation algorithm. One popular approa
h for deal-ing with graph k−
olouring is evolutionary 
omputation [40; 42; 52; 55; 68; 133℄,where a set of 
andidate solutions (the population) is 
ontinuously 
hanged (evolved)until it ful�ls a 
ertain stop 
ondition. The evolution of the population is divided intogenerations. Candidate solutions 
an be modi�ed or 
ombined, 
reating new 
andi-dates between two generations. We use a standard steady state evolutionary algorithm[6; 53℄ to sear
h through the spa
e of permutations (see Se
tion 3.6.1). The steadystate model keeps the size of the population 
onstant throughout the generations. Thisalgorithm maintains a population Π of permutations of the verti
es. Ea
h permutation
π is evaluated by the so-
alled �tness fun
tion f(π), whi
h de�nes the goodness of a
andidate solution π. Here, f(π) = k(π) − χ̂, where χ̂ is a lower bound of the 
hro-mati
 number (e.g. 1). The k(π) determines the number of 
olours used by a greedy
olouring (see Se
tion 4.2.2), using the π order of the verti
es. Randomly generatedpermutations form the initial population. Then the appropriate �tness values are 
al
u-lated in ea
h generation. After doing the �tness 
al
ulation ea
h 
andidate solution ismodi�ed (mutated) by a 
ertain probability pmut and ea
h 
andidate pair is 
ombined(re
ombinated) based on another probability pxover to get new 
andidate solutions inthe sear
h spa
e. Re
ombination or 
rossover is the 
ommon name of the two operand
hange operators, whi
h produ
e one or two new permutation(s). A sele
tion is per-formed in the set of the original and new elements of the population to 
reate the nextpopulation. This pro
edure 
ontinues until the stop 
ondition is satis�ed. Then thegreedy 
olouring by the best 
andidate solution, i.e. permutation, provides the outputof the algorithm. The settings of the evolutionary algorithm :initialisation: uniform random generation of permutations.mutation: simple swap mutation, whi
h sele
ts at random two di�erent elementsin the permutation and then swaps them (see Figure 4.1(b)).
rossover: 2−point order based 
rossover (ox2), as shown in Figure 4.1(a). Thetwo permutations π1 and π2 are 
ut at two points. The �rst and the last partof the permutations are inserted without any 
hange into the two new 
andidatesolutions π′

1 and π′
2. After the 
entral part in the new permutations is ordereda

ording to the element order in the other permutations.sele
tion: 2−tournament sele
tion, where it employs elitism of size one; that is, itkeeps the best 
andidate solution. Tournament sele
tion involves running several"tournaments" among a 2 individuals 
hosen at random from the population.The winner of ea
h tournament (the one with the best �tness) is sele
ted.stop 
ondition: the algorithm terminates, when it rea
hes a 
ertain number ofgenerations or number of �tness evaluations. Furthermore, when an optimal



32 Related worksolution is found, here, usually the �tness is zero at an optimum point. In our
ase, it is a
hievable if χ̂ = χ.
EAswap,ox2

k−χ̂ (G,C)1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate ea
h permutation5 do6 k(π)← max{Greedy colouring(G,C, π)} //Number of 
olours used7 f(π)← (kπ − χ̂) // Fitness a8 Π = Π ∪ mutation(Π, pmut) ∪ crossover(Π, pxover)9 Π = selection(Π, f)10 π ← best(Π, f)11 return Greedy colouring(G,C, π)aχ̂ is a lower bound of χ.
π1 = v6 v̊1 v̊4 v3 v2 v5

π2 = v3 v2 v5 v̊4 v6 v̊1

π′
1 = v6 v̊4 v̊1 v3 v2 v5

π′
2 = v3 v2 v5 v4 v6 v1(a) Order-based 
rossover (ox2). v1 v4 v3 v2 v5 v6

swap(v4,v5)−−−−−−→ v1 v5 v3 v2 v4 v6(b) Swap mutationFigure 4.1: EA operators. Elements v1, v4 of π1 are ordered a

ording to the order ofthese elements in π2 in Fig.4.1(a)4.2.8 Evolutionary algorithm � Stepwise adaptation of weightsThe Stepwise Adaptation of Weights (saw) was introdu
ed in [52℄ as a very promisingte
hnique for 
olouring graph 3-
olouring problems. The basi
 idea behind saw is tolearn on-line about the di�
ulty of 
onstraints in a problem instan
e. This is a
hievedby keeping a ve
tor of weights that asso
iates the weights with 
onstraints. In the
ontext of graph k-
olouring, every edge is assigned a weight. These weights thenget initial values of one. Next, a basi
 evolutionary algorithm is used to solve a givenproblem instan
e. Every generation is interrupted in order to vary the ve
tor of weightsusing the best individual of the 
urrent population. Every 
onstraint violated by thisindividual is in
remented by one. Then the evolutionary algorithm uses this new ve
tor.The �tness of an individual equals the sum of the weights of all the 
onstraints itviolates. By adapting this �tness fun
tion using the ve
tor of weights may prevent theevolutionary algorithm from getting stu
k in lo
al optima.
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hes 334.3 Algorithm approa
hesExtending the list of Se
tion 4.2, this se
tion dis
usses other frequently used approa
hesas well to solve the graph 
olouring problem. Lots of algorithms have been 
reated andstudied to solve the graph minimum vertex 
olouring problem. A
tually, these algo-rithms 
ome in two main types: the exa
t algorithms where �nding of a solution is guar-anteed, but the time involved may be 
onsiderable due to the 
omplexity of the problem(see Se
tion 3.3); and the non-exa
t, the approximation algorithms where however asolution is not guaranteed but one may �nd a solution or a good approximation of it ina reasonable time. The latter methods may have sto
hasti
 
omponents. Some re
entsurveys of these methods 
an be found in [60; 91; 114; 158℄ The graph 
olouring prob-lem 
an be exa
tly solved by an exhaustive sear
h, i.e. systemati
ally exploring a sear
hspa
e [43; 44; 93℄. Unfortunately, when the size of the instan
es grows the runningtime for exhaustive sear
h soon be
ome prohibitively large, even for instan
es of fairlysmall size. To improve the e�
ien
y of the sear
h, several heuristi
s were developed togenerate a 'good' starting 
andidate solution whi
h may be 
lose to an optimal solution[17; 48; 70; 75; 77; 108; 116; 131; 137; 151�153℄. Then starting the exploration pro
esswith the generated 
andidate solution, a systemati
 sear
h 
an 
onsiderably improve theperforman
e. Usually, the exploration is based on an examination of the lo
al environ-ment of the generated solution and it assumes that a neighbourhood relation is de�nedon the elements of the sear
h spa
e. This approa
h led to the development of lo
alsear
h methods [5; 24; 30; 60; 79; 87℄. These methods usually apply some heuristi
 togenerate a new 
andidate solution from an existing one in its lo
al environment. Butthough a heuristi
 
an 
onsiderably improve a solution they do not always provide anoptimal solution, hen
e these methods belongs to the 
lass of approximate algorithms.Many algorithms studied today employ a sto
hasti
 pro
ess in the lo
al sear
h to guidea 
andidate solution to a suboptimal solution or, hopefully, to an optimal solution.Several of these approa
hes maintain a population of 
andidate solutions. Examplesof su
h methods in
lude tabu-sear
h [10; 87℄, simulated annealing [28; 92℄ and ant
olony optimisation [21; 39℄. One popular approa
h for dealing with graph 
olouringis evolutionary 
omputation [6; 40; 42; 52; 55; 59; 68; 81; 115; 133; 145℄. In thedevelopment of algorithms for graph 
olouring, various integer programming formula-tions of the problem 
ould be used. Several su
h formulations, usually involving binaryvariables, have been proposed. These variables 
an identify di�erent stru
tures: e.g.independent sets [118℄; a variable for ea
h possible 
olour and vertex [33; 120; 122℄;a
y
li
 orientations of a graph [57℄. In several formulations an optimal solution 
anbe represented as a binary ve
tor of the variables. These binary ve
tors 
onstitute apolytope, a 
olouring polytope. These polytopes are the 
entral topi
s of the prob-lem analysis [22; 67℄. Several relaxed versions of these integer programmes have beendeveloped to approximate a fa
e of a 
olouring polytope [50; 103; 118; 121; 136℄. Dif-ferent te
hniques may improve the e�
ien
y of these methods e.g. 
olumn generationwith bran
h-and-bound [23; 118; 136℄ or bran
h-and-
ut [122℄. A
tually the bran
h-and-bound te
hnique impli
itly uses Zykov's idea (see [136℄). This idea is detailedseparately in the next se
tion.



34 Related work4.3.1 Zykov-tree approa
hIn the middle of the last 
entury Zykov 
ame with the idea, of applying an edge additionor vertex 
ontra
tion instead of a 
olour assignment in the 
olouring problem. Duringthese operations new graphs are 
reated from the original one whi
h may inherit theparent graph's properties.Theorem 4.1 (Zykov theorem [162℄) Let G be a graph. If {v, w} /∈ E, then
χ(G) = min{χ(G+ vw), χ(G/vw)}ProofLet C be the set of proper 
olourings and |c| the number of 
olours used by a 
olouring

c ∈ C, then χ = min{|ci ∈ C|} = min{min{|ci| : ci(v) 6= ci(w)},min{|ci| : ci(v) =

ci(w)}} = min{χ(G+ vw), χ(G/vw)} 2Two verti
es v and w get either the same or di�erent 
olour in any 
olouring. Therefore,there may be a 
ontra
tion or edge between them. A Zykov binary tree ([14; 162℄)is built on these two operations of two un
onne
ted verti
es of a graph. Here we
onne
t them or 
ontra
t them, keeping their neighbours with simple edges. A

ordingto the Zykov theorem, one of the result graphs with these operations has the same
hromati
 number as the original graph (see 4.2). The 
onstru
tion of the Zykov-tree isterminates, when no further redu
tion is possible. Hen
e, the leaves 
onsist of 
ompletegraphs Ki. Ea
h of them des
ribes a 
olouring where 
ontra
ted verti
es get the same
olours. Consequently, χ = mini |V (Ki)|. The Zykov-tree is not uniquely determined,however. It depends on the order in whi
h non-adja
ent vertex pairs are 
hosen. Ea
hZykov-tree has exa
tly one bran
h that is ex
lusively generated by 
ontra
tions. Later,Zykov's idea was des
ribed via graph homomorphism (see Chapter 5).
G + vw G/vw

G

v

w

K4 K3

K3

Figure 4.2: A Zykov-treeZykov's theorem itself does not give a 
olouring algorithm, but o�ers suggestions forits design. This is the basis of an algorithm by Corneil and Graham for χ(G), whi
hsear
hes through the Zykov-tree in a depth-�rst manner. Despite some te
hni
al re�ne-ments, this algorithm is inferior to the other sequential algorithms [37℄. Today the useof the Zykov-tree in algorithm design has fallen into oblivion, but vertex 
ontra
tionsare applied in several other areas of graph theory and it has remained a powerful toole.g. in proof by indu
tion. Moreover, despite its rare usage today in the 
olouringpro
ess, this thesis was mainly motivated by Zykov's original idea.
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ontra
tions 354.4 Vertex 
ontra
tionsAlthough, Zykov introdu
ed his vertex 
ontra
tion theorem [162℄ in the middle of thelast 
entury, it has not been applied mu
h. There are a numerous appli
ations ofvertex 
ontra
tions in the literature, but usually not for 
olouring ([14; 19; 29; 43;45; 63; 113; 132; 146; 147℄). The term of '
ontra
tion' may have aliases su
h as'merge', 'identi�
ation', 'gluing', 'fusing', 'amalgamating' or '
oales
ing'. The latter is
ommonly used in the domain of register allo
ation problems ([19; 63; 113; 132; 146℄).Coales
ing is a terminology frequently used when two registers are 
oales
ed wherethis is safe, in order to eliminate move operations between distin
t variables (registers).Register allo
ation 
an be modelled as a graph 
olouring problem too. If the problemis represented by graph 
olouring, 
oales
ing is a 
ontra
tion of un
onne
ted verti
es.The purpose of merging may either be the simpli�
ation or the fusing of several simplegraphs into one larger graph [112℄. The vertex 
ontra
tion te
hnique is most helpfulin proof by indu
tion on the number of verti
es or edges in a graph, where we 
anassume that a property holds for all 
ontra
tions of a graph, and we 
an use it todemonstrate this for the larger graph. Usually, algorithms use vertex merging forgraph simpli�
ation and for 
ombination graphs. For instan
e, a simpli�
ation isdone by merging two or more un
onne
ted verti
es to get fewer verti
es before orduring 
olouring. In [29℄, [147℄ and [43℄ a pre-pro
essing of graphs is performed before
olouring, where two verti
es in a graph are merged to one if they are of the same
olour in all 
olourings. This is analogous to studies of the development of a ba
kboneor spine in the satis�ability problem [11; 126℄. Here, the appli
ation of merging refersto removing one of two un
onne
ted verti
es. In fa
t, we also 
ould remove edges thatbelong to the removed vertex. The only reason for performing these merges is to removeunne
essary or unimportant verti
es from the graph in order to make it simpler. Thoseverti
es that ful�l some spe
i�
 
ondition will be removed from the data stru
turewhi
h des
ribes the graph. This pro
ess will result in a loss of information. These
ond approa
h is to 
onsider two graphs, that have 
ertain 
olouring properties. Forexample one property might be that they are not k-
olourable. Then the two graphs arejoined by merging verti
es from both graphs to 
reate a more 
omplex graph, where thedesire is that the original properties are inherited. In both 
ases the identi�ed verti
esget the same 
olour. A ni
e example is the Hajós 
onstru
tion [76; 112℄ where
k−un
olourable graphs are built from building blo
ks. One of the 
onstru
tion steps isa vertex 
ontra
tion whi
h may join building blo
ks.Although, we shall be 
on
erned with merging un
onne
ted verti
es, the Hadwiger
onje
ture [74℄ deserves a mention whi
h is �one of the deepest unsolved problemsin graph theory� [15℄. The 
onje
ture 
an be de�ned by edge-
ontra
tions where 
on-ne
ted verti
es are merged together by deleting the edge between them. The 
onje
turerefers to graph 
olouring. Namely, ea
h k-
olourable graph 
ontains Kk, a 
ompletegraph on k verti
es as minor; that is, G has a sub-graph for whi
h a Kk is rea
hableby applying edge-
ontra
tions. An equivalent form of the Hadwiger 
onje
ture (thereverse form of that stated above) is that if there is no sequen
e of edge-
ontra
tionsthat brings graph G to the 
omplete graph Kk, then G must have a vertex 
olouring
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olours. In spite of the di�erent terms, from here on the terms '
on-tra
tion' and 'merge' will be used where appli
able. 'Contra
tion' is a widely usedexpression in the literature, but so is 'merge'. The following models are based on thevertex 
ontra
tions/merges of vertex-related stru
tures su
h as the appropriate rows ofthe adja
en
y matrix. The name '
ontra
tion' 
hara
terises well the identi�
ation oftwo obje
ts as one, hen
e identi�
ation redu
es the size of the graph. Nevertheless,the name '
ontra
tion' does not appropriate term to des
ribe operations on relatedstru
tures of verti
es so the term 'merge' seems more suitable be
ause there 
an be no
onventional shrinking in an asso
iated graph.4.5 SummaryThis 
hapter dis
ussed some important real-life appli
ations of graph 
olouring and pro-vided graph instan
es from di�erent sour
es. We dis
ussed several well-known graph
olouring algorithms and des
ribed various approa
hes to solve the Graph ColouringProblem. Zykov's theorem introdu
es a new aspe
t, where 
olours are no longer neededto de�ne and handle the problem. It implies a generalisation of the 
olouring and 
anbe expressed via a graph homomorphism, where the verti
es of a graph are mapped toverti
es in another graph instead of mapping 
olours.The 
ontents of this thesis is supported by graph homomorphisms as well, therefore wekeep separated 
hapter (Chapter 5) for them. In this thesis we generalise the Zykov'sapproa
h by introdu
ing di�erent models (Merge Models). We will demonstrate thenovel models e�
ien
y via a theoreti
al and experimental analysis as well. MergeModels reformulate the original problem, In this reformulated environment three dif-ferent general frameworks will be introdu
ed to des
ribe an abstra
tion for algorithmsbased on the Merge Models. They provide a uniform and 
ompa
t way in whi
h al-gorithms 
an be de�ned. Embedding algorithms in the framework supports both theirstru
tural and performan
e 
omparison in a 
ommon basis, whi
h 
an be anyway prob-lemati
. Traditional 
olouring s
hemes 
an be identi�ed in one of the frameworks andextended s
hemes may be provided. The framework itself generalises the formal sequen-tial 
olouring approa
h. Due to this generalisation su
h an embedding an algorithm
an be enhan
ed, resulting in new algorithms. The novel aspe
t of the Merge Modelsimplies the development of novel 
olouring strategies, i.e Merge Strategies. The MergeModels des
ribes spe
ial graph homomorphisms, hen
e their analysis may reveal 
on-ne
tions between strategies and di�erent graph properties. Many novel e�
ient MergeStrategies will be provided whi
h outperform several standard ben
hmark algorithms.Moreover, a general strategy design will be des
ribed whi
h allows the appli
ation ofma
hine learning te
hniques in the algorithm design.



Chapter 5Graph homomorphismThe problem of k-
olouring has another interpretation by using graph homomorphisms.In fa
t, we 
an generalise the k-
olouring problem. The main bene�t of the homomor-phism approa
h is that we 
an get rid of the 
olours and we 
an design pure graphalgorithms exploiting properties of the graphs stem from the des
ription of parti
u-lar homomorphisms. This se
tion des
ribes how we 
an make equivalen
e between
k-
olouring and 
ertain graph homomorphisms.5.1 H-
olouringLet H be a �xed graph. The homomorphism problem for H asks whether a graph
G admits a homomorphism to H . A homomorphism of G to H is also 
alled as
H-
olouring of G.De�nition 5.1 (H-
olouring) Let G and H be graphs. A homomorphism of G to
H is a map h : G→ H , where we map verti
es VG → V (H) su
h that {x, y} ∈ EG →
{h(x), h(y)} ∈ E(H).If there exists a homomorphism h : G→ H we shall write G→ H and G 9 H meansthere is no su
h homomorphism. If G → H we shall say G is homomorphi
 to H orthat G is H-
olourable. Note that the map is not ne
essarily surje
tive.De�nition 5.2 (Complete H-
olouring) Complete H-
olouring, if exists, is a sur-je
tive H-
olouring G sur−−→ H .Composition h1 ◦ h2 of homomorphism h1 : G → H1 and h2 : H1 → H2 is homo-morphism of G → H2 (see Figure 5.1(a)). Compositions will play an important rolein the design of sequential 
olouring algorithms using homomorphisms, in this 
ase
onse
utive homomorphisms will substitute ea
h 
olouring steps.Although, the substitution will bring several bene�ts, we 
annot avoid the 
omplexityof the k-
olouring problem. The following theorem shows how hard it is to �nd ahomomorphism between two graphs.Theorem 5.1 (Hell and Ne²et°il, 1990 [85℄) If H is bipartite or 
ontains a loop,then H-
olouring is polynomial time solvable; otherwise, H is NP-
omplete.37
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G

H

K3

(a) The pro
edure for 
omposing homomorphisms
S1

S2

S3

S4

S4

(b) Vertex set partition of a H-
olouring5.2 H-
olouring and k-
olouringFrom the above de�nition it is 
lear that homomorphism preserves the adja
en
y relationand G admits an H-
olouring if and only if there is a partition of VG into sets Si sothat ea
h of them is an independent set and there are no edges between the verti
es of
Si and Sj if {Si, Sj} /∈ E(H). The Si sets represent the verti
es of H (as illustratedin Figure 5.1(b)). Re
all that a k-
olouring of G is a mapping c : VG → {1, 2, . . . , k},where adja
ent verti
es have distin
t 
olours, whi
h means that c(u) 6= c(v) whenever
{u, v} ∈ EG. Hen
e, 
olour 
lasses {Si}ki=1 form independent sets and there is anedge between any two 
olour 
lasses Si and Sj if and only if their 
omponents are
onne
ted. If k = χ, then there are no 
olour 
lasses so Si and Sj are un
onne
ted,otherwise we 
ould de
rease the number of 
olours used, applying a 
ommon 
olour fortheir members. The Si-s form a vertex set of a 
omplete graph. However, for larger kthan χ we 
an get un
onne
ted Si-s, e.g. for k = n, but here we should noti
e thatthe 
ondition c(u) 6= c(v) is equivalent to the 
ondition {c(u), c(v)} ∈ E(Kk); thatis, we 
an embed graphs de�ned by 
olour 
lasses into a 
omplete graph and we may
on
lude the following.Proposition 5.1 Homomorphisms h : G→ Kk are pre
isely the k-
olourings of G.As mentioned above, the embedding of a graph de�ned by 
olour 
lasses does notne
essarily result in a 
omplete graph, but for those spe
ial 
ases when the result is a
omplete graph the homomorphism will be a 
omplete H-
olouring.De�nition 5.3 (Complete k-
olouring) Complete H-
olouring, if it exists, is a
omplete Kk-
olouring.Ea
h 
omplete k-
olouring of G is asso
iated with a partition of verti
es into k non-empty independent sets, any two of whi
h are joined by at least one edge.



5.3 Chromati
 and A
hromati
 number 395.3 Chromati
 and A
hromati
 numberTheorem 5.2 (Colour Interpolation Theorem [86℄) If a graph admits a 
omplete
k1-
olouring and k2-
olouring then it admits a 
omplete 
olouring for all k, where
k1 ≤ k ≤ k2.The smallest k where the graph G admits a k-
olouring de�nes the 
hromati
 numberof G (Eq. 5.1) and the largest k where the graph G admits a 
omplete k-
olouringde�nes the a
hromati
 number of G (Eq. 5.1). Note that any χ-
olouring of a graphmust be 
omplete.

χ(G) = min
k
{k | G→ Kk} (5.1)

ψ(G) = max
k
{k | G sur−−→ Kk} (5.2)Thus we may 
on
lude from the Colouring Interpolation Theorem that G admits a
omplete k-
olouring for any k between its 
hromati
 and a
hromati
 number.Proposition 5.2 Let G be a graph. For ea
h k, χ(G) ≤ k ≤ ψ(G), G admits a
omplete k-
olouring.It is not hard to verify that if G → H then χ(G) ≤ χ(H). Indeed, if H → Kk existsthen G is Kk-homomorphi
 thanks to the 
omposition of homomorphisms. Conse-quently if χ(G) > χ(H), then G 9 H . We 
an similarly prove that if G → H , then

ω(G) ≤ ω(H), using a Kk → G homomorphism, based to the following equation:
ω(G) = max

k
{k | Kk → G}5.4 SummaryIn this 
hapter we saw how the H−
olouring problem generalises the traditional k-
olouring problem. The k-
olouring was interpreted as a homomorphism. The 
reationof su
h a map is not easy for any kind of target graph. Nevertheless, the 
omplexity ofthe H-
olouring remains the same for k-
olouring, but the bene�ts of 
reating of graphhomomorphisms instead of 
olour assignments 
an be exploited. On the one hand, asonly one stru
ture is ne
essary for the graph, we 
an omit the 
olours. On the otherhand, using the possibility of homomorphism 
ompositions, we 
an transform a graphinto other graph instan
es whi
h 
an tell us more about the stru
ture of the originalproblem. Moreover, we 
an generate a homomorphi
 graph series between a graphand a 
omplete graph by su

essive homomorphisms (see Figure 5.1(a)). These graphseries or 
onse
utive homomorphisms 
orrespond to parti
ular sequential 
olourings.In the next 
hapter we will present di�erent approa
hes for a
hieving homomorphismslike this for k−
olouring. Although, [16; 107; 148; 159℄. des
ribes how we 
an de�neother graph 
olourings su
h as 
ir
ular and fra
tional 
olourings through H-
olouring,de�ning various target graphs. Furthermore, H-
olouring 
an be analogously stated forany relational system H , e.g. for the general 
onstraint satisfa
tion problem.





Chapter 6Quotient and Power methodsIn this 
hapter we shall de�ne graph 
olouring pro
esses as a series of homomorphismsusing quotient or power graphs, where the verti
es whi
h get the same 
olour will be'glued' or 'grouped' together, respe
tively, to form a new vertex set. Here a modi�edvertex set usually results in a modi�ed edge set as well.These graph operations produ
e helpful graph stru
tures whi
h 
an be exploitedfor an e�
ient 
olouring and also help provide a deeper insight into the 
olouringpro
edure. Moreover, they allow us to design e�
ient new or redesign existing graph
olouring algorithms in a framework supported by quotient or power graphs (see Juhoset al. [96�102℄).In the following we shall introdu
e the theory of quotient and power methods andlater on we shall dis
uss the implementation details by des
ribing 
urrent and novel
olouring methods.6.1 MotivationFigure 6.1(
) shows a drawing of a graph where the verti
es are denoted by 
ir
les,while Figures 6.1(d) and 6.1(e) show di�erent proper 
olourings of the same graph,namely a 3-
olouring and a 2−
olouring. Although, 
olours and verti
es are di�erententities, they may be jointly en
oded in one obje
t by a 
ir
le symbol. Colour entitiesare impli
itly en
oded in the vertex, but they 
an be handled separately. In Figure
v1

v2

v3(
) A graph (v1, 1)
(v2, 2)

(v3, 3)(d) 3−
olouring (v1, 1)
(v2, 2)

(v3, 2)

(v2, 2)

(e) 2−
olouringFigure 6.1: Di�erent 
olourings of a graph. Verti
es {v1,v2, v3} and 
olours {1, 2, 3}are not separate entities. One 
ir
le en
odes information about a graph vertex and a
olour as well.6.2 
olours have been deta
hed from the verti
es. Figures 6.2(a) and 6.2(b) display41



42 Quotient and Power methodsthe deta
hed 
olours and their relations in a

ordan
e with the 3−
olouring and the
2−
olouring of Figure 6.1(d) and 6.1(e), respe
tively. The deta
hed 2−
olouring 
learlyshows the redundan
y, of the 
olour 2 instan
es in Figure 6.2(
). In order to eliminatethis redundan
y one 
an eliminate the di�erent instan
es of the 
olour 2 and use justone instan
e instead, this elimination leads to a 
ompa
t representation of the 
olourrelations. If the elimination step is stored, then this 
ompa
t representation 
an de�nethe original 2−
olouring. Sin
e the graph of the deta
hed 
olours inherits the originalvertex relations, this graph is equivalent to the original one. Consequently, 
olours andverti
es 
an be identi�ed as a 
ommon entity. Depending on the 
ontext where theyo

ur, this entity 
an be 
alled either as a 
olour or vertex. Usually, it is reasonableto 
all them as a vertex be
ause 
olours 
an assist the presentation and the generalexplanation for instan
e 
olours 
an be useful progress indi
ators of a 
olouring pro
ess,where 
oloured and un
oloured verti
es are distinguished.
1

2

3(a) Relation be-tween the 
oloursin a 3−
olouring.
1

2

2(b) Relation be-tween the 
oloursin a 2−
olouring.Colour 2 has twoinstan
es. Redun-dan
y.
1 2(
) Relation be-tween the 
oloursin a 2−
olouring.Colour 2 has oneinstan
e. Noredundan
y.Figure 6.2: Motivation of quotient graphs. Colours 1, 2 and 3 are 
ir
les. 2−
olouringintrodu
e 
hoi
es: keeping redundant 
olour instan
es or eliminating redundan
y.The 
ompa
t representation of the 
olouring requires storing of ea
h elimination stepto have a 
han
e of re
overing the 
olouring of the original graph. To eliminate thisstoring pro
ess, �rst preserve the di�eren
e between vetri
es and 
olours, and handlethe vertex � 
olour relations together with the eliminations. Colours and verti
es shouldbe deta
hed as well, but both are retained as di�erent entities, as illustrated in Figure6.3. Verti
es are the inner 
ir
les while 
olours are the outer 
ir
les. This spe
ialpositioning of the 
ir
les is just to aid understanding, but they 
ould be arranged inother ways. The vertex � 
olour assignments are represented by dire
ted edges frominner 
ir
les to the outer ones. Here, the 2-
olouring provides the possibility of theelimination as well. The two instan
es of the 
olour 2 may be eliminated by allowingonly one single instan
e of the 
olour 2. Figure 6.3(b) shows a 
olour redundantrepresentation of the 2−
olouring of Figure 6.1(e). But in Figure 6.3(
) the 
olourredundan
y has been eliminated. This approa
h provides a 
ompa
t representation forthe 
olours and hen
e the vertex�
olour relations. Nevertheless, there is no need tostore the elimination steps, sin
e the vertex � 
olour relations, i.e. the vertex � 
olourassignments are always available. The 
reated graph (Figure 6.3) 
an be transformedinto the graph of Figure 6.2(
) by 
ontra
ting the outer 
ir
le, as depi
ted in Figure6.4.
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1

2

3

v1

v2

v3(a) Vertex � 
olourrelations in a
3−
olouring.

1

2

2

v1

v2

v3(b) Vertex � 
olourrelations in a
2−
olouring. Colour
2 has two instan
es.Redundan
y.

1 2v1

v2

v3(
) Vertex � 
olourrelations in a
2−
olouring. Colour
2 has one instan
e.No redundan
y.Figure 6.3: Motivation behind power graphs. Verti
es v1,v2 and v3 are inner 
ir
les,while 
olours 1, 2 and 3 are outer 
ir
les. The �gures depi
t verti
es � 
olour relations.

2−
olouring introdu
e 
hoi
es: keeping redundant 
olour instan
es or eliminating re-dundan
y.
1 2v1

v2

v3

1 2{v2, v3}v1

1 2

Figure 6.4: Contra
tion of outer 
ir
les.The approa
h whi
h keeps the vertex � 
olour relations is the motivation behind thepower methods, while the vertex � 
olour identi�
ation is the basis of the quotientmethods.6.2 Quotient methodDe�nition 6.1 (Topologi
al spa
e [155℄) A topologi
al spa
e is a set V togetherwith V, a set of subsets of V , satisfying the following axioms: the empty set and Vare in V; the union of elements V is also in V; any �nite interse
tion of elements of Vis also in V.The set V is 
alled a topology on V . A quotient spa
e 
omes from the original one by'gluing' the elements of the spa
e. More pre
iselyDe�nition 6.2 (Quotient spa
e [155℄) Let V be a topologi
al spa
e and ∼ bean equivalen
e relation on V . The topologi
al quotient spa
e V/ ∼ is 
omposed ofequivalent 
lasses of the spa
e V by relation ∼, using a surje
tive map V → V/ ∼.Equivalen
e 
lasses form a partition, 
onversely, a partition de�nes an equivalen
e re-lation ∼ whi
h is the kernel of the surje
tive map 1. If only one equivalen
e 
lass hastwo or more elements, then that 
lass des
ribes the whole partition, i.e. the relation1The kernel of a fun
tion f is ker f = {(v, u)|f(v) = f(u)}
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∼. Let S be a subset of V , where v ∼ u i� v, u ∈ S. Then following [78℄ and [125℄,we may denote V/ ∼ by V/S as well or by using elements of S, e.g. in the 
ase of
S = {v, u} we 
an also use notation V/vu.A

ording to [119℄, the form of the previous de�nition for a parti
ular 
ase, namely forgraphs, is the followingDe�nition 6.3 (Quotient graph) Given a graph G = (V,E) and a partition2 S of
V , the quotient graph G/S is the graph (S, E) where E = {{Si, Sj} | Si×Sj∩E 6= ∅}.In [94; 100�102℄ the author des
ribed a general model where the graph 
olouring ise�
iently modelled by spe
ial Quotient graphs, forming a general Quotient method forthe graph 
olouring. They showed that e�
ient graph 
olouring algorithms 
ould bedesigned based on the Quotient method.The following relations 
an be identi�ed between images of H-
olourings and QuotientGraphs, as des
ribed in Se
tion 5.1.Proposition 6.1 (H-
olourings and Quotient Graphs) Every quotient graph of
G is a homomorphi
 image of G and, 
onversely, every homomorphi
 image of G isisomorphi
 to a quotient of G.

S1
S2

S3 S4(a) A graph G withpartition S
S1

S2

S3
S4(b) G/S quotientgraphFigure 6.5: An example of a quotient graph.A quotient graph (see Figure 6.5) is a simple graph, thus its edges form a set, but re-taining di�erent images of the original edges 
an lead to multiple edges between 
lassesand indu
e an edge multiset in a quotient multigraph (see Figure 6.6) in a

ordan
ewith Def. 2.12. To distinguish between quotient graph and multigraphs, we shall usea double slash in our notation for quotient multigraphs e.g. G�S. Quotient graphsmay be 
onstru
ted by graph vertex 
ontra
tions, where ea
h Si is a set of 
ontra
tingverti
es. Re
all that vertex 
ontra
tion 
an be applied to 
onne
ted and un
onne
tedverti
es as well, but we will use edge-
ontra
tion for 
ontra
ting two 
onne
ted ver-ti
es. As mentioned earlier, unless otherwise stated vertex 
ontra
tion will be used forun
onne
ted verti
es only.2S =

⋃

Si and Si ∩ Sj = ∅ if i 6= j
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S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3
S4(b) G�S quotientmultigraphFigure 6.6: An example of produ
ing quotient multigraph.Graph vertex 
olouring de�nes partition of verti
es, where the same 
olour verti
esform the equivalent 
lasses and, 
onversely, any partition provides a 
olouring. That is,

x, y ∈ Si implies {x, y} /∈ E to get a valid graph 
olouring. To simplify the stru
tureof the graph we 
an 
reate a quotient graph by merging verti
es in the same 
lass.Applying a vertex 
ontra
tion for ea
h 
olouring steps results in several intermediatequotient graphs until a 
omplete graph is obtained. We shall see how bene�
ial theappli
ation of the vertex 
ontration is in the graph 
olouring. In minimum 
olouring,we have to �nd a homomorphism whi
h results in as small 
omplete graph as possi-ble. Thus an algorithm must look for the longest sequen
e of 
ontra
tions; that is,the longest homomorphi
 graph series, be
ause ea
h merge de
reases the number ofverti
es in the graph, hen
e the longest path results in the smallest graph.Though 
ontra
ted graphs spe
ify a H-
olouring pro
ess quite well, they lose informa-tion about the original graph stru
ture when we simplify it via 
ontra
tions. We willintrodu
e another method whi
h keeps information about the original graph and worksin harmony with the H-
olouring prin
iple as the quotient method does.6.3 Power methodInstead of 
ontra
ting or merging verti
es we 
an merge related stru
tures of verti
esto produ
e a spe
ial non-quotient graph. E.g. merging relevant rows of the adja
en
ymatrix gives rise to a vertex 'grouping' e�e
t. This grouping 
an be 
hara
terised bypower graphs (see Figure 6.7), whi
h put putting a new vertex 
alled 'group-vertex'(whi
h en
ompasses some of the original verti
es) into the original vertex set. A group-vertex takes over the in
oming edges from the en
ompassed verti
es. A group-vertexwill be a 
olour 
lass in the traditional sense, hen
e all verti
es belonging to a group-vertex may be regarded as 
oloured verti
es with the same 
olour. A power graph 
anbe de�ned on a power set of the verti
es of a graph in a

ordan
e with [2℄.De�nition 6.4 (Power graph) Let G =
(

V,E
) be a graph. The verti
es of a powergraph G′ =

(

V ′, E ′) are de�ned by a subset of the power set of the G verti
es V ′ ⊆ 2V .



46 Quotient and Power methodsPower verti
es are 
onne
ted to ea
h other by power edges E ′ ⊆ V ′ × V ′.The author introdu
ed the Power method for the graph 
olouring problem in [96℄, wherethe graph 
olouring is modelled by a spe
ial Power graph sequen
e. They demonstratedthe e�
ien
y of the Power method and developed several powerful graph 
olouring al-gorithms based on the method des
ribed in [97�100℄.Figure 6.7 shows how a power graph may be 
reated from a partition of verti
es. Thenew vertex set is a subset of the power set of the original verti
es, where we 
an �ndgroup-verti
es that represent equivalent or 
olour 
lasses. The original graph is a simplegraph whi
h de�nes its edge set as a symmetri
 relation; if (x, y) ∈ E then (y, x) ∈ E.We 
an make these undire
ted edges as 
ombinations of two dire
ted edges, whereone is from a vertex to one of its neighbours and another is the reverse 
ase. Thegroup-verti
es be
ome new endpoints of the dire
ted edges that determines a vertex-'neighbour 
olour' relation. Therefore we 
an map two dire
ted edges representing anundire
ted edge in the original graph to two power edges of the power graph. Thismap is surje
tive, but not ne
essarily inje
tive. For example, if neighbours of a vertexhave the same 
olour, then four dire
ted edges are mapped to three power edges, likeverti
es in S1 and S3 in Figure 6.7 In order to get an inje
tive edge map we have to
S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3 S4(b) G/S power graphFigure 6.7: An example of produ
ing power graph.use a power multigraph with a multiset for its edge set, as we saw earlier in the 
ase ofquotient multigraphs in a

ordan
e with Def. 2.12. A similar graph homomorphism
an be de�ned between a graph whi
h is equivalent with the original graph 3 andits 
olouring power graphs. Hen
e, we shall denote it in harmony with the quotientgraphs, but use supers
ript to represent the power. Thus, denote H-
olouring powergraphs by G/S and, likewise, multigraphs by G�S .Note that 
ontra
ting the appropriate power verti
es (with all the verti
es it en
om-passes, e.g. S1 and its two verti
es in Figure 6.7), results in a homomorphism from a3Verti
es in the related graph are doubled or interpreted as a (vertex,
olour�vertex) pair. Initiallyea
h vertex gets di�erent 
olours, then some of them 
an share the same 
olour�vertex; that is, 
ertain
olour�verti
es get 
ontra
ted. An outgoing edge 
onne
ts a vertex with a 
olour-vertex.
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S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3 S4(b) G�S power multigraphFigure 6.8: An example of produ
ing power multigraph.power graph to a quotient graph .With our sequential graph 
olouring approa
hes we 
an 
onstru
t a 
olouring for a graphby progressively merging stru
tures of a graph that generates quotient or power graphsequen
es. The �nal graph in the sequen
e de�nes a 
olouring where the 
ontra
ted orgrouped verti
es get the same 
olour in the original graph. In fa
t, quotient or powergraph sequen
es themselves de�ne the whole 
olouring pro
ess. Here the use of 
oloursfor verti
es of intermediate graphs was employed in order to see the steps involved.6.4 SummaryThis 
hapter introdu
ed two methods, namely the Quotient and Power methods for thegraph 
olouring problem and, in addition, two variants of them. These methods modelthe graph 
olouring problem via 
ertain graph homomorphisms. The 
omposition ofseveral homomorphisms de�nes 
olouring steps in the traditional sense.In the next 
hapter we shall provide a matrix representation of these models with spe
ialmatrix operations, whi
h results in homomorphi
 images based on the Quotient andPower methods.





Chapter 7Merge ModelsThe relation between the original graph and a quotient or power graph/multigraph is de-�ned by a graph homomorphism. The author introdu
ed four kinds of matrix operations,
alled Merge Operations to map a representation stru
ture of the original graph to itsfour di�erent homomorph images, respe
tively, and then subsequent Merge Operationswill produ
e vertex 
olouring [96; 100℄. They showed that Merge Operations produ
eappropriate homomorph images of the original problem in a

ordan
e with Chapter5, modelling the original graph 
olouring problem [96; 100℄. The representations andthe operations form new 
olouring models, 
alled Merge Models, that supports parallelimplementations. They got signi�
ant improvements both theoreti
ally and via experi-ments in [99℄ when an algorithm applied their models. Exploiting the performan
e theydesigned powerful graph 
olouring algorithms in [94; 97�99; 101; 102℄. The details oftheir analysis 
an be found in 
hapters 10 and 11.Verti
es having the same 
olour in the traditional 
olouring pro
ess indu
e merges in theadja
en
y matrix, and ea
h edge that is 
onne
ted to these verti
es is either 
ollapsedinto a single edge or forms a multi-edge in the resulting stru
ture. Multi-edges 
an beidenti�ed as single but weighted edges where their weight 
ounts the multipli
ity of theedge. We shall present matrix representations of the result quotient or power graphs.There will be two subtypes of representations where one does not depend on the numberof 
ollapsed edges, while the other one does. These representations are used togetherwith basi
 Merge Operations to 
reate power graphs where only rows are merged orprodu
e quotient graphs when the relevant 
olumns are also merged. By 
ombiningthese representations with the Merge Operations we will provide four 
olouring models
alled the Binary/Integer Merge Square and the Binary/Integer Merge Table models.Their representation matri
es will be denoted by A,A, T and T, respe
tively. Here,Merge Squares are asso
iated with the adja
en
y matrix of the merged graph, i.e. aquotient graph. The Integer types assign weights to the edges a

ording to how manyedges are merged. The Binary types approa
h simply 
ollapses these edges onto thesame one 
ommon edge, but it does not preserve their 
ardinality. The tables tra
kinformation about the original verti
es, while the squares omit. The graph depi
tedin Figure 7.1 and its adja
en
y matrix will be used as examples to help explain thedi�erent model types. 49



50 Merge Models7.1 Merge matri
esIn order to generate sequential 
olourings, 
onse
utive homomorphisms will be appliedstarting with the original graph and ending up with a 
omplete graph of a graph whi
his homomorphi
 with a 
omplete graph. The number of transformation steps 
an befollowed by the upper index t e.g. At.
v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·Figure 7.1: A graph G and its initial Merge Matrix, the adja
en
y matrix: the v-s referto verti
es and the r-s refer to rows, i.e. 
olours. The 0-s have been repla
ed by dotsfor the sake of 
larity.The initial Merge Matrix is the adja
en
y matrix of G: A[0] = A[0] = T [0] = T[0] := A.Here we shall only deal with valid 
olourings, hen
e simple non-adja
ent verti
es 
anbe merged together. In the 
ase of Merge Squares representations, a Merge Square isthe unweighted or weighted adja
en
y matrix of a quotient graph, thus 
olumns androws refer to the same obje
ts of the graph, namely to the merged verti
es/
olour
lasses. The 
ondition of the merge depends on the relation between verti
es, i.e. theedges of the quotient graph. The 
oin
iden
e of a given row and 
olumn of the MergeSquare must be zero. We 
an easily see that this 
ondition is the same for MergeTables (MT), but it breaks the symmetry of the representation. Therefore, we haveto 
he
k the adja
en
y between a normal the original vertex (whi
h refers to an MT
olumn) and a merged vertex-set/
olour 
lasses (whi
h refers to an MT row). We 
ansummarise the merge 
onditions by the following:

a
[t]
ij = a[t]

ij = t
[t]
ij = t[t]

ij = 0 (7.1)Consequently a[t]
ji = a[t]

ji = 0 and thanks to the inherited graph property a[t]
ii = a

[t]
jj =a[t]

ii = a[t]
jj = 0. Next we shall de�ne the following matri
es:

P = Ii ⊗ Ij R = Ij ⊗ Ij W = P − R (7.2)where Ii is the i−th row of the identity matrix, P (Plus) will be used for addition (orbitwise�or operation) of the j-th row of a matrix to the 
orresponding i-th row. R(Redu
tion or Minus) will support the subtra
tion of the j-th row from itself, therebysetting its 
omponents to zero. This 
ould also be done by a bitwise ex
lusive or (xor).In the 
ase of the third matrix, W 
ombines these operations together. Here let a and
b de�ne the i-th and j-th row ve
tor of a matrix for step t. We now de�ne the fourmodels formulated both as row/
olumn operations and matrix manipulations. First the



7.1 Merge matri
es 51integer-based models and then the binary-based model, whi
h do not tra
k the numberof edges folded into an edge.7.1.1 Merge TablesWith addition or bitwise-OR two rows of an adja
en
y matrix 
reates a power graphstru
ture, whi
h 
hara
terises a relation between the original verti
es and the neighbour-ing 
olours or 
olour 
lasses. We may asso
iate rows of an adja
en
y matrix to 
olour
lasses or power verti
es and 
olumns to verti
es of the original graph. The matri
esof these power graphs are known as Merge Tables owing to their shape. As previouslymentioned, there are two subtypes, namely a weighted type and an unweighted type,based on how the number of the edges are taken into a

ount in the merging pro
ess.The Integer Merge TableInteger Merge Tables keep tra
k of multi-edges. As we said earlier we 
an refer to amulti-edge by a weight, 
ounting the number of edges folded into one edge during themerging pro
ess.A row-based formulation of the i-th and j-th row of T after merging the j-thvertex into the i-th: let ti be the i-th row and t_i be the 
olumn ve
tor. ThenT[t+1]
i = a + b , T[t+1]

j
= b− b = 0 (7.3)A matrix-based formulationT[t+1] = T[t] +WT[t] = (I +W )T[t] (7.4)where W is de�ned in Eq. 7.2. In Figure 7.2, rows r1 and r4 have merged, after whi
hthe row r4 is removed to get a 
ollapsed Merge Table. An Integer Merge Table modeldoes not lose any edge from the original graph be
ause it keeps tra
k them as multipleedges. Multiple edges are represented by values whi
h are greater than one. It o

urswhen two rows have non-zero elements in the same positions in the merge. In Figurethere is a 2 in the ({r1, r4}, r3) position of the 
ollapsed Merge Table. This value of

2 appears as a multiple edge whi
h starts from v3 to the only power node {v1, v4} inFigure 7.2(
). Due to this fa
t, the sum of the matrix does not 
hange. We 
ouldnormalise entries of Integer Merge Tables in several ways, one 
an be the leaving outthe 
ounting the number of edges folded together to get a {0, 1} binary matrix.The Binary Merge TableThe binary version of the Merge Tables fo
uses on the relation but not the degree of therelation between edges and 
olours. Here we have two options; apply a pie
ewise oroperation (see equations 7.5 and 7.7) or apply Integer Merge Table model and subtra
t
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v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adja
en
y matrix AG

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · · · · ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Integer Merge Table T(G�{v1,v4})

v1

v2

v3
v4

v5

v6
{v1, v4}(
) Power multigraph G�{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Collapsed Integer Merge Table T(G�{v1,v4})Figure 7.2: Merging (addition) rows r1, r4 of AG results in a T(G�{v1,v4}) Merge Table.irrelevant items from it. The latter solution may be useful in algebrai
 methods (seeequations 7.6 and 7.8), while the former is easy to implement.A row-based formulation

T
[t+1]
i = a ∨ b , T

[t+1]
j = 0T (7.5)

T
[t+1]
i = T[t+1]

i − a ◦ b , T
[t+1]
j = 0T (7.6)

a ◦ b = diag(a⊗ b) =
∑

i

(a⊗ b)IiA matrix-based formulation
T [t+1] = T [t] ∨ PT [t] − RT [t] (7.7)
T [t+1] = T[t+1] −

∑

j

(a⊗ b)(Ij ⊗ Ii) (7.8)where P and R are de�ned in Eq. 7.2. In Figure 7.3, row r4 is merged with row r1to form {r1, r4}, after whi
h r4 is deleted. An option to get a Binary Merge Tablefrom the integer 
ounterpart 
an be that when ea
h non-zero elements are multipliedby the re
ipro
al value of the element. Unfortunately, this pie
ewise operation does notsupport well the algebrai
 
omputation, nevertheless it 
an be useful in the pra
ti
alimplementation. A Merge Table des
ribes relation between verti
es and 
olour 
lasses,but a power graph 
an be transformed into an appropriate quotient graph of the originalgraph by 
ontra
tions as seen in Figure 6.3. Then verti
es and power verti
es/
olour
lasses 
an be identi�ed only one obje
t either vertex or 
olours depending on the
ontext where we would like to use them. The appli
ation of a Merge Operation to
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v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adja
en
y matrix AG

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · · · · ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Binary Merge Table T (G/{v1,v4})

v1

v2

v3
v4

v5

v6 {v1, v4}(
) Power graph G/{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Collapsed Binary Merge Table T (G/{v1,v4})Figure 7.3: Merging (bitwise OR) rows r1, r4 of AG results in T (G/{v1,v4}) MergeTable.the rows and the relevant 
olumns as well we arrive to quotient graph where verti
esbe
omes 
olours and 
onversely.7.1.2 Merge SquaresThe result matrix after a merge of rows and appropriate 
olumns is square, more exa
tlyeither weighted or unweighted adja
en
y matrix of the vertex 
ontra
ted graph. Similarto the Merge Tables we will de�ne their 
ounterpart Merge Squares.The Integer Merge SquareA row/
olumn-based formulation let ai be the i-th row and a_i be the 
olumnve
tor and de�ne aj and a_j in the same way for the j-th row and 
olumn.A[t+1]

i = a + b , A[t+1]
j = 0T (7.9)A[t+1]_i = aT + bT , A[t+1]_j = 0 (7.10)A matrix-based formulationA[t+1] = A[t] +WA[t] +A[t]W T (7.11)Sin
e at

ij = 0 and at
ji = 0, it follows that WA[t]W T=0. Due to this, we 
an rewrite



54 Merge ModelsEq. 7.11 as A[t+1] = (I +W )A[t](I +W )T (7.12)where W is de�ned in Eq. 7.2. Note that the 
ondition of the merging of the row i and
j is tij = tji = tii = tjj = 0. Rede�ning the starting matrix a

ording to T0 = A− Iallows us to keep tra
k of whi
h verti
es have been en
ompassed by a merged vertex.The original Merge Operation should not be modi�ed. In this 
ase, −1 entries thenrefer to the merged verti
es. We should also take this modi�
ation into a

ount in thealgorithm design. In Figure 7.4, a Merge Square has 
aused both 
olumns and rows tobe merged. The result is an adja
en
y matrix of the merged graph with weights on theedges that des
ribe the number of edges that were merged.

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adja
en
y matrix AG

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 2 1 · · · 1
r4 · · · · · ·
r5 1 · · · · 1
r6 1 · 1 · 1 ·(b) Integer Merge Square A(G�{v1,v4})

v2

v3v5

v6
{v1, v4}(
) Quotient graph G � {v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} · 1 2 1 1
r2 1 · 1 · ·
r3 2 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(d) Collapsed Integer Merge SquareA(G�{v1,v4})Figure 7.4: Merging (addition) rows r1, r4 of AG results in Integer Merge Square.Note that the merge 
ondition, in the 
ase of the row i and j, is aij = aji = aii =ajj = 0 in a

ordan
e with Eq. 7.1. Hen
e after a merge aij = aij + aji + aii + ajjremains zero. We 
ould also use up aii 
ells to store additional stru
tural information.Starting with the A0 = A− I matrix instead of the pure adja
en
y matrix A, we 
ouldthen 
ount the number of verti
es en
ompassed by a merged vertex, while keepingthe original Merge Operation 1 . In this 
ase, diagonal entries will 
ontain all the
ardinalities. However, an algorithm should handle the modi�ed diagonal elements.Similar to the Integer Merge Tables, the Integer Merge Square model does not lose anyedges either, but store them as multiple edges. Thus, the sum of the matrix does not
hange in this model.1A + I is an alternative here.



7.1 Merge matri
es 55The Binary Merge SquareA row/
olumn-based formulation Let aj be the j-th row and let a_j be the
orresponding 
olumn ve
tor. Then
A

[t+1]
i = a ∨ b , A

[t+1]
j = 0T (7.13)

A
[t+1]
i = A[t+1]

i − a ◦ b , A
[t+1]
j = 0T (7.14)

A
[t+1]_i = (A

[t+1]
i )T , A

[t+1]_j = 0 (7.15)A matrix-based formulation
A[t+1] = A[t] ∨ (PA[t] + A[t]P T )− (RA[t] + A[t]RT ) (7.16)
A[t+1] = A[t] ∨ (PA[t]P T )− (RA[t]RT ) (7.17)where P and R are de�ned in Eq. 7.2. Figure 7.5 shows a binary merge 
ollapse thatdoes not perform a 
ount of the merged edges.

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adja
en
y matrix AG

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · · · 1
r4 · · · · · ·
r5 1 · · · · 1
r6 1 · 1 · 1 ·(b) Binary Merge Square A(G�{v1,v4})

v2

v3v5

v6
{v1, v4}(
) Quotient graph G/{v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} · 1 1 1 1
r2 1 · 1 · ·
r3 1 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(d) Collapsed Binary Merge Square A(G�{v1,v4})Figure 7.5: Merging (addition) rows r1, r4 of AG results in a Binary Merge SquareIn a Binary Merge Square model a merge results in a simple graph from a simple graph,sin
e it just 
ollapses the multiple edges. The same behaviour 
an be seen here withthe Integer Merge Square model. If some row is merged into the i−th row then the

aii elements remain zero due to the merge 
ondition (7.1). A Binary Merge Square issimply the adja
en
y matrix of the resulting simple graph after a merge. If ne
essary,
AG 
an be used to identify the adja
en
y matrix of the original graph, whi
h 
ontainsthe 
learest representation of the generated problem after a merge. This is quite useful



56 Merge Modelsif an algorithm fo
uses just the 
ore of the problem.Merge Algorithms work on Merge Models, performing subsequent merges until theMerge Operation be
omes unfeasible. These merges generate a matrix sequen
e and a
orresponding graph sequen
e. The following de�nitions identify states of the matri
esand graphs during an algorithm run.De�nition 7.1 (Merge Matrix and merge graph) The Merge Matrix is a generalname for a matrix of an integer or Binary Merge Table or square. The merge graph isthe 
orresponding power or quotient graph.De�nition 7.2 (Initial Merge Matrix and merge graph) Let G be the graph tobe 
oloured. The initial merge graph is G and the initial Merge Matrix 
orresponds tothe adja
en
y matrix of G.De�nition 7.3 (Final Merge Matrix and merge graph) The �nal Merge Matrixis that matrix where no more merges are possible. The 
orresponding merge graph isthe �nal merge graph.De�nition 7.4 (Intermediate merge matri
es and merge graphs) Intermediatemerge matri
es and merge graphs are those between the initial and �nal merge matri
esand graphs, respe
tively.Generally, when speaking about any of the merge representations we use the termMerge Matrix instead of 
alling them a table or square. Now let M denote a generalMerge Matrix in the following. We may asso
iate ea
h row of a Merge Matrix with anappropriate vertex in the 
orresponding quotient or power graph and designate thoseverti
es as merge verti
es. The number of non-zero elements the 
onstraints do notde
rease by any of the Merge Operations sin
e addition or binary-or do not de
reaseentries; that is, non-zero entries remain non-zero. But a zero entry may be
ome non-zero after a merge. This pro
ess leads to the saturation of non-zero entries. The maintask of the 
olouring strategies is to 
ontrol this saturation pro
ess and prolong it asmu
h as possible, be
ause the number of rows des
ribe the number of 
olours used.Hen
e a prolonged merge sequen
e leads to fewer rows in the �nal Merge Matrix. Thisis a key 
on
ept in Merge Algorithms.7.2 Sub- and 
o-stru
turesSub-stru
tures Sin
e sequential 
olouring uses steps where one 
olour is assignedfor ea
h step, the 
oloured and un
oloured parts of the graph 
hange in a step-by-step fashion. Now it is worth de�ning the relevant parts of merge matri
es separatelyin the 
oloured and un
oloured sub-graphs. Supers
ripts col and unc stand for partialstru
tures e.g. for sub-merge-matri
es M col and Munc, respe
tively. Figure 7.6 showsthese partial stru
tures in the 
ase of Integer Merge Tables, where M col = T
col and
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o-stru
tures 57
Munc = T

unc. Eq. 7.19 reveals more pre
isely the 
ontent of a sub-merge-matrix. Therows in the 
oloured and un
oloured sub-merge-matri
es are referred to 
oloured andun
oloured rows, respe
tively.

v1

v2

v3

v4

v5

v6

(a) Partial 
olouring of G

v1

v2

v3

v4

v5

v6

{v5, v3}

(b) Relevant power multi-graph
v1 v2 v3 v4 v5 v6

r4 · · 1 · 1 ·
{r5, r3} 1 1 · 2 · 2(
) T

unc un
oloured Merge Table
v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r6 1 · 1 · 1 ·(d) T

col 
oloured Merge TableFigure 7.6: Sub-graphs and sub-merge-matri
es of a power multigraph for a partial
olouring. The dashed and dotted lines denote the 
oloured substru
ture in Figure7.6(b), while solid lines show the un
oloured stru
ture.Coloured (and un
oloured) verti
es may be 
hara
terised by a ve
tor, the 
hara
teristi
ve
tor, whi
h 
onsist of 1−s in the appropriate positions and zeros elsewhere.De�nition 7.5 (Chara
teristi
 ve
tor of 
oloured rows) The 
hara
teristi
 ve
-tor of the 
oloured rows will be denoted by ecol. The dimension of the ve
tor is equalto the number of rows in the relevant Merge Matrix. Indi
es of 
oloured rows de�nethe positions where ecol have ones, the other entries being all zero.De�nition 7.6 (Chara
teristi
 ve
tor of un
oloured rows) The 
hara
teristi
 ve
-tor of the un
oloured rows is denoted by eunc. The dimension of the ve
tor is equalto the number of rows in the relevant Merge Matrix. The indi
es of un
oloured rowsde�ne the positions where eunc have ones, the other entries being all zero.Figure 7.6 shows a partial 
olouring where rows {{r3, r5}, r4} are 
oloured and {r1, r2, r6}are un
oloured. This partial 
olouring indu
es the following 
hara
teristi
 ve
tors:
eunc = (

r1⌣

1 ,
r2⌣

1 ,
{r 5,r 3}

⌣

0 ,
r4⌣

0 ,
r6⌣

1) ecol = (
r1⌣

0 ,
r2⌣

0 ,
{r 5,r 3}

⌣

1 ,
r4⌣

1 ,
r6⌣

0) (7.18)Sin
e r5 is merged into r3, position 5 is removed and entry 3 represents the 
oloured/mergedrow. The 
hara
teristi
 ve
tors of rows 
an be obtained from ea
h other by a simplesubtra
tion; namely eunc = e − ecol, where e is the ve
tor of all ones. Sub-merge-matri
es 
an be de�ned like so:
M col = Diag(ecol) M Munc = Diag(eunc) M (7.19)



58 Merge Modelswhere Diag(.) makes a diagonal matrix where the argument ve
tor is in the maindiagonal, and the o�-diagonal entries are all zero. In this 
ase Munc and M col-s
ontain zero rows, they are not 
ollapsed. Figure 7.2(b) shows an example of su
h annon-
ollapsed matrix Munc.Similar 
hara
teristi
 ve
tors 
an be de�ned for verti
es of the original graph ecol
Gand eunc

G , where two {0, 1}n ve
tors 
hara
terise the un
oloured and 
oloured verti
esand n = |VG|.De�nition 7.7 (Chara
teristi
 ve
tor of 
oloured verti
es) The 
hara
teristi
 ve
-tor of 
oloured verti
es is denoted by ecol
G . The dimension of the ve
tor is the sameas number of verti
es in the original graph G. Indi
es of 
oloured verti
es de�ne thepositions where ecol

G have ones, while the other entries are all zero.De�nition 7.8 (Chara
teristi
 ve
tor of un
oloured verti
es) The 
hara
teris-ti
 ve
tor of un
oloured verti
es is denoted by eunc
G . The dimension of the ve
tor isthe same as the number of verti
es in the original graph G. Indi
es of un
oloured rowsde�ne the positions where eunc

G have ones, while the other entries are all zero.Regarding Figure 7.6 the {r3, r5, r4} verti
es are 
oloured and the {r1, r2, r6} ver-ti
es are un
oloured. Hen
e the 
hara
teristi
 ve
tors are ecol
G = (0, 0, 1, 1, 1, 0) and

ecol
G = (1, 1, 0, 0, 0, 1). These ve
tors are also 
omplementer of ea
h other, sin
e ecol

G =

e−eunc
G . The ecol and eunc ve
tors may be derived from ecol

G and eunc
G by simple binary-or operations (merges) on the relevant indi
es belonging to merged verti
es. In thetraditional 
olouring, the sub-adja
en
y-matri
es are asso
iated with Gcol and Guncwhi
h are sub-graphs of G, they di�er from the merge interpretation. Here rows and
olumns must be removed from the original adja
en
y matrix, as follows

Acol = (ecol
G ⊗ ecol

G ) ◦M Aunc = (eunc
G ⊗ eunc

G ) ◦M (7.20)The (ecol
G ⊗ecol

G ) dyadi
 produ
t 'masks out' the relevant entries of the adja
en
y matrix.First order 
o-stru
tures are the 
ells of the representation merge matri
es. Theyde�ne the neighbourhood relation of the merge verti
es for the binary and weightedrelations for the Integer Models.Se
ondary order 
o-stru
tures or, simply 
o-stru
tures, are the sums of the rowsand 
olumns in the representation matri
es, respe
tively. There are four su
h ve
tors.We 
an get the sum of the rows and 
olumns of Binary Merge Matri
es from their integerpairs by 
ounting their non-zero elements. Figure 7.7 shows the four 
o-stru
tures onthe four sides of the sub-merge-matri
es in the 
ase of Merge Tables and Merge Squaresas well. The left hand side 
ontains the sums of the rows of the Integer Models, whilethe right side 
ontains the sums of the non-zero elements of the rows. This is the samefor the 
olumns, where the top ve
tor is the sum of the rows and the bottom is thenumber of non-zeros. In the 
ase of the Binary Models the left and the right/the topand the bottom 
o-stru
tures are the same.



7.3 Summary 59The se
ond order stru
tures will be denoted by µ, using t,b,l,r indi
es as subs
ripts torefer to the top, bottom, left and right ve
tor, respe
tively. Figure 7.7 shows sub-merge-matri
es for 
oloured verti
es, but 
o-stru
tures may be de�ned for the un
oloured partand for the whole Merge Matrix as well. To be 
onsistent, with the previous notations,
unc and col will be denote the lo
ation of the 
o-stru
ture.
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Figure 7.7: The original graph, its sub-Integer Merge Table and then its sub-IntegerMerge Square of 
oloured verti
es when 
olouring is in progress. Here µl gives the sumof the degree of the verti
es in a 
olour 
lass, µr gives the number of adja
ent verti
esof a 
olour 
lass, µt gives the number of adja
ent 
oloured verti
es, and µb gives thenumber of adja
ent 
olour 
lasses.Third order 
o-stru
tures sums the se
ondary order stru
tures. These may bedivided into two parts, like the se
ond order stru
tures, based on the 
oloured andun
oloured sub-graphs. These stru
tures will be denoted by ζ . In this study, they willbe employed in the �tness fun
tion of the evolutionary algorithm. The top-left sums
ζt of the top ve
tor (or the left ve
tor) and the bottom-right sums ζb of the bottomve
tor (or the right ve
tor). These are shown in bold in Figure 7.7. We will also usethe unc or col notation to distinguish between the parts, while 
o-stru
tures without anysupers
ript will refer to the whole Merge Matrix.7.3 SummaryThis 
hapter introdu
ed four di�erent models, 
alled Merge Models, for the graph
olouring problem. The models 
onsist of matrix representations and spe
ial matrixoperations, i.e. Merge Operations. The Merge Operations repla
e the traditional 
olourassignments. These models des
ribe graph homomorphisms based on the Quotient andPower methods of Chapter 6. In order to get a 
olouring algorithm, the algorithm stepsmust be de�ned; that is, a sequen
e of the Merge Operations must be de�ned.In the next 
hapter we will 
reate a general framework for the algorithms based on theMerge Models.





Chapter 8Merge FrameworksIn Chapter 7 we modelled the graph 
olouring problem via matrix via matrix repre-sentations and operations, starting with the adja
en
y matrix of the graph. The au-thor introdu
ed general frameworks for graph 
olouring algorithms supported by MergeModels in [100; 101℄. These are generalisations of the traditional 
olouring s
hemesof Se
tion 4.2.1. Sequential 
olouring and independent set methods also �t into theseframeworks. This general framework with the new Merge Models supports a 
ommonstru
tural analysis of the existing and novel graph 
olouring methods, as shown by theauthor in [97; 99; 101; 102℄.8.1 The UC and CU Merge FrameworksThere are two options in the 
ase of sequential 
olouring: either we 
hoose an un-
oloured vertex �rst and then 
hoose a suitable 
olour for the vertex (UC) or, 
on-versely, we 
an 
hoose a 
olour �rst and then �nd an appropriate un
oloured vertex forthe assignment (CU). These two types may be 
learly des
ribed by using un
oloured and
oloured merge sub-merge-matri
es in the UC and CU Merge Frameworks (see Figure8.1). These frameworks do not provide any sele
tion strategy. However, a 
ombinationof parti
ular strategies with a Merge Frameworks results in an algorithm. Consequently,the same strategy with di�erent framework results in di�erent algorithms. The otheroption for making an algorithm is when di�erent strategies are 
ombined with the sameframework. Chapter 10 will give examples for ea
h type. Note that Merge Models workwithout using 
olours. Re
all that 
olours serve only to aid understanding; they onlyindi
ate whether a row has already been taken into a

ount in the merge pro
ess. Forthis purpose one 
an use 
oloured and un
oloured 
hara
teristi
 ve
tors, as des
ribed inSe
tion 7.2. The choose-unc and choose-col fun
tions/strategies are not de�ned pre-
isely here. They 
an be repla
ed by di�erent 
on
rete 
hoi
e strategies whi
h operateon 
oloured and un
oloured sub-merge-matri
es, respe
tively. The choose-unc fun
tionsele
ts an un
oloured row/vertex, while choose-col sele
ts a 
oloured row/'
olour 
lass'or allo
ates a new empty row in the 
oloured sub-merge-matrix. The allo
ation stepintrodu
es a new '
olour'/
olour 
lass into the system. In fa
t, in term of traditional61



62 Merge FrameworksUC Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 u← arg choose-unci{Munc
i } //Choose an un
oloured row index4 c← arg choose-coli{M col

i } //Choose a 
oloured row index,a where Muc = 05 M ← merge(M, {u, c}) //Merge u and c rows/
olumns b6 until Munc is empty7 return MCU Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 c← arg choose-coli{M col
i } //Choose a 
oloured row index4 u← arg choose-unci{Munc
i } //Choose an un
oloured row index
, where Mcu = 05 M ← merge(M, {u, c}) //Merge u and c rows/
olumns6 until Munc is empty7 return MaMuc = Mcu = 0 is the merge 
ondition, i.e. there is no edge.bFor Merge Squares, 
olumns are also a�e
ted in a Merge Operation.
Mcu = Muc = 0 is the merge 
ondition, i.e. there is no edge.Figure 8.1: The UC and CU Merge Frameworks
olouring, a merge puts the un
oloured vertex 
hosen into the sele
ted '
olour 
lass'1.Note that a merged row 
hara
terises 
olour 
lasses where a merged row en
ompassesadditional rows of the original adja
en
y matrix. Substituting 
olourings by merges,the sequential merge generalises the sequential 
olouring, where instead of a 
olourassignment a Merge Operation is performed. It is a generalisation of sequential 
olour-ing be
ause on the one hand the traditional 
olouring s
hemes 
an be de�ned withinthese frameworks and, on the other hand, traditional s
hemes 
an be extended. Se
-tion 4.2.1 des
ribes the two traditional sequential 
olouring s
hemes. The �rst is thesequential 
olour assignment, where verti
es get 
olours in a greedy manner. This maybe de�ned in the UC Merge Framework (see Figure 8.1). An un
oloured row sele
tionby choose-unc means sele
ting an un
oloured vertex. Then the strategy choose-col
an be a greedy 
oloured row 
hoi
e. Finally, the 
olour assignment is equivalent to amerge. The se
ond is the independent set approa
h, where subsequent independentsets are 
reated in a step-by-step fashion, and ea
h of them is �lled with un
olouredverti
es until their saturation; that is, no more un
oloured verti
es 
an be en
ompassed.It may be expressed in the CU Merge Frameworks. The strategy choose-col 
an 
reatean empty row in the 
oloured sub-merge-matrix, choose-unc sele
ts a row from theun
oloured sub-merge-matrix, then the rows merged. An independent set representsa 
olour 
lass; moreover, these 
olour 
lasses 
orrespond to the rows in a 
olouredsub-merge-matrix. Thus, an empty row refers to an empty 
olour-set. In addition, the1A 
olour 
lass is deemed empty when a new '
olour', a blank row, is 
reated in the 
olouredsub-merge-matrix.



8.2 The CC Merge Frameworks 63un
oloured row sele
ted by choose-unc is asso
iated with an un
oloured vertex. Then amerge itself puts the un
oloured vertex into the empty 
olour 
lass. Later, choose-unckeeps sele
ting the last row 
reated in the 
oloured sub-merge-matrix, i.e. the last
olour 
lass, until its saturation; that is, no more un
oloured rows 
an be sele
ted fora merge. These two traditional approa
hes both apply greedy 
olour sele
tion for anassignment or greedy vertex �lling. The UC and CU Merge Frameworks provide ad-ditional possibilities where the greedy 
hoi
e strategies may be repla
ed by any othersophisti
ated one. The task of a 
hoi
e strategy is to generate 
hoi
e probabilities forea
h row of the Merge Matrix. Then, based on the probabilities generated, it sele
tsa row from the un
oloured sub Merge Matrix and another one from the 
oloured subMerge Matrix. Depending on the sequen
e of 
hoi
es, the algorithm will belong to theUC or the CU Merge Framework. All rows must get a 
hoi
e probability. Hen
e, a row
hoi
e probability fun
tion must be de�ned to assign probabilities to the rows.De�nition 8.1 (Row 
hoi
e probability fun
tion) The row 
hoi
e probability fun
-tion assigns 
hoi
e probabilities to ea
h row of the Merge Matrix. A 
hoi
e probabilitydetermines how probable the sele
tion of the two rows is for a merge in the next stepof a Merge Algorithm.An algorithm in the UC and CU Merge Framework de�nes two row 
hoi
e strategies.One is for the rows of the un
oloured sub-merge-matrix, while the other is for the rowsof the 
oloured sub-merge-matrix. These row 
hoi
e strategies in turn de�ne two row
hoi
e probability fun
tions whi
h are the basis for the sele
tion. The probabilities ofthe row 
hoi
e probability fun
tion may be represented in ve
tor format.De�nition 8.2 (Choi
e probability ve
tor) A 
hoi
e probability ve
tor x 
ontainsvalues of the row 
hoi
e probability fun
tion. The xi element of the ve
tor representsthe 
hoi
e probability of the i− th row for a merge.8.2 The CC Merge FrameworksNoti
e here that choose-col and choose-unc strategies are 
ompatible in Se
tion 8.1.Both 
hoose a row from the Merge Matrix, but they operate on di�erent subsets of therows of the matrix. If one de�nes a choose-col 
oloured row sele
tion fun
tion thenone 
an without any di�
ulty use it as un
oloured 
hoi
e strategy choose-unc and vi
aversa. Now let us exploit this observation and introdu
e the CC Merge Framework(see Figure 8.2). Sin
e the two 
hoose fun
tions are 
ompatible, use a 
ommon oneinstead of two. Note as well that there is no need to distinguish between 
oloured andun
oloured sub-merge-matri
es; just take only the set of rows and apply the 
ommon
choose fun
tion suitable for all of them. Next, take two di�erent, arbitrary rows fromthe Merge Matrix whi
h satisfy the merge 
ondition and merge them.The CC Merge Framework is the most general. Even although it 
overs the UC andCU Merge Frameworks, it is worth de�ning them separately so as to have a possibilityof 
ategorising the algorithms later Moreover, it is useful in the identi�
ation of the



64 Merge FrameworksCC Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 {i, j} ← arg choose{i,j}{Mi,Mj : i 6= j} //Choose two row indi
esa, where Mij = 04 M ← merge(M, {i, j}) //Merge i and j rows/
olumns5 until M is not mergeable6 return MaMij = Mji = 0 is the merge 
ondition, i.e. there is no edge.Figure 8.2: The CC Merge Frameworkstraditional s
hemes 2. To understand better the behaviour and reason why the CCMerge Framework is so-
alled, one 
an represent it as a spe
ial independent set s
heme.The rows of the Merge Matrix 
orresponds to 
olour 
lasses, i.e. independent sets. Analgorithm in a CC Merge Framework sele
ts two 
olour 
lasses/independent sets and
reates the union of them, this approa
h being outlined in Se
tion 3.6.2. This is done bymerging two arbitrarily sele
ted rows taken from the whole Merge Matrix. An algorithmterminates when no further merge is possible. Row identi�ers of the �nal Merge Matrixare the 
olour 
lasses that des
ribe the 
olouring. The sele
tion of two rows for mergingis done by a strategy (Merge Strategy). With Merge Strategy, one may de�ne a 
hoi
eprobability for ea
h pair of verti
es.De�nition 8.3 (Row-pair 
hoi
e probability fun
tion) The row-pair 
hoi
e prob-ability fun
tion assigns 
hoi
e probabilities to ea
h pair of rows of the Merge Matrix.A 
hoi
e probability determines how probable the sele
tion of two rows is for a mergein the next step of a Merge Algorithm.The row-pair 
hoi
e probability fun
tion is �nite fun
tion, so the values of the fun
tion
an be represented in matrix format.De�nition 8.4 (Choi
e probability matrix) The 
hoi
e probability matrix X 
on-tains values of the row-pair 
hoi
e probability fun
tion. An xij element of the matrixdetermines how probable the sele
tion of row i and j is for a merge in the next step ofa Merge Algorithm.A Merge Strategy always has an expli
it or impli
it 
hoi
e probability matrix for the
urrent problem. The strategy itself 
an 
hoose the most probable pair of verti
esfor a merge in the next step or it 
an apply a probabilisti
 
hoi
e using the values ofthe 
hoi
e matrix. The higher the value in a matrix for a vertex pair, the higher the
han
e for a merge of the verti
es. A Merge Strategy always generates this matrix, butsometimes it is hidden, just de�ned impli
itly via a des
ription of the strategy. The keyproperty of a Merge Algorithm is a varying 
hoi
e probability matrix that 
onverges byprogressive merges, to a zero matrix when no more merge is possible. In fa
t the main2Ususally, traditional s
hemes �ts into the CU and UC Merge Frameworks.



8.3 Summary 65task of the 
olouring is to �nd an appropriate 
hoi
e matrix for ea
h step. Sometimesit is 
onvenient to represent the 
hoi
e matrix as an n× n size square matrix like thatof adja
en
y matrix of the original graph. In order to a
hieve this, one 
an keep zerorows/
olumns in a Merge Matrix � i.e. non-
ollapsed Merge Matrix � to have a size of
n×n. An X 
hoi
e probability matrix 
ontains zeros in the non-zero entry positions ofthe relevant non-
ollapsed Merge Matrix be
ause adja
ent verti
es 
annot be merged.Moreover, with xii-s the diagonal entries are also zeros. Therefore it is reasonable toguarantee this property for ea
h step. E.g. in the 
ase of the Binary Merge Square,the X ◦ Ā entrywise produ
t gives the desired result, where Ā is the Binary MergeSquare, i.e the adja
en
y matrix of the 
omplementer quotient graph. The matrix
Ā = J − I −A serves as the appropriate Merge Square, where J is the matrix with allone entries and I is the identity matrix. The UC and CU Merge Frameworks divide theproblem into un
oloured and 
oloured parts when an algorithm is running. Merges 
anbe only between two rows whi
h are in di�erent parts; that is, un
oloured and 
olouredrows 
an only be merged. Therefore X 
an only have non-zero values in the relevant
ross positions.8.3 SummaryIn this 
hapter we introdu
ed graph 
olouring frameworks whi
h generalise the tradi-tional sequential 
olouring s
hemes. Ea
h name refers to the applied 
olouring/mergings
heme. Namely, U means an un
oloured vertex and C means a 
olour 
lass. Hen
ein a UC Merge Framework an un
oloured vertex is 
hosen �rst, then a 
olour 
lass isasso
iated with it. These frameworks 
over and extend the traditional vertex orderings
hemes outlined in Se
tion 4.2.1. The CU Merge Framework sele
ts a 
olour 
lass�rst, then asso
iates a un
oloured vertex with it. This framework in
ludes the tradi-tional independent set approa
h of Se
tion 4.2.1 sin
e a 
olour 
lass is an independentset. In the third framework the CC does not distinguish between 
olour and un
olouredentities, but takes only 
olour 
lasses/independent sets then 
ombines them. Note thata single vertex forms an independent sets, hen
e initially it takes ea
h vertex as oneelement independent sets and 
ombines them a

ording to a strategy. All of theseframeworks are de�ned in a uni�ed manner using the Merge Model s
heme. An algo-rithm in one of these frameworks applies a subsequent sele
tion of rows of the mergematri
es and merges them to a
hieve a 
olouring. None of these frameworks has a
on
rete strategy for the 
hoi
e of rows for merging. A framework with a 
on
rete row
hoi
e strategy forms a parti
ular algorithm.





Chapter 9Merge StrategiesIn 
hapters 7 and 8 Merge Operations and general Merge Frameworks were de�nedin order to perform sequential Merge Operations on the original graph and other sub-sequent merges. A Merge Operation takes two rows/
olumns of a Merge Matrix andprodu
es a new Merge Matrix if the merge 
ondition allows it. By repeating MergeOperations we will end up with a �nal Merge Matrix where a Merge Operation is nolonger possible. In the 
ase of the Merge Squares, the �nal Merge Matrix 
orrespondsto a 
omplete graph, while in the 
ase of Merge Tables the �nal Merge Matrix 
orre-sponds to a power graph whi
h is homomorphi
 with a 
omplete graph. The sequen
eof the Merge Operations is 
ru
ial. It determines the quality of the solution, i.e. thenumber of 
olours used in the 
olouring of the original graph. The number of 
oloursis the same as the number of rows in a Merge Matrix. Hen
e the main aim is to redu
ethe number of rows in a Merge Matrix. Ea
h Merge Operation de
reases the numberof rows by one, until a merge is no longer possible. Therefore the goal is to make asmany merges as possible.This 
hapter des
ribes various strategies used to generate merge sequen
es, as de-s
ribed in [94; 96�102℄ by the author. Binary Merge Squares or Tables are assumedin the des
riptions of the strategies but their integer extensions are also dis
ussed.These strategies proved useful in the theoreti
al analysis and experimental study. Chap-ter 10 outlines various algorithms, where these strategies are 
ombined with di�erentMerge Frameworks of Chapter 8. These algorithms were studied by Juhos et al. in[94; 96�102℄. The algorithms whi
h apply these strategies outperform several well-known ben
hmark algorithms from the literature, whi
h were des
ribed in Se
tion 4.2.In Se
tion 4.2.1 we presented two traditional prin
iples for 
olouring strategies. The�rst was the sequential 
olour assignment s
heme, where an un
oloured vertex is 
ho-sen �rst and then a �rst available 
olour is assigned to this vertex. Then the se
ondwas the maximal independent set approa
h where the next available 
olour is taken,then as many verti
es as possible are 
oloured with this 
olour. The same 
olouredverti
es form maximal independent sets in this 
ase. In both 
ases the 
olour 
hoi
eis greedy and the un
oloured vertex 
hoi
e is based on some strategy. In Chapter 8,67



68 Merge Strategiesthese approa
hes were generalised in the UC and CU Merge Frameworks, respe
tively,where an additional framework 
alled the CC Merge Framework was also introdu
ed.A 
olour 
an be interpreted as a 
olour 
lass that is an independent set. An un
olouredvertex is also an independent set 
ontaining a single member. Merge Models asso-
iate the 
olour 
lass with the rows of merge matri
es. Ea
h row of a Merge Matrixrepresents an independent set whi
h 
an be either a 
olour 
lass or an un
oloured ver-tex. The 
olour assignment operation is implemented as a Merge Operation of theappropriate rows/
olumns representing a merge of two 
orresponding independent sets.Hen
e instead of a 
olour 
hoi
e or an un
oloured vertex 
hoi
e, we may just de�nea row 
hoi
e from the set of appropriate Merge Matrix rows. Consequently, the row
hoi
e generalises the traditional 
hoi
e s
hemes. A row 
hoi
e may represent either anun
oloured vertex 
hoi
e or a 
olour 
hoi
e in the traditional 
olouring term, depend-ing on whi
h set of rows of a Merge Matrix forms the basis of the 
hoi
e. Followingtraditional 
olouring s
hemes, rows of a Merge Matrix will be partitioned into 
olouredand un
oloured row sets. There are two strategies available to 
hoose a row from the
oloured and another from the un
oloured part. The Merge Operation is based on thesesele
tions. In the 
ase of Merge Tables it is rows, but in the 
ase of Merge Squaresthe 
orresponding 
olumns are merged as well. Depending on the order of the 
hoi
esfrom the two row sets, the result will be the UC or the CU Merge Framework. Therow sele
tion in the un
oloured and 
oloured row sets are de�ned by two row 
hoi
estrategies. In the traditional s
hemes one of them is usually a greedy strategy, e.g. takethe �rst row from the 
oloured row set whi
h is mergeable with a row sele
ted fromthe un
oloured row set. If the row set is not partitioned, then an algorithm 
an 
hoosetwo arbitrary rows for a merge. This approa
h is de�ned in the CC Merge Framework.Here, instead of two separated row 
hoi
es, one row-pair 
hoi
e is used.9.1 Row-pair 
hoi
e strategiesAn algorithm in the CC Merge Framework does not make a distin
tion between the
oloured and un
oloured states of the rows of the Merge Matrix. Ea
h row representsan independent set/
olour 
lass. Merging the two representation rows results in a unionof the independent sets. These algorithms just fo
us on a sequen
e of merges of twosele
ted rows of a Merge Matrix. To �nd su
h a sequen
e, a strategy must be a row-pair 
hoi
e strategy that sele
ts row-pairs su

essively in order to merge them. Thispro
edure presupposes a row-pair 
hoi
e probability fun
tion (
pf), whi
h assigns aprobability value for ea
h row-pair (Mi,Mj) of a Merge Matrix M , in proportion totheir 
han
e of being 
hosen. This is illustrated by a general row-pair 
pf:
∀Mi,Mj (Mi,Mj)→

{

xij i 6= j ∧Mij = 0

0 i = j ∨Mij 6= 0
0 ≤ xij ≤ 1 (9.1)where Mi is the i−th row of a Merge Matrix and xij is the probability of 
hoosing of

i−th and j−th rows for a merge. A 
hoi
e probability fun
tion 
an be de�ned by a
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hoi
e probability matrix (see De�nition 8.4), where the matrix (i, j) element is the
xij. To get reasonable probabilities, the fun
tion for non-mergeable row-pairs shouldbe zero, i.e. when i = j and Mi,j 6= 0. Instead of probabilities xij , sometimes itis easier to generate x̂ij values whi
h do not ne
essarily lie in the interval [0, 1], butare 
orrelated with the row-pair 
pf. In this 
ase a [0, 1]−normalisation provides the
orresponding row-pair 
pf. A simple [0, 1]−normalisation is de�ned by

xij =
x̂ij −mini,j x̂ij

maxi,j x̂ij −mini,j x̂ij
(9.2)

v1

v2

v3

v4

v5

v6 (a) A graph G

v2 v6 v4 v1 v5 v3

r2 · · · 1 · 1
r6 · · · · 1 1
r4 · · · · 1 1
r1 1 1 · · · 1
r5 · 1 1 · · ·
r3 1 1 1 1 · ·(b) Initial Merge Matrix, the adja-
en
y matrix of G

r2 r6 r4 r1 r5 r3

r2 · 1 0.6 · 0 ·
r6 1 · 0.6 · · ·
r4 0.6 0.6 · 0.3 · ·
r1 · · 0.3 · 0.3 ·
r5 0 · · 0.3 · 0.6
r3 · · · · 0.6 ·(
) A 
hoi
e probability matrixFigure 9.1: A 
hoi
e probability matrix.Figure 9.1(
) gives an example for a 
hoi
e probability matrix (
pm). The 
olumns androws of the 
pm of Figure 9.1(
) 
orrespond to the rows of the Merge Matrix of Figure9.1(b). Based on the values of the 
pm, a strategy 
an 
hoose two rows for a merge,e.g. the 
hoi
e probability of the row-pair (r4, r2) is 0.6. A 
hoi
e strategy in a MergeAlgorithm 
al
ulates the values of the relevant 
pm and 
arries out a deterministi
 orsto
hasti
 sele
tion of two rows for a merge.9.2 Row 
hoi
e strategiesThe CC Merge Framework does not distinguish between 
oloured and un
oloured rows.It takes two rows from the Merge Matrix a

ording to a row-pair 
hoi
e strategy andmerges them, then repeats this on the result Merge Matrix. But an algorithm in bothUC and CU Merge Frameworks separates the 
oloured and un
oloured parts. Both
hoose a row from the un
oloured sub-merge-matrix, i.e. an un
oloured vertex, andanother from the 
oloured sub-merge-matrix whi
h represents a 
olour 
lass. Aftermaking these sele
tions, the two rows are merged, whi
h is the 
olouring step. Onlythe sequen
e of the 
hoi
es is di�erent. An algorithm in the UC Merge Framework �rstsele
ts a row from the un
oloured part, then from the 
oloured part; while an algorithmin the CU Merge Framework 
hanges this order and �rst sele
ts a 
oloured row thenan un
oloured row. The �rst sele
tion may have an in�uen
e on the se
ond sele
tion.Note that in traditional 
olouring s
hemes (Se
tion 4.2.1) the verti
es and 
oloursor 
olour 
lasses are di�erent obje
ts. In the Merge Model, both 
orrespond to a row



70 Merge Strategiesof a Merge Matrix. Hen
e, a row 
hoi
e strategy is suitable for 
hoosing an un
olouredvertex or a 
olour 
lass as well. The only di�eren
e is that a row 
hoi
e strategy mustoperate on either the 
oloured sub-merge-matrix or on the un
oloured one. Hen
e,we may de�ne general row 
hoi
e strategies. A general row 
hoi
e strategy 
an serveas un
oloured or 
oloured row 
hoi
e strategy in the UC or CU Merge Frameworks.Di�erent 
ombinations may result in di�erent algorithms. A Merge Algorithm generatestwo row sele
tions. Hen
e there must be two, not ne
essarily di�erent, strategies forthese two row 
hoi
es. To get a row 
hoi
e strategy, an algorithm must impli
itlyor expli
itly de�ne a row 
hoi
e probability fun
tion. This is di�erent from the row-pair 
hoi
e probability fun
tion, whi
h is suitable for the CC Merge Framework. Arow 
pf assigns sele
tion probability values to single rows instead of row-pairs. Theseprobability values 
an be represented in ve
tor form, in the row 
hoi
e probability ve
tor.An algorithm in a UC Merge Framework 
an 
reate a row 
hoi
e probability ve
tor inadvan
e, whi
h 
orresponds with the traditional vertex ordering s
heme. In fa
t, thisve
tor is a row of a suitable 
hoi
e probability matrix, de�ned by a 'hidden' row-pair
pf. Usually, a row-pair 
pf is impli
itly de�ned through the separated un
olouredand 
oloured row 
pf-s. However, one 
an 
ombine two row 
pf-s to provide a row-pair 
pf. The 
ombined fun
tion must assign zero probability values for those rowswhi
h have the same states, either 
oloured or un
oloured. The following equationde�nes a general row-pair 
pf for both the UC and CU Merge Frameworks.
∀Msi

i ,M
sj

j (Msi
i ,M

sj

j )→
{

xij si 6= sj ∧Mij = 0

0 si = sj ∨Mij 6= 0
:

0 ≤ xij ≤ 1

si, sj ∈ {col, unc}(9.3)Figure 9.2 shows a plot of the 
hoi
e probability matrix in 
orresponding with Eq. 9.3,where only un
oloured and 
oloured rows 
an be sele
ted for a merge.
unc

col 0

0

unc col

0

Figure 9.2: The 
hoi
e probability matrix in UC and CU Merge Frameworks. Onlythe bla
k parts 
an have non-zero entries. Here '
ol' and 'un
' refer to 
oloured andun
oloured row indi
es, respe
tively.Combining two row 
pf values results in a value pair. However, a 
omparison of singlevalues may be unambiguous, but a 
omparison of a value pair is sometimes problemati
e.g. take (3, 1) and (2, 2), where 3 > 2, but 1 < 3. For all i, let xi be the 
hoi
eprobability of rowMi generated by a row 
pf and 
onstru
t a �exible 
hoi
e probabilitymatrix X of the row-pair 
pf. De�ne xij entries of X a

ording to Eq. 9.5.
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x̂ij = xν

i · x1−ν
j [Mij = 0] (9.4)

xij =

{

max{x̂ij , x̂ji}
κ

i 6= j

0 i = j
(9.5)Eq. 9.4 de�nes an unnormalised support for the 
hoi
e. Often only these values formthe basis of the de
ision of a strategy without normalisation. The κ is a normalising
onstant to get values between zero and one. The merge 
ondition is (Mij = 0). Itis expressed by the following Krone
ker delta fun
tion: [Mij = 0]. This fun
tion givesone in the 
ase of equality, otherwise results in zero. It 
an be substituted by (1−Mij)if the xi-s are non-negatives. The term (1−Mij) is one if rows i and j are mergeable,otherwise it is non-positive, hen
e only mergeable rows play a role in the sele
tionpro
ess. The max{x̂ij , x̂ji} ensures the symmetry of the 
hoi
e probability matrix.Furthermore, 0 ≤ ν ≤ 1 de�nes a bias. It favours large values in the 
ombination.In the 
ase of ν = 1

2
, this strategy favours the sele
tion of rows having large valuesbut not ne
essarily the largest. In order to favour those rows having the largest 
pfvalue, the 1

2
bias should be altered. The bias ν = 0 (or ν = 1) result 
an be utilisedas a row 
pf, where only one value of the pair is 
onsidered. As an example, taketwo pairs of mergeable rows (r1, r2) and (r3, r4) whi
h have the following row 
pfvalues (2, 2) and (3, 1), appropriately. Let ν = 1

2
, then apart from the normalisation

(
√

3 ·
√

1) < (
√

2 ·
√

2). The 3ν > 2 should be hold to favour the sele
tion of (r1, r2)pair whi
h have the largest row 
pf value 3. Indeed, 
hoose ν > log3 2 then 3ν > 2and hen
e the (r1, r2) is sele
ted for a merge. Otherwise, when ν < log3 2, then theother pair (r3, r4) is favoured.9.3 Update me
hanismThe relation between the Merge Matrix rows usually 
hanges after a merge. It requiresa re
al
ulation of the relevant 
hoi
e fun
tions. In the UC and CU Merge Frameworks,an un
oloured row is merged into a 
oloured one. Hen
e, the a�e
ted un
oloured rowmust be removed, or set to zero, in the un
oloured sub-merge-matrix. Furthermore,the 
oloured sub-merge-matrix also 
hanges in the a�e
ted 
oloured row. Row 
hoi
eprobability fun
tions have to be updated for the two a�e
ted rows. It means that oneentry has to be updated in the 
oloured and another in the un
oloured 
hoi
e probabilityve
tor. The CC Merge Framework needs a row-pair 
hoi
e probability fun
tion. Whentwo rows are merged, the 
orresponding fun
tion values have to be updated. In the
hoi
e probability matrix representation of the fun
tion values, the appropriate row and
orresponding 
olumns have to be updated.9.4 Extension of non-merge based strategiesA non-merge based 
hoi
e strategy 
an be extended using a Merge Model. The exten-sion is based on the transformations of the problem, i.e. merge matri
es and asso
iatedgraphs, indu
ed by Merge Operations. Conse
utive Merge Operations generate a Merge



72 Merge StrategiesMatrix series. A merge redu
es the size of the matrix, produ
ing 
ompa
t relationswhere problemati
 parts may be revealed. Hen
e these matri
es 
an better 
hara
terisethe original problem. Intermediate matri
es in the matrix sequen
e may 
ontain moreand more information proportional to the number of merges, be
ause intermediate ma-tri
es asymptoti
ally approa
h a �nal Merge Matrix. An intermediate matrix has thesame stru
ture as the initial one in the 
ase of Merge Squares1. Consequently, if astrategy 
an operate on the adja
en
y matrix, the initial Merge Matrix, then the samestrategy 
an 
ooperate with the intermediate matri
es as well. It introdu
es a dynami
re
onsideration pro
ess where previous de
isions of a strategy, i.e. 
pf-s 
an be revisedby exploiting the additional information 
ontained in the intermediate matri
es.9.4.1 Extended Welsh-Powell (∞−norm) StrategyMotivation. In Se
tion 4.2.3 we introdu
ed the Welsh-Powell algorithm, where theverti
es are ordered in de
reasing vertex degree and then greedily 
oloured. It uses atmost maxi min{di + 1, i} 
olours, where di is the degree of the i−th position vertex.The degree of a vertex may be 
al
ulated by the sum of the relevant row of the adja
en
ymatrix. Hen
e the ve
tor whi
h 
ontains every degree is the following:
d = AG e (9.6)where AG is the adja
en
y matrix of the original graph and e is the ve
tor of allone entries. This strategy sele
ts the most 
onstrained un
oloured verti
es by edgesin a graph. It is represented by the maximum row sum, whi
h is looked for amongthe rows 
orresponding to un
oloured verti
es. This is the maximum of dunc of Eq.9.7, where dunc = d ◦ eunc

G and eunc
G is the 
hara
teristi
 ve
tor of the un
olouredverti
es (see De�nition 7.8). After 
olouring a vertex, the sear
h for the maximum rowsum pro
eeds with the rest of the verti
es. Hen
e the maximisation pro
ess alwaysjust takes the un
oloured degrees (Eq. 9.7), whi
h 
ontains only those rows of theadja
en
y matrix whi
h 
orrespond to un
oloured verti
es.

dunc = AG eunc
G = d ◦ eunc

G (9.7)The original Welsh-Power strategy 
hooses that un
oloured row whi
h has the maximumdegree in the original graph; that is, the basis of the 
hoi
e is dunc. A generalisationof this strategy 
an be de�ned by the following merge s
heme. The general idea isthe same, namely to avoid the possibility that the least 
onstrained verti
es 
olle
t toomany irrelevant verti
es, as the original Welsh-Powell method does. The initial MergeMatrix is the adja
en
y matrix in ea
h Merge Model. After a Merge Operation theMerge Matrix M is transformed into another one, where the number of rows de
reasesby one, resulting in a reformulated problem graph where the sums of the rows 
hange2.Next, we examine the produ
t ofM with the ve
tor of all ones e in Eq. 9.8. It provides1Usually an extension is similar for Merge Tables as well.2Without loss of generality, we shall assume that there is no isolated vertex (it has no neighbours).



9.4 Extension of non-merge based strategies 73the relevant sums in a ve
tor. This ve
tor is introdu
ed as a left 
o-stru
ture of aMerge Matrix in Se
tion 7.2:
µl = Me (9.8)A row in the Merge Models represents a 
olour 
lass. The sum of the rows have adi�erent meaning in di�erent Merge Models. Some of these are illustrated in Figure7.7. The Welsh-Powell vertex 
hoi
e strategy 
an be de�ned in the Merge Model usingthe left 
o-stru
ture of the Integer or Binary Merge Tables or the Integer Merge Square.However, three 
ombinations out of the twelve3 result in the original Welsh-Powellalgorithm, the others provide extensions of this. Combination of this strategies withdi�erent Merge Models and Merge Frameworks results in di�erent 
olouring algorithms.They are the Extended Welsh-Powell strategies, whi
h were introdu
ed by the authorin [97℄.De�nition 9.1 (Extended Welsh-Powell strategies) Extended Welsh-Powell strate-gies are those strategies whi
h are de�ned by a Merge Model in a Merge Frameworkusing the maximum row sum 
hoi
e strategy.The Welsh-Powell strategy 
an be de�ned by un
oloured row 
hoi
es in several MergeModels. However, an Extended Welsh-Powell strategy 
an apply the maximum rowsum strategy for 
oloured rows as well. When un
oloured and 
oloured rows are 
hosenseparately, then the suitable Merge Framework for these type of algorithm are the UCand CU Merge Frameworks. The row 
hoi
es are always supported by a row 
hoi
eprobability fun
tion. Here it was based on the row sums.The row 
hoi
e probability fun
tion for the UC and CU Merge Frameworks.Both UC and CU Merge Frameworks 
hoose a row from the un
oloured sub-merge-matrix and another from the 
oloured. Only the sequen
e of the 
hoi
es di�ers. Therow 
hoi
e probability fun
tion for the un
oloured sub-merge-matrix is de�ned in Eq.9.9. Its 
ounterpart for the 
oloured sub-merge-matrix is de�ned in Eq. 9.10. Thevalues of the fun
tions as a sequen
e 
an be written as ve
tors, the 
hoi
e probabilityve
tors xunc and xcol, respe
tively.

xunc
i =

〈Munc
i , e〉
κ

(9.9)
xcol

i =
〈M col

i , e〉
κ

(9.10)where Munc
i and M col

i are the appropriate un
oloured and 
oloured row ve
tors, re-spe
tively and e is the ve
tor of all one entries. of The i−the 
omponent of the 
hoi
eprobability ve
tor xunc
i of xcol

i des
ribes the 
han
e of a sele
tion of the i−th un
olouredor 
oloured row. These 
hoi
e ve
tors may be applied separately or they 
an be 
om-bined together with other row 
hoi
e strategies. The κ must be a reasonable 
onstant3Four types of Merge Models and three variants of the Merge Frameworks.



74 Merge Strategiesto normalise the values to get probabilities, e.g. the maximum of the possible rowsums. These 
hoi
e probability ve
tor supports the row 
hoi
es, whi
h 
an be eitherdeterministi
 of sto
hasti
. The deterministi
 
hoi
e strategy for both un
oloured or
oloured rows is de�ned in Eq. 9.11. The sto
hasti
 
hoi
es is based on a randomvalue generation by some probability distribution. The 
hoi
e will be the index of that
omponent of the 
hoi
e probability ve
tor whi
h has the nearest value to generated arandom value 0 ≤ rnd ≤ 1, as stated in Eq. 9.12.
arg max

i
xs

i s ∈ {col, unc} (9.11)
arg min

i
{|xs

i − rnd|} s ∈ {col, unc} (9.12)where xs
i is the appropriate un
oloured or 
oloured part of the ve
tor. The minimisationproblem of Eq. 9.12 results in the index of the 
losest xs

i element to the generatedvalue of rnd. The maximum row sum strategy may be interpreted via the indu
ed
∞-norm of matri
es. The ∞-norm provides the maximum row sum:

‖Munc‖∞ = max
i
{〈Munc

i , e〉} (9.13)In order to de�ne a row-pair 
hoi
e probability fun
tion for the CC Merge Frameworkwe will follow the 
onstru
tion of Se
tion 9.2.The row-pair 
hoi
e probability fun
tion for the CC Merge Framework. Un-
oloured and 
oloured row 
hoi
es are needed within the UC an CU Merge Frameworks.The CC Merge Framework does not make any distin
tion between 
oloured and un-
oloured states, but the maximum row sum strategy 
an be exploited in this frameworkas well. In the CC Merge Framework, 
hoose two rows for a merge; if they are merge-able and they represent the maximum row sum 
ombination. Sin
e '
ombination' isnot an exa
t term here, make use of De�nition 8.4 and introdu
e a 
hoi
e probabilitymatrix where row sums 
an be '
ombined'. An (i, j) entry of the 
hoi
e probabilitymatrix represents the 
han
e that the i and j rows will be involved for a merge. Hen
eit de�nes the row-pair 
hoi
e probability fun
tion:
x̂ij = 〈Mi, e〉ν · 〈Mj , e〉1−ν [Mij = 0] (9.14)

xij =

{

max{x̂ij , x̂ji}
κ

i 6= j

0 i = j
(9.15)where κ is a normalising 
onstant needed to get values less than one. Moreover, the

xij-s are all non-negative numbers. The κ 
an be the maximum of the xij entries orthe sum of the entries |M |. In the 
ase of κ = |M |, the sum of the entries of the
hoi
e probability matrix will be one. The sum of the entries of the X 
hoi
e matrix
an be also a good option for normalising 
onstant. The Krone
ker delta [Mij = 0]represents the merge 
ondition when the merge 
ondition is not satis�ed, i.e. Mij 6= 0,



9.4 Extension of non-merge based strategies 75the fun
tion give 0, otherwise 1. In the 
ase of Binary Merge Matri
es the Krone
kerdelta fun
tion 
an be substituted in Eq. 9.14, thus
x̂ij = 〈Mi, e〉ν · 〈Mj , e〉1−ν (1−Mij) (9.16)In the 
ase of Binary Merge Squares, an equivalent 
hoi
e strategy 
an be de�ned by

X = (Ae)(Ae)T ◦ Ā (9.17)where A is a Binary Merge Square, i.e. the adja
en
y matrix of an appropriate quotientgraph, whi
h is a simple graph. Here Ā is the adja
en
y matrix of the 
omplementergraph of the quotient graph. It has zeros in the edge positions of A and ones elsewhere,ex
ept along the main diagonal whi
h has zeros too. An entrywise produ
t with Ā isa suitable 
hoi
e be
ause it retains only those array positions where Aij 6= 0, whilethe other array positions will have zero values. Figure 9.3(b) shows a typi
al 
hoi
eprobability matrix. The Integer Merge Table of Figure 9.3(a) 
omes from Figure 7.6with ν = 0.5. The matrix has positive-valued elements only in the possible mergepositions.
v1 v2 v3 v4 v5 v6

r1 · 1 1 0 · 1
r2 1 · 1 0 · 0

{r3, r5} 1 1 · 2 · 2
r4 0 0 1 · 1 0
r5 · · · · · ·
r6 1 0 1 0 1 ·(a) Integer Merge Table. The 0-s are the pos-sible merge positions.

r1 r2 {r3, r5} r4 r5 r6

r1 · · · 1 · ·
r2 · · · 0.8 · 1

{r3, r5} · · · · · ·
r4 1 0.8 · · · 1
r5 · · · · · ·
r6 · 1 · 1 · ·(b) Choi
e probability matrix. A greedy 
hoi
eis given in bold.Figure 9.3: The ∞−norm 
hoi
e probability matrix.For Merge Squares the indu
ed ∞−norm is equivalent to the indu
ed 1−norm, but forthe Merge Tables these norms give di�erent results, sin
e the 
olumns and the rowsbelongs to di�erent obje
ts. Columns refers to the verti
es in the original graph, but therows 
orrespond to 
olour 
lasses. A Binary Merge Table des
ribes the relation betweenthe verti
es and the 
olour 
lasses. The 1−norm provides the maximum 
olumn sum,while the ∞−norm provides the maximum row sums. A 
olumn sum in the 
olouredsub-merge-matrix gives the number of neighbour 
olours of a vertex as depi
ted inFigure 7.7, i.e. the 
olour saturation degree (Def. 4.3). Therefore the DSatur algorithmin Se
tion 4.2.5 
an be de�ned by this value as well, while the∞−norm belongs to thenumber of neighbours; and hen
e, this value helps the Welsh-Powell algorithm.Improvement. The Extended Welsh-Powell methods apply merges. The number ofrows de
rease by merges. The max min{di, i} is translated into max min{〈Mie〉 , i},



76 Merge Strategieswhere Mie is the sum of the i-th row of the Merge Matrix M and i is the position ofthe row by the 
hoi
e probability ve
tor. That rows are ordered by their sums. Thanksto the de
rease in the number of rows, the i-th position de
reases, whi
h 
an bringimprovement in the bound. Moreover, in the 
ase of Binary Merge Squares the sum ofthe rows must be de
rease after a 
ertain number of merges; be
ause the number of
olumns also de
reases after ea
h merge. A �nal Binary Merge Square of a k−
olouringhas k number of rows and 
olumns and the 
ommon degree is k− 1. We may supposethat the minimal degree δ of the verti
es of the original graph satis�es δ ≥ k−1, thanksto the low degree redu
tion te
hnique (see Se
tion 3.4). Therefore, after 
ertain mergesteps the sum of the rows must approa
h4 k − 1, leading to a de
rease in the upperbound.9.4.2 Extended Hajnal StrategyMotivation. In Se
tion 4.2.4 we outlined the Hajnal algorithm, whi
h utilises vertexordering a

ording to the de
reasing values of the 
omponents of the prin
ipal eigenve
-tor of the adja
en
y matrix of the original graph AG. Then a greedy 
olour assignmentto the verti
es assures that an upper bound of the number of 
olours is used. Thisbound is the prin
ipal (the largest) eigenvalue λmax. This strategy was extended by theauthor in the UC Merge Framework, taking advantage of the Binary Merge Squares,be
ause they are the adja
en
y matri
es of the appropriate quotient graphs. After amerge, we employ the strategy for the result Merge Square, and 
ontinue in the samefashion as long as a merge is still possible. The Gers
hgorin disk theorem [64; 149℄ andthe bound λmax ≤ ∆ give the same upper bound for the prin
ipal eigenvalue, whi
his the maximum degree in a graph. In this 
ase it is a quotient graph, whi
h is also asimple graph like the original graph. Hajnal strategies improve the upper bound betterthan the Welsh-Powell 4.2.3 strategy does. This bound has been improved still furtherby the author in the Merge Models.Improvement. In the Binary Merge Square model, 
onse
utive merges 
ontra
t theoriginal graph G to quotient graphs until the 
omplete graph Kk is rea
hed, where
k ≤ |VG| and no further merges are possible. Kk is a k−regular graph, hen
e itsprin
ipal eigenvalue λmax(Kk) = k − 1 (see [46℄). Moreover, we may suppose thatthe minimal degree satis�es the 
onstraint k − 1 ≤ δG. Otherwise, apply a low degreevertex removal5 (see 3.4). A

ording to [45℄, the following holds: δG ≤ λmax(G), fromwhi
h we 
on
lude that λmax(Kk) = k− 1 ≤ δG ≤ λmax(G). The prin
ipal eigenvalueof a �nal Binary Merge Square must be not greater than the prin
ipal eigenvalue of theoriginal adja
en
y matrix. Thus

λmax(Kk) ≤ λmax(G) (9.18)The di�eren
e between the value of the left hand and right hand side of Eq. 9.18 
an4k − 1 is the sum of ea
h row in a �nal Binary Merge Square.5A vertex removal does not in
rease λmax [45℄.



9.4 Extension of non-merge based strategies 77be large 6. So that the appli
ation of the Hajnal strategy with the Binary Merge Squaremodel 
an signi�
antly redu
e the upper bound of this strategy in an intermediatequotient graph, whi
h resides between G and Kk. The experimental results in Se
tion11.3 show this improvement in pra
ti
e. To illustrate the relationship between theverti
es and the 
omponents of an eigenve
tor, take the eigenvalue-equation Ax̂ = λx̂.It is reasonable to denote the eigenve
tor by 'hat' (x̂), be
ause it is the basis of the row
hoi
e probability ve
tor, but it should be normalised by its largest element. Now letus 
onsider the fourth 
omponent x̂4 of an eigenve
tor x̂ and examine the eigenvalue-equation; namely A4x̂ = λx̂4. The A4 de�nes the neighbours of the v4 verti
es and
A4x̂ sums the eigenve
tor 
omponents related to the neighbours of v4, enlarging the
x̂4 by λ. Figure 9.4 shows how the eigenve
tor 
omponents are related to ea
h otherin a graph.

v1

v2

v3
v4

v5

v6

x3 = 0.548

x1 = 0.475

x2 = 0.358

x6 = 0.448

x5 = 0.256

x4 = 0.282

λmax · 0.282 = 0.548 + 0.256

Figure 9.4: The prin
ipal eigenve
tor 
omponents 
orrespond to graph verti
es. Hereto the solid thi
k lines denote the eigenve
tor 
omponents, while the thin lines are theedges. The arrows graphi
ally represent the relationship λmaxx̂4 = A4x̂max = x̂3 + x̂5.Take the graph G in Figure 9.4 as an example and sort the vertex identi�ers of G inde
reasing order, a

ording to the 
omponents of the prin
ipal eigenve
tor of G.
v̊3 v1 v6 v2 v4 v̊5

x̂max = (0.548 0.475 0.448 0.358 0.282 0.256)
(9.19)The vertex v3 gets the highest 
omponent value in the sorting, but the only mergeableverti
es are v5 and v3, ea
h being marked by a ring in Eq. 9.19. After merging v3 and

v5 and again 
al
ulating the prin
ipal eigenve
tor for the resulting quotient graph, weget the following:
{v3, v5} v̊1 v2 v6 v̊4

x̂max = (0.582 0.523 0.412 0.217 0.256)
(9.20)Figure 9.5 shows the resulting graph of the merge {v3, v5}, where the λmax value isredu
ed from 2.853 to 2.685. Hen
e, the upper bound is de
reased. The {v3, v5}vertex is adja
ent to all the other verti
es, hen
e v1 must be sele
ted next. Its onlynon-neighbour vertex is v4. So both are designated for the next merge. As it standsthis strategy does not work with Merge Tables. However, there is a way to extend it.6The di�eren
e between the δG and d̄G values may be large and λmax(Kk) ≤ δG ≤ d̄G ≤ λmax(G)(see [45℄).
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v1

v2

v4

{v3, v5}

v6

Figure 9.5: A quotient graph produ
ed by the Extended Hajnal strategy.Take the prin
ipal, the largest singular value σmax(M) of a Merge Matrix M and the
orresponding left singular ve
tor 
alled the prin
ipal left singular ve
tor. In the 
ase ofa symmetri
 matrix (like a Merge Square), singular values are eigenvalues and singularve
tors are eigenve
tors, respe
tively. Merge Tables are not square matri
es7, but theprin
ipal left singular ve
tor 
an be used to determine an order of the rows, mu
h likethat for Merge Squares.De�nition 9.2 (Extended Hajnal strategies) Extended Hajnal strategies are thosestrategies whi
h are de�ned by a Merge Model in a Merge Framework using the �rstleft singular ve
tor 
hoi
e strategy. The left singular ve
tor 
omponents are asso
iatedwith the verti
es. A higher value means a higher 
han
e for sele
tion of the row in thenext merge.Vertex ordering strategies like the Hajnal strategies 
orrespond to either the UC or CUMerge Framework. There must be two row 
hoi
e probability fun
tions de�ned in bothframeworks based on possible row 
hoi
es.The row 
hoi
e probability fun
tion for the UC and CU Merge Frameworks.The 
hoi
e probability ve
tor for 
hoosing either from the 
oloured or un
oloured sub-merge-matri
es 
an be de�ned by the relevant part of the following 
hoi
e probabilityve
tor like so
x =

x̂

κ
, κ = maxi{x̂i} (9.21)Similar to the equations 9.11 and 9.12 a deterministi
 or sto
hasti
 
hoi
e 
an bede�ned.

arg max
i

xs
i s ∈ {col, unc} (9.22)

arg min
i
{|xs

i − rnd} s ∈ {col, unc} (9.23)The row-pair 
hoi
e probability fun
tion 
an be de�ned based on the row 
hoi
e prob-ability fun
tion des
ribed in Se
tion 9.2.The row-pair 
hoi
e probability fun
tion for the UC and CU Merge Frame-works. If x̂ is the left prin
ipal singular ve
tor, then the 
omponents of the 
hoi
e7Ex
ept for the zeroth Merge Table, whi
h is the adja
en
y matrix of the original graph.



9.5 Spe
tral Norm � 2−norm Strategy 79probability matrix xij are de�ned for the Extended Hajnal strategy, namely
xij =

{

x̂ν
i ·x̂

1−ν
j

κ
(1−Mij) i 6= j

0 i = j
(9.24)Note that every x̂i is non-negative due to the prin
ipal eigenve
tor Perron-Frobeniusproperty [140℄.9.5 Spe
tral Norm � 2−norm StrategyMotivation. The Hajnal heuristi
 (see Se
tion 4.2.4) provide an upper bound for thenumber of 
olours used in a 
olouring. The bound is equal to the prin
ipal eigenvalue,whi
h de�nes the spe
tral norm of the adja
en
y matrix. Unfortunately, the prin
ipaleigenvalue may be far away from the 
hromati
 number, as mentioned in Se
tion 3.4.Therefore, the Extended Hajnal strategy (Se
tion 9.4.2) tries to exploit the fa
t thatmerges 
an bring a de
rease in the eigenvalue in the 
ase of Binary Merge Squares. First,let the Merge Matrix be a Binary Merge Squares. Then applying the Hajnal strategyafter a merge, the upper bound should de
rease until the pro
ess gets to the �nalMerge Matrix. A �nal Merge Matrix represents a 
omplete graph Kk on k−verti
es.The prin
ipal eigenvalue is k−1 in this 
ase be
auseKk is (k−1)−regular, as mentionedin Se
tion 9.4.2. The 
hromati
 number is the smallest among the possible k-s, i.e. Kχis the smallest 
omplete graph whi
h 
an be produ
ed by a merge sequen
e. Therefore,

χ − 1 is the smallest prin
ipal eigenvalue whi
h 
an be a
hieved. Exploiting thisobservation, the author introdu
ed a steepest des
ent spe
tral norm strategy in [101℄.The spe
tral norm strategy sele
ts two rows from the Merge Matrix whi
h 
an minimisethe spe
tral norm of the resulting Merge Matrix. Figure 9.14(a) shows how the spe
tralnorm evolves in the intermediate Merge Matrix 
ases. There are random 
olourings andan optimal 
olouring of a 20−
hromati
 graph. Moreover, the �gure 
ontains the valuesasso
iated with the spe
tral norm minimisation strategy. Here 24 
olours are used inthe 
olouring pro
ess by the strategy, while random 
olouring uses over 36 
olours. Toget a k−
olouring, |VG| − k merge steps are ne
essary. Therefore, the 
urves of Figure9.14(a) never rea
h |VG| = 200, but they were extended to get a better insight intohow the �nal 
olouring is realised. Here, not just the Binary Merge Squares approa
h
an bene�t from this strategy. The spe
tral norm is de�ned by the prin
ipal singularvalue σmax, hen
e it 
an be applied to non-square matri
es as well. Thanks to thisfa
t, the strategy works with Binary Merge Tables as well. Furthermore, the spe
tralnorm is equivalent to the indu
ed 2−norm [69; 89℄, thus
‖M‖2 = σmax(M) (9.25)The row-pair 
hoi
e probability fun
tion for the CC Merge Frameworks.Using Eq. 9.25, de�ne the row-pair 
hoi
e probability fun
tion of the steepest des
ent



80 Merge Strategiesspe
tral norm strategy by ‖ · ‖2 like so
xij =

{

κ
‖M/ij‖2

(1−Mij) i 6= j

0 i = j
(9.26)Here M/ij represents the Merge Matrix, whi
h is derived from the Merge Matrix M bymerging the i−th and j−th rows, while Mij is the (i, j)−th 
omponent of the matrix.The 
onstant κ is a normalisation 
onstant that prevents the values from getting toosmall. Note that for the Integer Merge Matri
es the strategy must be the opposite.Sin
e they keep all the original edges, the values of the entries in
rease when the sizeof the matrix de
reases. Be
ause 1√

n
‖M‖∞ ≤ ‖M‖2 (see [69℄), the in
reasing valueof the spe
tral norm will de�ne the strategy.The row 
hoi
e probability fun
tion for the UC and CU Merge Frameworks.The spe
tral norm strategy like other row-pair 
hoi
e strategies 
an work in the UC andCU Merge Frameworks as a se
ond row 
hoi
e strategy. When an arbitrary strategy se-le
ts a row from the un
oloured sub-merge-matrix, it designates a row ve
tor from the
hoi
e probability matrix whi
h satis�es Eq. 9.26. The se
ond row sele
tion from the
oloured sub-merge-matrix 
an be done by the steepest des
ent spe
tral norm 
hoi
ealong the designated row ve
tor of the 
hoi
e probability matrix.The strategy must generate trial matri
es like M/ij in order to get the appropriate
hoi
e probability values whi
h 
onstitute the 
hoi
e probability matrix. However, thestrategy needs to make as many 
al
ulations as the number of mergeable row-pairs.After a merge the number of mergeable elements is redu
ed, hen
e the generation ofthe 
hoi
e matrix speeds up. Nevertheless, the 
al
ulation of the prin
ipal eigenvalue
an be done e�
iently [69℄. In pra
ti
e, the 
al
ulation is problemati
 with large graphs.Fortunately, there are suitable te
hniques available to get a good approximation of thevalue for the spe
tral norm [123℄. This approximation helps speed up the 
al
ulationof the 
hoi
e probability values, be
ause the update te
hnique of Se
tion 9.3 
an beutilised.9.6 Spe
tral norm approximation strategiesMotivation. The spe
tral norm strategy must �rst make several trial merges. Withthe resulting trial merge matri
es, the spe
tral norm strategy makes spe
tral norm
al
ulations to 
reate a suitable row-pair 
hoi
e probability fun
tion. Cal
ulating thespe
tral norm of the M/ij is 
omputationally expensive, but Merikoski and Kumar on
eintrodu
ed an e�
ient spe
tral norm approximation in [123℄. Based on their results,the author [101℄ adapted his spe
tral norm strategy to an approximated spe
tral normstrategy, whi
h produ
ed e�e
tive 
al
ulations of the 
hoi
e probabilities, where theapproximation 
an be given by the entries of the Merge Matrix. Let M = A be a



9.6 Spe
tral norm approximation strategies 81Binary Merge Square then
‖A/ij‖2 ≈

√

∑l
r=1

〈

(A/ij)r, e
〉2

l
(9.27)where l is the number of rows of the Merge Matrix A/ij . 〈(A/ij)r, e〉2 is the square ofthe r-th row sum, whi
h may be repla
ed by 〈(A/ij)r, (A/ij)r〉2 in the 
ase of BinaryMerge Matri
es. Sin
e Merge Tables are non-symmetri
 matri
es8, the symmetri


T/ijT
T
/ij must be applied9 in Eq. 9.27 instead of T/ij . This leads to an approximationof the square of the spe
tral norm of M/ij . Note that Eq. 9.27 must be applied for theMerge Matri
es produ
ed by trial merges in order to get 
hoi
e probability values (seeEq. 9.26), but a dire
t 
al
ulation of these values is also possible, as des
ribed below.The row-pair 
hoi
e probability fun
tion for the CC Merge Framework. Thespe
tral norm strategy makes as many trial merges as the number of 
hoi
e probabilitiesrequired for the de
ision. The author, improving on earlier results, introdu
ed a 
hoi
eprobability 
al
ulation without applying any trial merges. The 
hoi
e probabilities are
al
ulated dire
tly, using just the Merge Matrix entries. Owing to this, this strategy
an exploit the update me
hanism of Se
tion 9.3, whi
h is not present in the originalspe
tral norm strategy (Se
tion 9.5).In the 
ase of an Integer Merge Matrix M a dire
t 
al
ulation of the xij 
hoi
e proba-bility values for the i-th and j-th rows is performed using the formula

‖M/ij‖2 ≈

√

∑

r 6=i,r 6=j 〈Mr, e〉2 + (〈Mi, e〉+ 〈Mj , e〉)2

l
(9.28)where l is the number of rows of the 'trial' Merge Matrix M/ij . After merging rows

i and j of M , the row sums do not 
hange in the resulting M/ij , ex
ept for the i-th and j-th rows: Mi and Mj , whi
h will 
hange as follows: (M/ij)i = Mi + Mjand (M/ij)j = 0. Therefore, the i−th row sum will be 〈Mi, e〉 + 〈Mj , e〉, while the
j-th row sum will be zero. With a Binary Merge Matrix M , this situation is a bitmore 
ompli
ated be
ause the pie
ewise or operation results in 1-s for the 
ommon 1values. That is, if (M/ij)ir = 1 and (M/ij)jr = 1 then they result in the merged row
(M/ij)ir ∨ (M/ij)jr = 1. Figure 9.6 shows a typi
al example for the 
ase of a BinaryMerge Table and Square as well. Let I be an index set, the set of the 
ommon onepositions of the rows Mi and Mj . In this example it is I = {4, 6} (see Figure 9.6).Let M = A be a Binary Merge Square, the 
hanges in the row sums after the row Ai8Ex
ept for the initial Merge Table, whi
h is the adja
en
y matrix.9A
tually, this form may be suitable for Merge Squares as well, but 
auses extra 
omputation e�ort,hen
e in this 
ase it is not re
ommended.



82 Merge Strategiesis merged into Aj 
an be summarised as follows
〈

(A/ij)i, e
〉

= 〈Ai, e〉+ 〈Aj , e〉 − 〈Ai, Aj〉
〈

(A/ij)j , e
〉

= 0
〈

(A/ij)r, e
〉

= 〈Ar, e〉 − 1 r ∈ I
〈

(A/ij)r, e
〉

= 〈Ar, e〉 r /∈ I ∪ {i, j}

(9.29)Here A/ij denotes the Merge Matrix after merging the i-th and j-th rows. The i-th rowand j-th row must be added, hen
e their sums are added, but the sum of the 
ommonrow positions 〈Ai, Aj〉 must be subtra
ted, due to the or operation. Besides these
hanges, based on a merge of the two appropriate 
olumn, the row sums are 
hangedby −1 in the I positions. Note that the merge 
ondition Aij = Aji = 0 ensures thatthe index set I will never 
ontain i and j indi
es.
4. 6.

· 1 1 · · 1
1 · 1 · · ·

∗ 1 1 · 1 · 1
· · 1 · 1 ·

∗ · · · 1 · 1
1 · 1 · 1 ·

=⇒

∗ ∗
· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· · 1 · 1 ·
· · · 0 · 0
1 · 1 · 1 ·

=⇒

· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· 1 1 · 0 ·
· · · 0 · 0
1 1 1 · 0 ·Figure 9.6: The ∗ rows and 
olumns are assigned for a merges. The left matrix is theinitial Merge Matrix, namely the adja
en
y matrix. The middle is a Binary Merge Tableafter merging ∗ rows. The right is a Binary Merge Square, after merging ∗ 
olumns.Common ones and their amendments are shown in bold. The 
ommon one positionsare I = {4, 6}.For a Binary Merge Table T the approximation may be performed using the symmetri


T/ijT
T
/ij matri
es, where the results of the approximations are the squares of the spe
tralnorm values. Nevertheless, an alternative e�
ient strategy 
an be the appli
ation ofEq. 9.27 for T only. Sin
e just the rows are merged in the 
ase of Merge Tables,the 
olumns remain una�e
ted (see Figure 9.6). The 
hanges in the row sums aftermerging the i-th and j-th rows may be represented by the following

〈

(T/ij)i, e
〉

= 〈Ti, e〉+ 〈Tj , e〉 − 〈Ti, Tj〉
〈

(T/ij)j , e
〉

= 0
〈

(T/ij)r, e
〉

= 〈Tr, e〉 r /∈ {i, j}
(9.30)In the 
ase of Integer Merge Tables, the 
omponent −〈Ti, Tj〉 must be removed fromthe 〈

(T/ij)i, e
〉 
al
ulation, be
ause the Merge Operation is the addition operation,while the others sums remain the same.Remark. The row 
hoi
e probability fun
tion values are generated in the same wayas that des
ribed in Se
tion 9.5. Kumar and Merikoski in [123℄ o�er more sophisti
atedapproximations for the spe
tral norm whi
h 
an be utilised as well. Noti
e that the



9.7 Dot Produ
t (entrywise norm) Strategy 83
omponents of this strategy 
ontain row sums like those in the Welsh-Powell method,but here all the row sums are taken into a

ount in a row-pair sele
tion. Moreoverthese row sums 
orrespond to a Merge Matrix whi
h is derived from the a
tual MergeMatrix by a merge. However, there may be rows whi
h remain un
hanged. Also noti
ethat in the binary 
ases, the dot produ
t of the two rows also have an in�uen
e on thesele
tion. The dot produ
t in the strategy takes the relation of the rows into a

ountas well as their individual properties, like a row sum. The bigger the dot produ
t value,the greater the de
rease in the row sum. The following strategy fo
uses on an analysisof the observed relation between the two rows.9.7 Dot Produ
t (entrywise norm) StrategyMotivation. As we saw earlier, the number of rows in a �nal Merge Matrix de�nesthe number of 
olour 
lasses used in the 
olouring problem. Hen
e the aim is to redu
ethe number of the rows as mu
h as possible in order to have as few 
olours as possible.The non-zero elements, the edges 
an only prevent the further redu
tion of the rows.Sin
e merges result in 
hanges in the number of non-zero elements, this strategy keepsthe number of edges as low as possible in the intermediate Merge Matrix stage. Toa
hieve this goal, two rows must be 
hosen whose merge redu
es the highest numberof non-zero elements in the Merge Matrix. Figure 9.7 shows an example.
· 1 1 · · 1
1 · 1 · · ·

∗ 1 1 · 1 · 1
· · 1 · 1 ·

∗ · · · 1 · 1
1 · 1 · 1 ·

=⇒

· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· · 1 · 1 ·
· · · 0 · 0
1 · 1 · 1 ·Figure 9.7: A merge of the ∗ rows 
auses the greatest redu
tion in the number ofnon-zero elements. The �gure shows this redu
tion in a Binary Merge Table.It leads to the re
ognition that those rows whi
h have the maximal number of 
ommonnon-zero elements should be 
hosen for a merge. In the adja
en
y matrix, 
ommonnon-zero entries in two rows mean 
ommon neighbours of the 
orresponding verti
es.This strategy was introdu
ed in [97℄ by the author. The strategy with various MergeFrameworks was analysed by Juhos et al. in [98�101℄. The results of the analysis willbe presented in Chapter 10.The row-pair 
hoi
e probability fun
tion for the CC Merge Framework. Ades
ription of this 
hoi
e strategy by merge matri
es will help keep the de�nition simple.First let M be a Binary Merge Table or Merge Square. The 
ommon non-zeros of therow pairs are provided by the Gram Matrix of M , i.e. MMT , whi
h 
onsists of the dotprodu
ts of the rows. Although the Gram Matrix 
ontains essential information, furtherpro
essing is required to get the mergeable positions be
ause not all positions refer to



84 Merge Strategiesmergeable rows. The 
hoi
e probability matrix is derived from the Gram Matrix, withelements
xij =

〈Mi,Mj〉 [Mij = 0]

κ
(9.31)A 〈Mi,Mj〉 dot produ
t gives the number of 
ommon ones in the two row ve
tors Miand Mj . The normalisation 
onstant κ may be the square of the maximal row sum,be
ause every dot produ
t is non-negative and it must not be bigger than this sum. Abetter 
hoi
e may be the maximal 〈Mi,Mj〉, however. In the 
ase of Binary MergeSquares the 
hoi
e probability matrix 
an be de�ned by a matrix notation, based onEq. 9.32. The only di�eren
e between the latter an Eq. 9.31 is that the [Mij = 0]restri
tion is expressed by a Krone
ker produ
t. The non-edge positions are 'maskedout' by the entrywise produ
t with the adja
en
y matrix of the 
omplementer quotientgraph Ā. Using an entrywise produ
t of matri
es, this Ā is a suitable 
hoi
e be
auseit retains only those positions where Mij = Aij 6= 0, while the others will have a zerovalue.

X =

(

A

(

1

κ
I

)

AT

)

◦ Ā (9.32)The 
hoi
e strategy in the CC Merge Framework is de�ned by
arg max

i,j
xij (9.33)The row 
hoi
e probability fun
tion for the UC and CU Merge Frameworks.The UC and CU Merge Frameworks 
an apply this strategy as well, but the ne
essary
oloured and un
oloured row sets must be kept and the 
hoi
e probability matrix must
ontain additional zero elements to prevent merges between the rows having the samestates, 
oloured or un
oloured, as seen in Figure 9.2. In the UC Merge Frameworkan un
oloured row is 
hosen by an arbitrary strategy, and based on the maximum dotprodu
t values a suitable 
oloured row is sele
ted for the 
hosen un
oloured row.Conne
tion with the entrywise matrix norms. With a Binary Merge Square orTable this strategy 
an be expressed in terms of entrywise norms. A binary merge is thepie
ewise or operation of the rows. Hen
e the number of ones de
reases by the valueof the dot produ
t of two mergeable rows (see Eq. 9.34). In the 
ase of Binary MergeSquares this de
rease is twi
e this amount be
ause the 
olumns are also merged. Thedot produ
t maximisation strategy introdu
es a minimisation in the entrywise 1−norm.To see this, let M be a Binary Merge Table and M/rs be the resulting Merge Tablewhen the maximum dot produ
t strategy is applied, where r and s are the row indi
esof the rows Mr and Ms sele
ted by this strategy (Eq. 9.33). Eq. 9.35 helps explainwhy the norm de
reases.

∣

∣M/rs

∣

∣ =
∑

i6=r,i6=s

∑

j Mij +
(

∑

j Mrj +
∑

j Msj − 〈Mr,Ms〉
) (9.34)

(

∑

i6=r,i6=s

∑

j Mij +
∑

j Mrj +
∑

j Msj

)

− 〈Mr,Ms〉 = |M | − 〈Mr,Ms〉



9.8 Cosine Strategy 85The dot produ
t maximisation introdu
es a minimisation in Eq. 9.34. This minimisesthe entrywise 1−norm in the resulting Merge Matrix, as shown in Eq. 9.35. Hen
e thestrategy 
an be turned into a norm minimisation where two verti
es are 
hosen for amerge whi
h minimises the norm, similar to that in Se
tion 9.5.
arg

(

|M | −max
r,s
〈Mr,Ms〉

)

= arg min
r,s

(|M | − 〈Mr,Ms〉) = arg min
r,s

∣

∣M/rs

∣

∣ (9.35)Sin
e the resulting Merge Matrix is also a {0, 1}−matrix an entrywise 1−norm min-imisation means a minimisation in every entrywise norm. Thus the entrywise 2−norm(the Frobenius norm) is also minimised. The Frobenius norm may be 
al
ulated by theformula
‖M‖ =

√

√

√

√

l1
∑

i=1

l2
∑

j=1

M2
ij =

√

tr(MTM) =

√

√

√

√

min{l1, l2}
∑

i=1

σ2
i (9.36)where, l1 and l2 stand for the dimension of M . This lets us see the strategy fromanother aspe
t. There are di�erent forms of the Frobenius norm (Eq. 9.36). However,they en
ode the same value, but their analysis better explains the prin
iple behind thestrategy. The �rst form gives the sum of the ones in the matrix; that is, the entrywise

1−norm. The se
ond is the sums of the row sums. This 
ontains the maximum rowsum employed separately in the Welsh-Powell strategy, but here it is only a 
omponentof the summation. The last expression represents the summation of the square of the σisingular values, where the prin
ipal singular value is just a 
omponent. Re
all that thespe
tral norm minimisation strategy 
onsiders the prin
ipal singular value only. Boththe spe
tral norm and the dot produ
t strategies try to exploit a norm minimisation ofthe Binary Merge Matri
es. The reason is that a �nal Merge Matrix, whi
h 
orrespondsto an optimal solution, has the minimal norm among the possible merge matri
es whi
hmay 
ome from the adja
en
y matrix, the initial Merge Matrix.Remark. For a Binary Merge Square the third 
oe�
ient −c2 of the 
hara
teristi
polynomial (Eq. 3.13) of a quotient graph also gives the number of edges [9℄; that is,the number of ones in the 
orresponding Merge Table (see Se
tion 3.5). Redu
ing thenumber of non-zero elements 
an be a good heuristi
 to prevent the growth of non-zeroelements whi
h forbid possible merges. However, one 
an 
onsider the zero elementsof the Merge Matrix as well, sin
e they supports the possible merges. Consequentlywe should deal with the ratio of the number of zero and non-zero elements whi
h 
an
hara
terise better our goal.9.8 Cosine StrategyMotivation. The 
osine strategy was introdu
ed by the author in [97℄, who demon-strated the e�
ien
y of the strategy in several experiments [98; 100; 101℄. Following



86 Merge Strategiesthe dot produ
t strategy, it is mainly intended for Binary Merge Models. The dotprodu
t strategy fo
uses on the evolution of the number of non-zero elements duringsu

essive merges and attempts to keep them as low as possible. To a
hieve this goal,the dot produ
t strategy sele
ts those two verti
es for a merge whi
h have the max-imum dot produ
t value. The goal of every Merge Algorithm is to make as manymerges as possible be
ause the number of merges is proportional to the quality of thesolution as outlined in Se
tion 9.7. Though the non-zero elements in a Merge Matrixfrustrate the merges, the number of zeros assist them. Hen
e the 
osine strategy takesthe number of non-zero elements into a

ount, but also 
onsiders the number of zerospresent. It employs the maximum dot produ
t strategy to determine the number ofnon-zero elements in the resulting Merge Matrix after a merge. In order to in
lude thezero elements as well, the 
osine strategy 
on
entrates on the ratio of the zero andnon-zero elements in the resulting Merge Matrix. Therefore in the row-pair 
hoi
e thisstrategy 
ombines the dot produ
t of the two rows with the number of zero elements inthe rows. Two rows are favoured in the sele
tion if they have large dot produ
t valuesand a large number of zero elements.The row-pair 
hoi
e probability fun
tion for the CC Merge Framework. Arow has a large number of zero elements if it has few non-zeros. That is, the number ofnon-zero elements and the number of zero elements are inversely proportional. There-fore, to measure the number of zero elements in a row our strategy takes the re
ipro
alof the sum of a row. The sum of a row is provided by the ve
tor entrywise 1−norm.The re
ipro
al values are multiplied so as to have a 
ommon measure for the numberof zeros of the two rows.
1

|Mi|
1

|Mj|
(9.37)Eq. 9.37 shows one of the 
omponents of our strategy, while Eq. 9.31 shows theother 
omponent, the dot produ
t. The produ
t of these 
omponents form the 
osinestrategy, whi
h takes the non-zeros and zeros into a

ount as well in the row-pairsele
tion. In order to get suitable row-pairs, the produ
t must be maximised. Hen
e,the row-pair sele
tion of the 
osine strategy is

arg max
i,j

〈Mi,Mj〉
|Mi| |Mj |

(9.38)Sin
e Binary Merge Matri
es are {0, 1}-matri
es, the sum of the row elements is equalto the sum of the squares of the elements. Moreover, the square root of the sums doesnot 
hange the sele
tion in Eq. 9.38, hen
e
arg max

i,j

〈Mi,Mj〉
‖Mi‖‖Mj‖

= arg max
i,j

〈Mi,Mj〉
|Mi| |Mj |

(9.39)Where |Mi| provides the sum of the row. Note that the square root of the sum of squareof the elements gives the length of the ve
tor. Based on this observation the row-pair
hoi
e probability fun
tion will be de�ned by the maximum 
osine of two mergeable
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xij =

〈Mi,Mj〉
‖Mi‖‖Mj‖

[Mij = 0] (9.40)Due to the 
osine de�nition, the xij values always lie in the interval [0, 1].The row 
hoi
e probability fun
tion for the UC and CU Merge Framework.The 
osine strategy for the UC and CU Merge Frameworks may be de�ned in a similarway to the dot produ
t strategy. In both 
ases this strategy is appropriate for these
ond 
hoi
e. The 
ondition is that the �rst row sele
tion must be performed byanother strategy, e.g. a greedy one. With the UC Merge Framework, the �rst row issele
ted from the un
oloured sub-merge-matrix, then the other row is sele
ted from the
oloured sub-merge-matrix using the maximum 
osine strategy.Remark. If a vertex is dominated by another vertex, i.e. when the neighbour set ofone of them is a subset of the neighbour set of the other, then they 
an be 
olouredwith the same 
olour in ea
h optimal 
olouring. In our terminology they 
an be mergedtogether before starting a 
olouring algorithm. The most obvious 
ase is when theyhave the same 
ommon neighbours. Then their 
osine value is one. If their neighboursets are slightly di�erent, then their 
osine value will be high. Therefore our 
osineformula appears to be meaningful in a merge pro
ess. A �nal Binary Merge Squareis the adja
en
y matrix of a 
omplete graph. Ea
h row has k − 1 ones, and the dotprodu
t of ea
h pair is (k−2). Thus the 
osine is value is k−1
(k−2)2

. This value is maximalif k is minimal. Hen
e the 
osine strategy for
es us to make k as low as possible; thatis, it for
es us to use as few 
olours as possible, whi
h is the goal of minimal 
olouring.In Se
tion 3.1.3 the zero blo
ks (i.e. independent sets) in the adja
en
y matrix aredis
ussed, whi
h form a solution (see Figure 9.8). Noti
e that the rows, whi
h belongsto a zero blo
k, are almost parallel. The next strategy is based on an optimisationwhi
h 
hanges the zero entries in su
h a way as to get an almost parallel state of theappropriate rows.

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 0 0 0 1 · 1
v6 0 0 0 1 1 1
v4 0 0 0 · 1 1
v1 1 1 · 0 · 1
v5 · 1 1 · 0 0
v3 1 1 1 1 0 0Figure 9.8: Zero blo
ks of the independent sets.



88 Merge Strategies9.9 Zykov-tree and Lovász-theta strategy(enhan
ed 
osine)Motivation. This strategy was introdu
ed for Binary Merge Squares only (for quo-tient graphs) by the author in [94; 102℄ based on the results of the authors of [51; 103;110; 124; 161; 162℄. Merge/
olouring algorithms generate 
hoi
e probability matri
esfor ea
h step of the algorithm run. The matrix values represent probability values basedon the algorithm strategy for how probable the merge of two rows is. A 
olouring ma-trix 
orresponds to a parti
ular 
olouring. It des
ribes whether two verti
es are 
olouredwith the same or di�erent 
olours. Figure 9.9 shows all the optimal 
olouring matri
esof a graph of Figure 2.1. All of them provide an exa
t merge probability matrix, whereverti
es in the same 
olour 
lass have a probability value of one and di�erently 
olouredverti
es have a value of zero. Unfortunately, none of them is available, be
ause theyform the solution of the minimal 
olouring problem. Although they are unavailable,their average 
an be approximated by a semi-de�nite program of Karger et al. [103℄.The optimum of the semi-de�nite program is the so-
alled ve
tor 
olouring number,the Lovász-theta [110℄ (see Se
tion 3.4), but the optimum point is a matrix10 X̂, whi
happroximates the average of the 
olouring matri
es of optimal solutions. It is reason-able to 
all this matrix X̂ be
ause this will the basis of the 
hoi
e probability matrixof the strategy, but the diagonal elements must be set to zero, otherwise they bias thesele
tion.The average of the optimal 
olouring matri
es. The sum of the optimal 
olour-ing matri
es 
ontains very important information about the 
olouring (see Figure 9.9).An element of the sum matrix refers to the number of optimal 
olourings where twoverti
es got the same 
olour. Normalising the values by the number of optimal matri-
es results 
an result in a 
hoi
e probability matrix. The normalisation turns the summatrix into the average matrix of the optimal 
olouring matri
es. In fa
t, the values ofa 
hoi
e probability matrix express the likelihood of the same 
olouring of two verti
es.This 
an be 
hara
terised through the sum matrix. The values of the sum matrix areproportional to the relevant 
hoi
e probabilities. Now let us 
onsider the sum matrixof Figure 9.10. The zeros are still represented by dots, ex
ept for the {v2, v5} position,there being a 0 instead of a dot. The dot positions are edges in the original graph, i.e.there are 1-s in the adja
en
y matrix. Although v2 and v5 are not 
onne
ted, they arenever 
oloured with the same 
olour in optimal 
olourings. Indeed, it is not hard toverify that 
hoosing the same 
olour for them always leads to a non-optimal solution,a 4-
olouring. But v2 and v6 are highly likely to get the same 
olour, be
ause theyshare the same 
olour in all optimal solutions, as des
ribed by X2,6 = 3. Exploitingthis observation, the author designed a Zykov-tree approa
h [161; 162℄. Re
all Se
tion4.3.1, where we introdu
ed the Zykov-tree. Here there are two Zykov-steps, namely
onne
tion or 
ontra
tion of two verti
es. That is, a 1 addition to an appropriateMerge Square or performing a merge of two rows of the Merge Square. This strategy10Rows of the matrix form the so-
alled ve
tor 
olouring of the 
orresponding verti
es of the graph.
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v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 1 ·
v5 0 · · 1 1 ·
v3 · · · · · 1

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 · ·
v5 0 · · · 1 1
v3 · · · · 1 1

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 · · 0 ·
v6 1 1 · · · ·
v4 · · 1 1 · ·
v1 · · 1 1 · ·
v5 0 · · · 1 1
v3 · · · · 1 1Figure 9.9: The optimal 
olouring matri
es of 
olourings. Here the rows and 
olumnshave been reordered for the sake of better 
larity.

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 3 3 2 · 0 ·
v6 3 3 2 · · ·
v4 2 2 3 1 · ·
v1 · · 1 3 1 ·
v5 0 · · 1 3 2
v3 · · · · 2 3Figure 9.10: The sum of the optimal 
olouring matri
es of Figure 9.9
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v1

v2

v3

v4

v5

v6

v1

v3

v4

v5

{v6, v2}

v1

v2

v3

v4

v5

v6

G

G + v2v5G/v6v2

Figure 9.11: The Zykov-tree and Lovász-theta approa
h
ombines the solution of a semi-de�nite optimisation of the Lovász-theta [103℄ withthe Zykov-tree approa
h [162℄. The optimisation produ
es an approximation matrix X̂for the average of the optimal 
olouring matri
es. This X̂ matrix may be a suitablebasis for making a row-
hoi
e probability matrix, where two rows of a Binary MergeSquare are merged if their row-pair 
hoi
e probability in X̂ is the largest. Furthermore,they are 
onne
ted by an edge if their row-pair 
hoi
e probability in X̂ is the smallestand they are mergeable. An example of this 
an be found in Figure 9.11, where twoZykov steps are performed by the sum matrix of Figure 9.10. To de�ne the strategymore pre
isely, we need to examine the approximation method of Karger et al. [103℄.An approximation of the average of the optimal 
olouring matri
es. Takean optimal 
olouring matrix example Xopt from Figure 9.9. This example is also shownin Figure 9.12(a). A 
olouring matrix X̃ is symmetri
 (X̃ = X̃T ) and positive semi-de�nite (X̃ � 0), as shown in Se
tion 3.1.4. In addition, x̃e = 0 ∀e ∈ E; that is,a 
olouring matrix must have 0−s in the edge positions where the adja
en
y matrixhas 1−s. Now de
ompose the example 
olouring matrix as follows: Xopt = LLT , e.g.applying an In
omplete Cholesky De
omposition [69℄. This is possible thanks to thesymmetri
 and semi-de�nite properties of the 
olouring matri
es. If Xopt is an n × nmatrix, then the rows of L des
ribe n sets of unit length ve
tors. However, some ofthese ve
tors may be the same (Figure 9.12(b)). Here, Xopt 
ontains the dot produ
tsof the unit length ve
tors, i.e. the 
osines of the angles of these ve
tors. Noti
e thatthe ve
tors in the de
ompositions de�ne the 
olour assignments (ci, vi), where ci is the
i−th 
olour and vi is the i−th ve
tor. Finding an optimal 
olouring matrix is equivalentto �nding an optimal 
olour assignment that minimises the number of 
olours k usedin a proper 
olouring. One approa
h is to sear
h the spa
e of 
olouring matri
es, wherethe number of 1−blo
ks is to be minimised among all possible arrangements. Karger et
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v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 1 ·
v5 0 · · 1 1 ·
v3 · · · · · 1(a) Xopt

v1 v2 v3 v4 v5 v6

c1 1 · · · · ·
c2 1 · · · · ·
c3 1 · · · · ·
c4 · 1 · · · ·
c5 · 1 · · · ·
c6 · · 1 · · ·(b) LFigure 9.12: An optimal 
olouring matrix example Xopt and its de
omposition L intounit length ve
tors, where Xopt = LLT .al. turned the problem into an integer optimisation problem (see Eq. 9.41), where thenumber of 
olours k 
an be handled expli
itly by retaining the positive semi-de�nitenessproperty of the transformed matrix [103℄. That is

χ = min
k
{k : kX̃ − J � 0, X̃ : 
olouring matrix} (9.41)Here J is the matrix with all one elements and the minimisation is performed amongall X̃ 
olouring matri
es, and k is integer-valued. For the example 
olouring matrix

Xopt (Figure 9.12(a)), the reformulated problem is shown in Figure 9.13 along with thenormalisation fa
tor 1
k−1

.
v2 v6 v4 v1 v5 v3

v2 k − 1 k − 1 k − 1 −1 −1 −1
v6 k − 1 k − 1 k − 1 −1 −1 −1
v4 k − 1 k − 1 k − 1 −1 −1 −1
v1 −1 −1 −1 k − 1 k − 1 −1
v5 −1 −1 −1 k − 1 k − 1 −1
v3 −1 −1 −1 −1 −1 k − 1(a) kXopt − 1

v2 v6 v4 v1 v5 v3

v2 1 1 1 −1
k−1

−1
k−1

−1
k−1

v6 1 1 1 −1
k−1

−1
k−1

−1
k−1

v4 1 1 1 −1
k−1

−1
k−1

−1
k−1

v1
−1
k−1

−1
k−1

−1
k−1

1 1 −1
k−1

v5
−1
k−1

−1
k−1

−1
k−1

1 1 −1
k−1

v3
−1
k−1

−1
k−1

−1
k−1

−1
k−1

−1
k−1

1(b) kXopt−1

k−1Figure 9.13: Reformulations of the optimal 
olouring matrix Xopt.A de
omposition of Figure 9.13(b) des
ribes 3 sets of unit length ve
tors. The 
osinevalues of their pairwise angles are −1
k−1

. The smaller the k, the larger the angle. Theminimum is k = χ. That is, for a 3−
hromati
 graph (where χ = 3) the angle is 120◦.This suggests an angle maximisation problem here. Eq. 9.41 just leads to an equivalentoptimisation problem of the original minimal 
olouring problem. It attempts to �nd the
olour assignment in an integer {0, 1} ve
tor spa
e in a

ordan
e with Figure 9.12(b).Hen
e �nding a solution requires as mu
h e�ort as �nding a solution when the problemis stated in the original form. Karger et al. following the observation of an anglemaximisation, formulated a relaxed version of Eq. 9.41. This results in an e�
ient wayto approximate the average of the optimal 
olouring matri
es. In the relaxed problem



92 Merge Strategiesthe {0, 1} integer-valued feature of the X̃ is not required. However with the 
onstraints,the edges must be 
ontained in the relaxed model as well, and a de
omposition of thematrix no longer des
ribes unit ve
tors in an n−dimensional spa
e. Nevertheless, it isreasonable to retain their unit length. Karger et al. also provided a relaxed problem in[103℄. Their semi-de�nite optimisation program formulation is en
apsulated by
θ̄ = min

t
{t : tX̃ − J � 0, x̃ii = 1, x̃e = 0 ∀e ∈ E} (9.42)where x̃ii = 0 guarantees the unit length of the ve
tors in the de
omposition, x̃e = 0makes the appropriate edge 
onstraints 
onform to the adja
en
y matrix 1−s and t isa real-valued number. Solving the optimisation problem of Eq. 9.42 here makes useof the Lovász-theta number θ̄ introdu
ed by Lovász in [110℄. Se
tion 3.4 des
ribes animportant property of the θ̄ number, namely ω ≤ θ̄ ≤ χ. That is, the value is alwaysa lower bound for the 
hromati
 number, but an upper bound for the 
lique number.The optimum point, a semi-de�nite matrix, is the average of the optimal 
olouringmatri
es. A semi-de�nite optimisation solver 
an arbitrarily approa
h the optimum ofEq. 9.42, [103℄ providing an approximation for the average of the optimal 
olouringmatri
es. The standard semi-de�nite problem for Eq. 9.42 
an be written down byintrodu
ing the matrix Z = tX̃ − J :

θ̄ = min
t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E} (9.43)Let us denote the result of the optimum point of this Eq. 9.43 by Zopt. Noti
e that

Zopt matrix must 
ontain −1-s in the edge positions, where the adja
en
y matrix has
1-s and the optimal 
olouring matri
es have 0-s.The row-pair probability fun
tion for CC Merge Frameworks. Take Zopt+1 toget zeros in the edge positions and set the main diagonal to zero, to get an appropriatebasis for the 
hoi
e probability matrix, i.e. Ẑ = (Zopt + 1) ◦ (1 − I), where (1 − I)entries are all ones ex
ept along the main diagonal, where it has zeros. The author in[94; 102℄ applied the values of the normalised Ẑ matrix as a row-pair probability 
hoi
ematrix in the CC Merge Framework. The normalisation whi
h 
onforms to Eq. 9.2 is

X =
Ẑ −min Ẑ

max Ẑ −min Ẑ
(9.44)The values of the Ẑ matrix measure the 
olour similarity of the verti
es and the matrixmust 
ontain 0-s in the edge positions; that is, the 0-s express dissimilarities. In addition,there 
an be negative values, therefore it is reasonable to apply a Zykov 
onne
tionstep for the appropriate verti
es whi
h 
orrespond to the smallest negative value orthe negative values leading to two sub-types of the strategy. Hen
e, the author addededges to ea
h su

essive Binary Merge Square that is generated by a merge step in thefollowing way. Take those (i, j) row-pairs for whi
h Ẑij < 0 is minimal (or Ẑij < 0)and 
onne
t them by an edge. That is, pla
e a 1 in the relevant position of the
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en
y matrix. Moreover, merge those two rows for whi
h Xij and hen
e Ẑij ismaximal. These operations are repeated for ea
h intermediate Merge Square; that is,the adja
en
y matrix for ea
h su

essive quotient graph. However, sin
e Eq. 9.44 is asuitable 
hoi
e probability matrix, Ẑ 
ontains some more information to speed up therunning time. Ẑii approximates θ̄ at the end of the optimisation. Learning somethinguseful from the sum matrix stru
ture of Figure 9.10, it is reasonable to merge not onlythe largest, but other rows as well whi
h have large 
hoi
e probability values. It meansthat one optimisation of Eq. 9.43 
an result in more than one merge. That is, duringa merge sequen
e, fewer semi-de�nite optimisations are required. Based on preliminaryresults, the author applied Ẑij > 0.5θ̄ in [94; 102℄.Parallel rows. In an optimal 
olouring matrix, those verti
es whi
h have parallelrows in the 
olouring matrix must be get the same 
olour. A row of a 
olouring matrixdes
ribes an exa
t 
olour similarity of the relevant vertex with the other verti
es. A rowof the average 
olouring matrix, and hen
e the 
hoi
e probability matrix of Eq. 9.44,des
ribes only an approximated 
olour similarity with the other verti
es. If two rows ofthe 
hoi
e probability matrix are parallel, then the two relevant verti
es have the samerelation to the others and they should be in the same 
olour 
lass. Therefore 
osinemaximisation is a reasonable strategy for merging two rows. Moreover, the −Zoptmatrix has 1-s in the same positions as the adja
en
y matrix, hen
e this observation isin agreement with the Cosine strategy of Se
tion 9.8.Improvement. Karger et al. [103℄ showed that in general, the average of the optimal
olouring matri
es is not a suitable way to get an optimal 
olouring. However, theywere able to design a 
lustering algorithm whi
h produ
es a semi-
olouring where atmost the quarter of the edges are 
oloured improperly. Based on the semi-
olouringalgorithm design in Lemma 3.1.1, they obtained the best known worst 
ase in
ludingthe �rst non-trivial bound. They were able to 
olour k−
olourable graphs with at most
min{O(n1−3/(k+1)),O(∆1−2/k)} 
olours, where n = |VG| and ∆ is the largest degree.During the merges n de
reases and, in a

ordan
e with Se
tion 9.4.1, ∆ may de
reaseas well. Therefore it is reasonable to apply the average of the optimal 
olouring matri
eswith the merge approa
h.9.10 Merge PathsCertain graph properties are evaluated during the sele
tion of two rows for a MergeOperation, impli
itly or expli
itly. E.g. an expli
it dot produ
t maximisation strategymeans an impli
it norm minimisation. The author de�ned a general Merge Strategyusing these properties (see Juhos et al. [101℄). Here, an analysis of a supposed mergee�e
t is performed. First, gather those graph properties into a ve
tor whi
h form thebasis of the de
ision (e.g. spe
tral norm, i.e. the largest eigenvalue). One 
an takeother eigenvalues as well to examine their evolution in the intermediate merge matri
esduring a merge sequen
e. Denote this ve
tor by ξ. Determine whi
h values are knownin advan
e for the �nal merged graph. It is important to know these values be
ausethey will be the goal of this reformulated problem. Next, 
ompute ξM [0] and ξM [n−k],



94 Merge Strategieswhere M [0] = AG and M [n−k] = AKk
, the adja
en
y matrix of G and Kk, respe
tively,in the 
ase of Binary Merge Squares. Now the �only� task left is to �nd an appropriatemerge sequen
e whi
h 
orresponds to a path, a Merge Path from ξM [0] to ξM [n−k] inthe ve
tor spa
e indu
ed by ξM [t], where M [t] is an intermediate Merge Matrix in the

t-th step. A Merge Path may be 
hara
terised by the sequen
e
ξM [0], ξM [1], ξM [2] , . . . , ξM [n−k] (9.45)Figure 9.14(b) below shows an example of how the three largest eigenvalues (λ1 ≥ λ2 ≥

λ3) of M [t] form di�erent paths of 20- and 37-
olourings in a three dimensional ve
torspa
e. The start of the path is (λ1, λ2, λ3)M [0]. The path ends at (λ1, λ2, λ3)M [n−k],whi
h are known values in the 
ase of Binary Merge Squares. The �rst value is trivial,be
auseM [0] = AG is given and the last is (k−1,−1,−1), sin
e the �nal merged graph
Gn−k is aKk 
omplete graph on k verti
es, where k is the number of 
olours used in the
olouring11. Hen
e the goal is to get (χ− 1,−1,−1), whi
h 
orresponds to a solution.An analysis of the paths helps us in the 
olouring pro
ess be
ause we 
an identify andfollow the optimal path. Now let us 
onsider a simpli�ed example in one dimensionalspa
e. Take the Binary Merge Square representation A[t] and let ξA[t] = λ1(A

[t]), i.e.the spe
tral norm of A[t]. If we examine the initial Merge Square, we 
an see that
λ1(AG) is greater or equal than λ1(A

n−χ) = χ − 1 (see [153℄). Due to this fa
t thevalue of λ1(A
t) always de
reases with ea
h step, as shown in Figure 9.14(a).
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(a) Spe
tral norm steepest des
ent min-imisation. The ends of the 
urves havebeen extended (horizontal lines). (b) An example 3D Merge Path of the three largesteigenvalues of a graph during a 
olouring.Figure 9.14: Evolution of the eigenvalues along a merge sequen
e. The graph is a
20−
hromati
, equi-partite graph having 200 verti
es with a 0.64 edge density fromthe peak of the phase transition. The spe
tral norm value of the �nal Binary MergeSquare is χ− 1 = 19 in the optimal 
ase, otherwise it is bigger.This path is responsible for determining the 
olouring and the end of the path k − 1de�nes the quality of the 
olouring. Unfortunately, the ideal path (between λ1(A

[0])and χ− 1) is of 
ourse unknown; the task of 
olouring is to �nd this path. A 
olouringpath takes n−k 
olouring steps, that is n−k merges. An optimal 
olouring needs n−χsteps,resulting in the longest step-series, while non-optimal 
olourings have shorter onesas they get stu
k when no more merge are possible, i.e., k > χ. If we 
onsider the11The minimum k is χ.



9.11 Learning and 
lustering Merge Paths 95ideal path, whi
h has the lowest bound and requires the most steps, then it should bebelow every possible non-optimal 
olouring path after a 
ertain point. We 
an de�nea path in advan
e that has this property. A trivial path between the initial point andthe end is a linear path, where λ1(A
[t+1]) is derived from λ1(A

[t]). The di�eren
e
λ1(A

[t+1]) − λ1(A
[t]) should approximate λ1(A[0])−λ1(A[n−χ]))

n−χ
. Non-linear paths 
an bede�ned by an analysis of more 
ompli
ated graph properties and their behaviour. Thisapproa
h 
an be applied to the row-pair 
hoi
e probability values as well where a MergePath may be de�ned by the maximal values of several 
hoi
e probability fun
tions. Inthis 
ase it is not ne
essary to know the end of the path; the only requirement mightbe the 
omponent-wise in
rease of the path 
onstituents. Sin
e ea
h merge brings aMerge Matrix 
loser to a 
andidate solution, the 
hoi
e probability values must providemore 
on�dent 
hoi
es.9.11 Learning and 
lustering Merge PathsThe Merge Path approa
h allows the appli
ation of arti�
ial intelligen
e methods ingraph 
olouring, su
h as instan
e-based learning or 
lustering. Using a training setof graphs a learning algorithm (see Juhos et al. [95℄) 
an learn 
ertain Merge Pathsthat are asso
iated with 
olouring steps (see Figure 9.14(b) or 9.14(a)). A
tually, itis an approximation task, a 
urve �tting. First take a large set of generated graphsas training graphs with similar properties, e.g. 3−
hromati
 equipartite graphs with a
onstant size (see Se
tion 4.1). The approximation12 of their optimal Merge Paths, i.e.that 
orresponds to an optimal merge sequen
e, may provide some useful information.Then this information 
an be used in the algorithm design. Take an unknown graphfrom the same 
ategory, e.g. a 3−
hromati
 and equipartite graph with similar asize. The merges 
an be driven by the approximated learnt 
urve, where we generatethat merge sequen
e whi
h produ
es the 
losest path to the learnt Merge Path 
urve.Another possibility might be when an arbitrary merge sequen
e is performed and thedistan
e is measured between the learnt Merge Path and the Merge Paths generatedby the merge sequen
e. If a distan
e be
omes 
riti
al, ba
ktra
king may be required.When the graph is derived from an unknown sour
e, we do not know its 
ategory. A
ategorisation 
an be supported by 
lustering. Here, several training graph sets mustbe used as the basis for 
lustering. An arbitrary merge sequen
e of the unknown graphmay have a 
hara
teristi
 shape. Hen
e, 
ategorise this Merge Path derived fromone or more arbitrary merge sequen
es using the training graph sets and a 
lusteringalgorithm. Based on the results of the 
lustering, the graph 
an be 
hara
terised e.g.by its 
hromati
 number. Then like the above-mentioned learning task a 
olouring ofthe graph may be performed.9.12 Evolutionary strategiesThis se
tion details un
oloured row-
hoi
e strategies for Merge Tables based on theevolutionary algorithm des
ribed in Se
tion 4.2.712E.g. their average.



96 Merge Strategies9.12.1 Finegrained �tness � the ζ �tnessAn intuitive way of assessing the quality of a permutation of the verti
es π as anun
oloured row 
hoi
e strategy is by 
ounting the number of rows remaining in the�nal Merge Table M . This is the same as the number of 
olours kM used in the
olouring of the graph whi
h needs to be minimised. If we know that the optimal
olouring is χ then we may normalise this �tness fun
tion su
h that g(π) = k(π)− χor we 
an use a lower bound value of χ. This fun
tion gives a rather low diversityin the �tnesses of permutations be
ause it 
annot distinguish between two individualsthat use the same number of 
olours. The author in [96℄ addressed this problem byintrodu
ing a new multiplier. This multiplier is based on the heuristi
 that we wantto eliminate highly 
onstrained rows in order to have a better 
han
e of su

essfulmerges later on. This involves the merging of rows where many 1−s are merged. Let
ζM(π) denote the number of non-zeros in a �nal Merge Table, then the �tness fun
tionbe
omes f(π) = (kM(π)−χ)ζM(π), whereM(π) is the �nal Merge Table 
orrespondingto the π permutation and a greedy merge/
olouring s
heme (see Se
tion 10.1.1). Thisapproa
h follows the entrywise norm optimisation of a Merge Table de�ned in Se
tion9.7.9.12.2 Di�
ulty guided mutationThe evolutionary algorithm of Se
tion 4.2.7 applies swap mutation as one of its varia-tional operations. The author in [96℄ introdu
ed a modi�ed swap mutation. It always
hooses the last merged row, whi
h has few zero elements, and for
es it to have anearlier position in the permutation in order to get a 
olour earlier. To a

omplish this,it 
hooses at random a previous row identi�er for a swap. The idea behind it is thatthese last merged rows are the most di�
ult to merge. The last rows are usually sparseones, whi
h have few non-zero elements. Though this strategy is simple, it a
tuallyproved quite useful in our experimental analysis in Se
tion 10.2.2.9.13 SummaryIn this 
hapter we introdu
ed several Merge Strategies whi
h may be 
ombined with aMerge Framework based on a Merge Model (see 
hapters 8 and 7). These strategiesde�ne the merging/
olouring steps in an algorithm. Their motivation and analysis areprovided, and a 
onne
tion between them was also dis
ussed. Due to the matrix-basedMerge Models the strategies whi
h apply them 
an be interpreted via di�erent matrixproperties su
h as matrix norms. Taking various matrix properties into a

ount, weprovided a new approa
h for the algorithm design, namely the Merge Path approa
h.We also showed that this approa
h allows one to apply ma
hine learning and 
lusteringmethods for graph 
olouring.Merge Strategies with di�erent Merge Models and Merge Frameworks may result indi�erent 
olouring algorithms. The next se
tion des
ribes possible 
ombinations withexperimental studies.



Chapter 10
Merge AlgorithmsThis 
hapter 
ombines Merge Frameworks of Chapter 8 with the Merge Strategies ofChapter 9 to form a Merge Algorithm. The 'suitable models' se
tion will des
ribewhi
h Merge Model supports the implementation of the algorithm in question. M willstand for a suitable Merge Model in the des
ription, where Munc is the un
oloured partof the Merge Matrix 
onsisting the un
oloured rows, while M col 
ontains the 
olouredrows, as outlined in Se
tion 7.2.Existing algorithms 
an be expressed in a Merge Framework using one of the MergeModels. Ben
hmark algorithms of Se
tion 4.2 as well as novel algorithms based onthe strategies de�ned in Chapter 9 will be also des
ribed in this 
hapter. Des
riptionin a 
ommon way supports a stru
tural analysis, and a fair performan
e 
omparison.Se
tion 4.1 de�nes various ben
hmark graphs whi
h form the basis of the 
omparisonof the novel algorithms of the author [94; 96�102℄ with the ben
hmark versions. Sin
ethe 
hoi
es in the detailed algorithms are deterministi
, just the unnormalised values ofthe 
hoi
e probability fun
tions will be 
onsidered.The following tokens will be used as abbreviations: bmt, imt, bms and ims, wherethe b means 'binary', the i means 'integer'; the m is asso
iated with 'merge', t and sstand for 'table' and 'square', respe
tively. Thus bmt means the 'Binary Merge Table'model. If a Merge Model should be emphasised in the notation of a framework, thenthe appropriate token appears on the top of the UC, CU or CC framework identi�ers,e.g. bmt

UC. Similar to Se
tion 4.2, the [.] operation makes a ve
tor from the elements of aset, taking a natural order. Re
all the sub and 
o-stru
tures introdu
ed in Se
tion 7.2,whi
h are the appropriate sums of the rows or 
olumns of the relevant merge matri
esdenoted by µ. In the UC and CU Merge Frameworks the un
oloured and 
oloured partsof µ should be distinguished by the un
oloured and 
oloured sub-merge matri
es: µuncand µcol. Without unc or col indi
es, it belongs the whole Merge Matrix. There arefour µ−s for ea
h submatrix: left, right, top and bottom. Right µr and bottom µb
o-stru
tures 
ount the non-zero elements of a row or 
olumn, respe
tively. Top µt andbottom µl are similar, but they 
ontain the sum of ea
h row and 
olumn, respe
tively.The sum of µt (or µl) 
o-stru
tures is denoted by ζt and the sum of the bottom (or
µr) 
o-stru
tures are denoted by ζb. ζt is the sum of the entries of the relevant MergeMatrix, while ζb 
ounts the non-zero elements of the Merge Matrix.97



98 Merge Algorithms10.1 Ben
hmark algorithms in Merge FrameworksThis se
tion des
ribes the embedding of well-known ben
hmark algorithms of Se
tion4.2 into a suitable Merge Framework using an appropriate Merge Model by the author.A des
ription of the algorithms in the 
ommon way supports their stru
tural analysis.10.1.1 Algorithms in the UC Merge FrameworkThe following ben
hmark methods 
an be des
ribed in the UC Merge Framework, wherean un
oloured row is 
hosen followed by a 
oloured one for a merge. Hen
e it needstwo 
hoi
e fun
tions: choose−unc for the un
oloured row 
hoi
e and choose−col forthe 
oloured row 
hoi
e. In order to denote an algorithm in the UC Merge Frameworklet us introdu
e the following notation: UCchoose−col
choose−unc, where the choose−unc denotesthe un
oloured row 
hoi
e strategy, while the choose− col denotes the 
oloured one.Greedy merge s
hemeSuitable models: bmt, imt, ims, bmsThe greedy 
olouring s
heme of Se
tion 4.2.2 �ts ni
ely into the UC Merge Framework.Where the 
hoi
e probability ve
tor x is provided in advan
e by a strategy, then the�rst available 
olour c is assigned to the vertex 
hosen by the maximum value of x.For tie breaking, when the 
hoi
e is not exa
t, take the �rst vertex via a natural orderof the verti
es.

UC
(ext. strategy)
greedy (A adja
en
y matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of 
hoi
e prob. ve
tor x4 c← arg mini{i : M col

ui = 0} // Choose a 
oloured row greedily5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu 
omponent7 until Munc is empty8 return MThe greedy 
olouring s
heme does not require any additional information during the
olouring pro
ess. It performs the 
olouring using a predetermined order of the verti
esby x, whi
h is provided by an external strategy. Therefore ea
h Merge Model is suitablefor making a 
olouring. One bene�t of the appli
ation of the Merge Model is thede
reased 
omputational e�ort, whi
h will be des
ribed later in Se
tion 11.4.Welsh-PowellSuitable models: bmt, imt, ims, (bms)We saw in Se
tion 9.4.1 that the Integer Merge Models and the Binary Merge Tablesupport this heuristi
 if it is de�ned in a dynami
ally varying merge environment. How-ever, Welsh-Powell does not need to 
onsider the varying 
onditions. The row-
hoi
e



10.1 Ben
hmark algorithms in Merge Frameworks 99probability fun
tion 
an be determined in advan
e. It is just de�ned by the degrees ofthe verti
es. This 
an serve as an external strategy of the greedy merge s
heme (seeSe
tion 10.1.1). Hen
e in this 
ase any Merge Model 
an be applied. For demonstra-tion purposes, we shall provide a Merge Algorithm whi
h is de�ned like that in Se
tion9.4.1. This determines the relevant degrees during the 
olouring pro
ess.
UCWelsh−Powell

greedy (A adja
en
y matrix )1 M ← A2 repeat3 u← [arg maxi{ µli }]1 // Choose by maximum row sum4 c← arg mini{i : M col
ui = 0} // Choose a 
oloured row greedily5 M ← merge(M, {u, c})6 until Munc is empty7 return MWhere µli is the i−th element of µunc
l = Munc e, whi
h gives the un
oloured row sum;that is, the degree of the relevant vertex in the original graph; while mini{i : M col

ui = 0}
hooses the �rst available 
oloured row where the merge 
ondition M col
ui = 0 holds.

[.]1 de
ides the tie breaking 
ases if more than one maximal elements is found. Itinvariably 
hooses the �rst element in a natural order. This sele
tion 
orrespondsto the appropriate 
olour 
lass represented by the 
oloured row. An un
oloured rowmerging into a 
oloured one means putting the un
oloured vertex into the appropriate
olour 
lass in the traditional sense.HajnalSuitable models: bmt, bms, imt, imsThe Hajnal heuristi
 takes the verti
es in reverse order by the prin
ipal eigenve
tor of theadja
en
y matrix and then performs a greedy 
olouring. As mentioned in Se
tion 10.1.1,any Merge Model 
an be used as a basis for these algorithms, whi
h does not take intoa

ount the varying environment during the 
olouring pro
ess. The Hajnal heuristi
relies on a prede�ned 
hoi
e probability ve
tor, determined by the prin
ipal eigenve
tor
x̂ (see Se
tion 9.4.2) 1; it does not 
hange the strategy during the 
olouring. It requiresa preliminary 
omputation of the prin
ipal eigenve
tor as in the original de�nition inSe
tion 4.2.4. The [.]1 also de
ides the tie breaking 
ases here as it did (see Se
tion10.1.1), always 
hoosing the �rst element. Similar to the greedy s
heme in Se
tion10.1.1, it 
an be used with any of the Merge Models. It serves as an external strategyof the greedy merge s
heme de�ned in Se
tion 10.1.1 hen
e it is denoted by UCHajnal

greedy .DSatur of BrèlazSuitable models: imt, ims, (bmt, bms)DSatur uses the maximum saturation degree to 
hoose an un
oloured vertex. Thesaturation degree is equal to the number of neighbour 
olours. For tie breaking ituses the degree of the verti
es. After an un
oloured vertex is 
hosen, a greedy 
olour1M x̂ = λmaxx̂



100 Merge Algorithmsassignment is applied (see Se
tion 4.2.5). This heuristi
 takes into a

ount varyingstate of the un
oloured verti
es during the 
olouring pro
ess. Hen
e it 
an happilyexploit the bene�ts of the Merge Models.
ims

UCdsatur
greedy(A adja
en
y matrix )1 M ← A // Let M be an Integer Merge Square2 repeat3 u← arg maxi{ (µcol

b ◦ eunc)i } // Choose by the max. un
ol. top 
o-stru
ture .4 u← [arg maxi{ (µt ◦ eu)i }]1 // Choose by the max. top 
o-stru
ture.5 c← arg mini{i : M col
ui = 0} // Choose a 
oloured row greedily6 M ← merge(M, {u, c})7 until Munc is empty8 return MHere u 
ontains the ve
tor of the 
hosen un
oloured row indi
es a

ording to the bottom
o-stru
ture of the 
oloured sub Merge Matrix µcol

b , whi
h de�nes the saturation degreeof the verti
es. It gives the number of neighbouring 
olours for ea
h vertex sin
e onlythe un
oloured rows/verti
es are 
onsidered in the 
hoi
e. The irrelevant part of theve
tor µcol
b must be set to zero by µcol

b ◦ eunc be
ause u may 
ontain more than one
omponent, i.e. referen
es for un
oloured rows. DSatur applies a tie breaking by thevertex degrees. A 
olumn sum of the whole Integer Merge Table or Square M givesthe relevant degree of an un
oloured vertex. Ea
h 
olumn sum is pla
ed in the top 
o-stru
ture µt. Only the tie breaking positions of this ve
tor are interesting; that is, the
hosen un
oloured row indi
es u. Therefore the irrelevant values of µt are set to zeroby using the eu 
hara
teristi
 ve
tor, where eu 
ontains ones in the u positions, andzeros otherwise. Hen
e the entrywise produ
t µt ◦ eu provides the ne
essary de
isionve
tor. Sin
e the 
hoi
e by this de
ision ve
tor may still result in multiple un
olouredrows, the �nal tie breaking 
hooses the �rst element [.]1. Keeping just the last tiebreaking, the algorithm 
an use the Binary Merge Models as well. In the 
ase of BinaryMerge Tables or Squares, the bottom and top 
o-stru
tures are the same (µcol
b = µcol

t )and 
an be 
al
ulated in the following way µcol
b = (M col)T e whi
h is the sum of the
olumns of the 
oloured sub Merge Matrix M col. In order to restri
t the 
al
ulationjust for the un
oloured verti
es, the 
o-stru
ture must be multiplied2 by eunc, whi
h
onsists of ones only in the un
oloured vertex positions; that is, µcol

b ◦ eunc. In the 
aseof a Binary Merge Square it 
an be expressed by the equation
µcol

b ◦ eunc = (M col)T euncFurthermore, the top 
o-stru
ture (the sum of the whole Integer Merge Matrix) givesthe degree of the vertex in the original graph: µt = MT e. It should be also restri
ted toun
oloured verti
es so as to get a suitable 
hoi
e probability ve
tor3 for the tie breaking
ases; that is, µt ◦ eunc. For an Integer Merge Square it will be µt ◦ eunc = MT eunc.2Using elementwise produ
t.3Not normalised 
hoi
e probability ve
tor.



10.1 Ben
hmark algorithms in Merge Frameworks 101Evolutionary algorithm � standard �tnessSuitable models: bmt, bms, imt, imsThe evolutionary algorithms of Se
tion 4.2.7 
an serve as an external un
oloured row
hoi
e strategy for the greedy algorithm s
heme de�ned in the UC Merge Framework inSe
tion 10.1.1. Then kM 
ounts the number of rows of the �nal Merge Matrix M gotin the greedy 
olouring pro
ess. This metaheuristi
s approa
h maintains a set of vertexpermutations Π (population) via its swap mutation and order based 
rossover operatorsmodifying the 
andidate solutions of Π or 
reating new ones. The sele
tion operatoris a 2−tournament sele
tion, whi
h keeps the population in a steady-state; that is,the number of elements remains 
onstant while the algorithm is running. In orderto measure the goodness of a 
andidate solution (i.e. a permutation), it performs asimple measurement; it 
ounts the number of 
olours used in the greedy 
olouring. Thenumber of 
olours is equal to the number of rows that remain in the �nal Merge Matrixof the UCgreedy s
heme des
ribed in Se
tion 10.1.1. Furthermore, χ̂ is a normalisation
onstant, whi
h is a lower bound of the 
hromati
 number. In an experimental study
χ̂ may be the χ, and hen
e the zero value of a �tness f 
an terminate the runningalgorithm, when an optimal solution is found. Otherwise, the stop 
ondition dependson a 
ertain time limit, whi
h 
an be determined in various ways, e.g. by 
ounting thenumber of �tness evaluations.

UCEA
greedy(A adja
en
y matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate ea
h permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← kM − χ̂ // Fitness a8 Π = Π ∪ swap(Π, pmut) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.Sin
e this evolutionary algorithm uses the UCgreedy for 
olour assignment and it doesnot exploit any additional feature of the Merge Models, all Merge Models will be suitablefor the implementation.Evolutionary algorithm � Stepwise adaptation of weights (SAW)Suitable models: extensions of the imt or imsHere it applies an improper 
olouring s
heme, so Merge Models 
annot des
ribe thiss
heme. The models may be extended to handle improper 
olourings as well by allowing



102 Merge Algorithmsthe merges for the rows where the merge 
ondition is not satis�ed. The SAW algorithmrequires the number of violated 
onstraints at the end of a 
olouring. Integer MergeModels do not lose any edges.10.1.2 Algorithms in the CU Merge FrameworkThis Merge Framework supports the so-
alled independent set approa
h, des
ribed inSe
tion 4.2.1. Only the Erd®s heuristi
 apply this approa
h among the ben
hmarkalgorithms. In the CU Merge Framework, a 
oloured row is 
hosen followed by anun
oloured one for a merge. It requires the same two 
hoi
e fun
tions as the UCMerge Framework: choose− col for the 
oloured row 
hoi
e and choose− unc for theun
oloured row 
hoi
e. However, here they are applied in reverse order. In order tode�ne an algorithm in the CU Merge Framework let us introdu
e the following notation:
CU choose−col

choose−unc, where the choose− col denotes the 
oloured row 
hoi
e strategy, whilethe choose− unc denotes the un
oloured one.Erd®sSuitable models: imt, ims (bmt, bms)The Erd®s heuristi
 takes the �rst 
olour and assigns it to the vertex v that has theminimum degree. Vertex v and its neighbours are then removed from the graph. Weapply the algorithm in the remaining sub-graph in the same fashion until the sub-graphbe
omes empty, then take the next 
olour and use the algorithm for the non-
olouredverti
es and so on until ea
h vertex is assigned a 
olour.
ims

CUgreedy
Erdös (A adja
en
y matrix )1 M ← A2 u← [ ] // Empty 
hoi
e of an un
oloured row index3 repeat4 c← arg mini{i : M col

ui = 0} // Choose the earliest available 
oloured row5 u← [arg mini{ (µunc
b ◦ eunc)i : M col

ci = 0 }]1 //Choose by min. un
ol. degree6 M ← merge(M, {u, c})7 until Munc is empty8 return MWhere µunc
b 
ontains the un
oloured degrees. Similar to the Se
tion 10.1.1, µunc

b 
an bede�ned by µunc
b = (Munc)Te. Moreover, if we 
hoose just the values for the un
olouredverti
es further pro
essing is required:

µunc
b ◦ eunc = (Munc)TeuncIn the 
ase of Merge Tables eunc
G must be used, the 
hara
teristi
 ve
tor of the un-
oloured verti
es in the original graph, whi
h 
ontain ones only in the un
oloured po-sitions and zeros elsewhere. Here mini{i : M col

ui = 0} always 
hooses the last 
oloured



10.2 Novel Merge Algorithms 103row index. When c = [ ], (i.e. there 
an be no more mergeable un
oloured row withthis 
oloured row), the merge is a simple marking of the 
hosen un
oloured row Mu inthe 
oloured rows; that is, it pla
es it into the 
oloured sub Merge Matrix.10.2 Novel Merge AlgorithmsThis se
tion des
ribes algorithms whi
h arise from a 
ombination of a Merge Frameworkof Chapter 8 and a Merge Strategy of Chapter 9. They were introdu
ed by the authorin [94; 96�102℄. Sin
e the ben
hmark algorithms are de�ned in a Merge Framework inSe
tion 10.1, their stru
tural analysis and 
omparison with these novel methods 
an beperformed in the same way. Stru
tural analysis will be des
ribed in Chapter 11, while anexperimental 
omparison will be provided in this se
tion. The experimental 
omparisonsare based on well-known ben
hmark graphs and generated random equipartite graphson 200 verti
es a

ording to Se
tion 4.1 in the phase transition region (see Se
tion 3.8)where the problems be
ome hard.10.2.1 Algorithm in the UC Merge Framework � un
olouredrow 
hoi
e strategiesThis se
tion des
ribes two novel algorithms introdu
ed by the author in [96℄. These areevolutionary algorithms based on the strategies de�ned in se
tions 9.12.1 and 9.12.2.The algorithms are 
ombined with the greedy merge s
heme of Se
tion 10.1.1. Theyattempt to �nd a suitable permutation of the rows to a
hieve a minimal 
olouring bythe greedy merge s
heme. The permutations de�ne the appropriate row 
hoi
e ve
torthat will be given to the greedy Merge Algorithm. An experimental 
omparison will beprovided with two well-known ben
hmark algorithms whi
h were des
ribed in Se
tion4.2.Evolutionary algorithm � the ζ �tnessSuitable Merge Models: bmt, imtThis algorithm is based on a standard evolutionary algorithm (see Se
tion 4.2.7) thatintrodu
es a new �tness 
al
ulation, namely the ζ �tness, based on a Merge TableModel as des
ribed in Se
tion 9.12.1. In order to a
hieve this goal a Merge Algorithmis ne
essary to provide a �nal Merge Table; it is a simple greedy merge based onSe
tion 10.1.1. The evolutionary algorithm applies a swap mutation and 2−pointorder based 
rossover to 
hange the permutations. A 2−tournament sele
tion is thenapplied to keep the number of permutations 
ontant. Similar to the Se
tion 10.1.1,the evolutionary algorithms serve as an external un
oloured row 
hoi
e strategy in aUC Merge Framework.
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UCEAζ

greedy(A adja
en
y matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate ea
h permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← (kM − χ̂)ζM // Fitness a8 Π = Π ∪ swap(Π, pmut) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.Evolutionary algorithm � di�
ulty guided mutationSuitable Merge Models: bmt, imtHere, a modi�
ation of the evolutionary algorithm of Se
tion 10.2.1 is provided byaltering the swap mutation to the di�
ulty guided mutation of Se
tion 9.12.2.
UCEAζ,dgs

greedy (A adja
en
y matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate ea
h permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← (kM − χ̂)ζM // Fitness a8 Π = Π ∪ dgs(Π,pmut,M) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.10.2.2 ExperimentsThis se
tion details the experimental results obtained from running two Merge Algo-rithms whi
h apply un
oloured row 
hoi
e strategies introdu
ed by the author in [96℄.Row 
hoi
e ve
tors are en
oded in permutations of the verti
es. These permutationsare 
hanged by applying following evolutionary algorithms.



10.2 Novel Merge Algorithms 105Algorithms introdu
ed by the author in [96℄
UCEAζ

greedy � ζ �tness: the algorithm is based on the Binary Merge Table Model thatutilises the greedy merge s
heme UCgreedy. For a �tness 
al
ulation of a πpermutation it uses the ζ �tness f(π) = (kM − χ)ζM , as des
ribed in Se
tion9.12.1. It applies a Binary Merge Table Model.
UCEAζ,dgs

greedy � ζ �tness and di�
ulty guided mutation. This variant applies ox2 witha probability of 0.3 and then always applies a heuristi
 mutation operator thatis similar to the simple swap mutation; but it always 
hooses a vertex related tothe last merged row and for
es it take earlier position in the permutation. Toa

omplish this, it 
hooses at random a previous row identi�er for a swap. Theidea is that these last merged rows are the most di�
ult to merge. It then appliesa Binary Merge Table Model.Ben
hmark algorithmsThe following algorithms served as a referen
e in our experimental 
omparison.
UCbt−dsatur

greedy : the DSatur heuristi
 embedded into the UC Merge Framework, as de-s
ribed in Se
tion 10.1.1 using, a ba
ktra
king for exhaustive sear
h of the per-mutation spa
e (see Se
tion 4.3 and 3.6). It utilises an Integer Merge TableModel.
EAsaw: an evolutionary algorithm that applies a stepwise adaptation of weights heuris-ti
 de�ned in Se
tion 4.2.8. It does not use any Merge Model.An evolutionary algorithm with standard �tness (see Se
tion 4.2.7) was not in
luded inthe ben
hmark set of the algorithms, be
ause experiments by Juhos et al. in [99℄ showedthat an evolutionary algorithm with the ζ �tness 
learly outperforms this one, whi
h hasa standard �tness. Furthermore, for a fair 
omparison we used that variant of DSaturwhi
h is embedded into the UC Merge Framework, otherwise its results are mu
h worseas des
ribed in Se
tion 11.4. EAsaw uses improper 
olouring so the 
urrent MergeModels are unsuitable for them, but their parti
ipation in the test is useful be
ausethe EAsaw method proved very e�
ient on random 3−
hromati
 equipartite graphs in[52; 145℄.Means of ComparisonsThe performan
e of an algorithm 
an be 
hara
terised by its e�e
tiveness and e�
ien
yin solving a problem instan
e. The �rst is measured using the su

ess ratio, whi
h is theamount of runs where an algorithm has found the optimum divided by the total numberof runs. The se
ond is measured by keeping tra
k of how many 
onstraint 
he
ks arebeing performed on average for a su

essful run. This measure is independent of hard-ware and programming language as it 
ounts the number of times an algorithm requestsinformation about the problem instan
e, e.g. it 
he
ks whether an edge exists between
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es in the graph. This 
he
k, or rather the number of times it is performed,
omprises the largest amount of time spent by these 
onstraint solvers [52; 145℄. A
onstraint 
he
k is de�ned, for an algorithm, as a 
he
k of whether the 
olouring of twoverti
es is allowed (satis�ed) or not allowed (violated). The evolutionary algorithms areall sto
hasti
 algorithms. Therefore we performed 10 independent runs with di�erentrandom seeds for ea
h problem instan
e. The number of 
onstraint 
he
ks were thenaveraged over these 10 runs. The exhaustive sear
h method, UCbt−dsatur
greedy needs justone run.Algorithm settingsThe stop 
ondition for an algorithm is that either an optimum has been found or thatthe 1 500 000 limit of 
onstraint 
he
ks has been rea
hed. The latter means that the runwas unsu

essful, i.e. an optimal 
olouring was not found. For evolutionary algorithmsit means that a permutation π exists with f(π) = 0 �tness. Furthermore, for theevolutionary algorithms the population size is set to 100 for graphs having at least

150 verti
es, otherwise it is set to 20. The evolutionary algorithms performs the ox21-point order based 
rossover with a pxover = 0.6 probability and with a probability of
pmut = 0.3 for the simple swap mutation. These probability values were determined bypreliminary tests on random graphs.Ben
hmark graphsThere are two sets: the standard ben
hmark set of the DIMACS Challenge was intro-du
ed in Se
tion 4.1 and the 
lass of random 3−
hromati
 equipartite graphs on 200verti
es Geq,n=200,0.02≤pe≤0.06,k=3 generated by using Culberson's generator [44℄ in thephase transition region (see Se
tion 3.8). It 
onsists of 9 groups of graphs with di�erentedge probabilities pe, where ea
h group has 25 instan
es. The edge probability pe is
hanged from 0.020 to 0.060 in steps of 0.005, resulting in 9 groups. Further detailsabout these graphs and about the phase transition 
an be found in se
tions 3.8, 4.1and 3.7.ResultsAnalysing Table 10.1, for large graphs the novel algorithms, the UCEAζ

greedy and the
UCEAζ,dgs

greedy are mu
h faster than the ben
hmark algorithms. Note that the Merge Modelsredu
e the number of 
onstraint 
he
ks quite 
onsiderably (see Se
tion 11.4) for themiles and queens graphs, where the di�
ulty guided mutation outperforms the simpleswap mutation. Moreover, the latter is not always able to �nd a solution for two of thequeen graphs as the su

ess ratio of this algorithm is less than one. In Figure 10.1 we
an 
learly see that UCbt−dsatur
greedy is the best algorithm here as it always �nds a solutionand it uses almost the minimum number of 
onstraint 
he
ks to a
hieve it. The resultsfor the four algorithms in Figure 10.1(b) are signi�
antly di�erent and allow us to givea 
lear ranking on the e�
ien
y for the three algorithms. All evolutionary algorithms



10.2 Novel Merge Algorithms 107

Table 10.1: Average number of 
onstraint 
he
ks required for solving various probleminstan
es. Entries with ��� refer to where the algorithm never found the 
hromati
number, while in every other 
ase the su

ess ratio is one. The last three entries areused to highlight the di�eren
es between the two mutation operators for the swap andthe di�
ulty guided (dgs) mutations.Graph |V | |E| χ UCbt−dsatur
greedy EAsaw UCEAζ

greedy UCEAζ,dgs

greedymulsol.i.1 197 3 925 49 811 595 6 265 5 964 8 525mulsol.i.2 188 3 885 31 485 644 21 707 4 110 5 667mulsol.i.3 184 3 916 31 461 953 51 042 4 874 5 619mulsol.i.4 185 3 946 31 467 398 128 130 4 084 5 606mulsol.i.5 186 3 973 31 472 872 11 120 4 141 5 536zeroin.i.1 211 4 100 49 1 056 595 13 165 6 670 8 040zeroin.i.2 211 3 541 30 641 583 65 053 11 870 4 942zeroin.i.3 206 3 540 30 603 978 52 493 22 556 11 197anna 138 493 11 105 811 15 579 2 903 1 242david 87 406 11 40 772 56 872 9 957 2 493hu
k 74 301 11 27 122 1 210 788 1 015jean 80 254 10 29 101 11 390 746 949miles500 128 1 170 20 147 922 9 724 950 191 011 20 398miles750 128 2 113 31 204 871 7 922 930 946 683 103 376miles1000 128 3 216 42 244 886 15 476 000 1 551 235 164 312miles1500 128 5 198 73 329 361 886 155 167 487 67 721my
iel6 95 755 7 27 807 5 920 708 955my
iel7 191 2 360 8 134 956 52 997 4 074 3 245games120 120 638 9 60 777 3 227 1 492 1 926queen5_5 25 160 5 1 665 8 835 4 630 2 000queen6_6 36 290 7 320 063 � 740 550 139 711queen7_7 49 476 7 1 176 441 3 195 320 6 326 9121 744 273queen8_8 64 728 9 150 000 150 � 30 412 7792 9 558 255

1 A su

ess ratio of 0.9
2 A su

ess ratio of 0.4



108 Merge Algorithms
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02  0.025  0.03  0.035  0.04  0.045  0.05  0.055  0.06

su
cc

es
s 

ra
tio

pe

EAsaw UCgreedy
EAζ

UCgreedy
EAζ,dgs

UCbt-dsatur
greedy(a) Su

ess ratio vs pe. Note that UCbt−dsatur
greedyalways �nds a solution

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.02  0.025  0.03  0.035  0.04  0.045  0.05  0.055  0.06

av
g.

 n
um

be
r 

of
 c

on
st

ra
in

t c
he

ck
s

pe

EAsaw UCgreedy
EAζ

UCgreedy
EAζ,dgs

UCbt-dsatur
greedy(b) Average number of 
onstraint 
he
ks with 95%
on�den
e intervalsFigure 10.1: Results for 225 random equipartite graph 3−
hromati
 problems of size200, where for ea
h problem instan
e 10 independent runs are performed.show a sharp dip in the su

ess ratio in the phase transition (see Figure 10.1(a)), whi
his a

ompanied by a rise in the average number of 
onstraint 
he
ks. UCEAζ,dgs,

greedy startsout over 34 times faster than the EAsaw ben
hmark algorithm. When the number ofedges in
reases this di�eren
e de
reases to 7 times as fast. UCbt−dsatur
greedy seems to havethe least problems with this problem set. It performs well on 3−
hromati
 graphs, butits performan
e degrades if the 
hromati
 number of the graph instan
es in
rease asshown in Se
tion 10.2.9 later on.10.2.3 Con
lusionsWe veri�ed the e�
ien
y of the two new 
olouring algorithms of the author [96℄ byperforming an empiri
al 
omparison on two test suites. The results from the DIMACStest suite show a performan
e in speed and a

ura
y that is quite favourable, espe
iallyon large real-world problem instan
es with 400 verti
es. For larger problem instan
esit is mu
h faster than EAsaw and UCbt−dsatur

greedy . However in the se
ond test, where welooked at equipartite graphs during the phase transition, the su

ess ratio shows thetypi
al dip we often observe for sto
hasti
 algorithms, but the new algorithms yieldedbetter results. For di�
ult equipartite graphs, i.e. those that lie near the peak of thephase transition, it is less e�e
tive than UCbt−dsatur
greedy , but it is faster than EAsaw.10.2.4 Experiments done in the UC Merge Framework �
oloured row 
hoi
e strategiesIn Se
tion 10.2.2 two novel e�
ient Merge Algorithms were given. These algorithmsapplied the greedy merge s
heme to perform 
olouring. In this se
tion we will presentnon-greedy 
olour assignments. In the UC Merge Framework it 
orresponds to 
hangingof the greedy 
oloured row 
hoi
e s
heme to another one. Two novel 
oloured row
hoi
e strategies of the author [97℄ will be examined here and 
ompared with the
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hoi
e s
heme.Dot Produ
t and Cosine strategies in the UC Merge FrameworkSe
tions 9.7 and 9.8 des
ribed two novel strategies 
alled the Dot Produ
t and Cosinestrategies. These strategies support row-pair 
hoi
es; that is, algorithms in the CCMerge Framework. However they 
an be work as a se
ond row 
hoi
e strategies, if oneis sele
ted by another row 
hoi
e strategy. In the UC Merge Framework the �rst 
hoi
eis the un
oloured row 
hoi
e and the se
ond is the 
oloured one. Hen
e, they will
hoose 
oloured rows. The un
oloured row 
hoi
e will be ta
kled by an evolutionaryalgorithm with ζ �tness (see Se
tion 10.2.1).
UCext. strat.

dotprod (A adja
en
y matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of x4 c← arg maxi{〈Mi,Mu〉 : M col
ui = 0} //Choose a 
ol. row by max. dot prod.5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu 
omponent7 until Munc is empty8 return M

UCext. strat.
cos (A adja
en
y matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of x4 c← arg maxi

{

〈Mi,Mu〉
‖Mi‖‖Mu‖ : M col

ui = 0
} //Choose a 
oloured row by max. 
os.5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu 
omponent7 until Munc is empty8 return MAn external strategy provides x as a 
hoi
e probability ve
tor, whi
h may be unnor-malised too. The un
oloured row is 
hosen by this taking the position of its maximumvalue. Then either the Dot Produ
t strategy or the Cosine strategy sele
ts a 
olouredrow to merge with this un
oloured row. In the 
oloured row 
hoi
e 
al
ulation the

‖Mu‖ in the denominator is a 
onstant, hen
e it 
an be removed and the following 
anbe applied instead: c← arg mini

{

〈Mi,Mu〉
‖Mi‖

}.10.2.5 ExperimentsFirstly, the novel 
oloured row 
hoi
e strategies are 
ompared with the greedy 
olouredrow 
hoi
e strategy. Here the evolutionary algorithm of Se
tion 10.2.1 sele
ts theun
oloured rows. The experimental setup is the same as that outlined in Se
tion 10.2.2.



110 Merge AlgorithmsThen an extended experiment will be provided, where other ben
hmark algorithms arealso in
luded in the 
omparison. In addition, it 
ontains other graph types and othertest run results of the algorithms. The evolutionary algorithms all 
orrespond to thatdes
ribed in Se
tion 10.2.1. They use the ζ �tness fun
tion based on a Binary MergeTable.Algorithms introdu
ed by the author in [97℄
UCEAζ

dotprod: the evolutionary algorithm of Se
tion 10.2.1, provides the external strategyfor UCext. strat.
dotprod . It applies a Binary Merge Table Model.

UCEAζ

cos the evolutionary algorithm of Se
tion 10.2.1, provides the external strategyfor UCcos. It applies a Binary Merge Table Model.Ben
hmark algorithms
UCEAζ

greedy: the evolutionary algorithm provides the external strategy for UCext. strat.
greedy(see Se
tion 10.2.1). It applies a Binary Merge Table Model.The basis of the 
omparison made here, is the same 3−
hromati
 ben
hmark graphset as that given in the Se
tion 10.2.1. The algorithm settings and the mean of the
omparison are also similar to those stated in Se
tion 10.2.1.ResultsThe two novel strategies that utilise details about the 
olouring of the graph made sofar are shown in Figure 10.2 together with the simple greedy strategy. Here we no-ti
e a 
lear improvement in both the e�
ien
y and e�e
tiveness relative to the simplegreedy strategy. In parti
ular, the sear
h e�ort needed for denser graphs is less. Fur-thermore, the 
on�den
e intervals for this range are small and non-overlapping. Thesetwo approa
hes furnish a mu
h more robust algorithm for solving graph k-
olouringproblems.10.2.6 Extended experimentsJuhos et al. in [100; 101℄ 
arried out other investigations of these strategies. They 
om-pared the methods with the ba
ktra
king version of the DSatur algorithm UCbt−dsatur
greedy ,in a

ordan
e with Se
tion 10.2.2, using various random equipartite graphs. The algo-rithms settings were the same as those in the experiments des
ribed in Se
tion 10.2.2.Ben
hmark graphsThe test set 
onsists of k−
olourable equipartite graphs with 200 verti
es, where kis set to 3, 5, 10 and 20 (Geq,n=200,0.02≤pe≤0.98,k∈{3,5,10,20}) using Culberson's generator[44℄. For k = 20, ten verti
es will form a 
olour set, hen
e we will not use any larger
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e intervalsFigure 10.2: Results for 225 random equipartite graph 3−
olouring problems of size

200, where for ea
h problem instan
e 10 independent runs were performed.number. The edge probability of the graphs is varied in a region 
alled the phasetransition. Using this test set we 
an ensure a fair 
omparison of the algorithms, sin
ethis set 
ontains problems ranging from the easy to the most di�
ult. Moreover,we would like to avoid any 
omparison on some 
hosen real-life problems where thesele
tion method 
an determine the out
ome of the 
omparison of the performan
e(see [41℄). The set 
onsists of groups where ea
h group is a k−
hromati
 with 20unique instan
es.Means of ComparisonsOn ea
h instan
e we performed ten independent runs and 
al
ulated averages of thenumber of 
olours used. These averages were further averaged over ea
h graph in-stan
es whi
h had the same edge probability, i.e. over the edge probability groups.Con�den
e intervals were also 
al
ulated, but they just 
on�rmed our anti
ipated re-sults, hen
e they were not plotted in the �gures here for the sake of 
larity.ResultsFigure 10.3 shows that the Cos heuristi
 performs well, espe
ially for larger k, whilethe Dot Produ
t is a 
lose se
ond. DSatur is the strongest algorithm on 3-
olourablegraphs, where it always �nds the optimum number of 
olours. However, ba
ktra
king
an help on very sparse graphs, DSatur qui
kly gets the last position as the 
hromati
number and hen
e the edge density grows.10.2.7 Con
lusionsBy 
omparing the di�erent strategies on several hard-to-solve problems, we showedhow employing 
oloured-row 
hoi
e strategies 
an improve the 
onvergen
e speed ofthe evolutionary algorithm. Furthermore, the two novel strategies, i.e. the Dot Produ
t
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greedy(d) χ = 20Figure 10.3: Results of the average number of 
olours used through the phase transition.and Cosine showed more promise than the two strategies that restri
ted to just usingknowledge about the 
urrent vertex. In order to get a strong 
omparison, we 
omparedall the strategies on a suite of generated problem instan
es that en
ompass the phasetransition. This way we ensure a 
omparison on very hard-to-solve problems. DSaturis a 
lear winner of the 3−
olourable 
ompetition on 200 vertex graphs. However,in se
tions 10.2.9 and 10.2.12, it will turn out that this is just due to ba
ktra
king,be
ause DSatur's performan
e is similar on these instan
es to the novel strategies.Note that ba
ktra
king 
an 
ause a problem when the problem size s
ales up, but theevolutionary algorithms may maintain their performan
e. The results 
on�rmed thaton the ben
hmarks, the two novel strategies are more e�e
tive, i.e. they had a highersu

ess ratio, and fewer number of 
olours were used in the phase transition and itsright hand side when χ ≥ 5. Also, they were far more e�
ient, and more 
onsistent intheir e�
ien
y; that is, they had smaller deviation of the results.10.2.8 Algorithms in the CU Merge FrameworkThis se
tion provides two novel algorithms introdu
ed by the author in [100℄. Thesealgorithms how the novel Dot Produ
t and Cosine strategies (see Se
tion 9.7 and 9.8)in the CU Merge Framework 
an be applied. In se
tions 10.2.2 and 10.2.5, the BinaryMerge Table implementations and their performan
e were analysed. In this se
tion wepresent an appli
ation of the usage of Binary Merge Square Models. However the otherMerge Models 
an be also utilised in a

ordan
e with Chapter ??.



10.2 Novel Merge Algorithms 113Similar to the Erd®s heuristi
 (see Se
tion 10.1.2) whi
h is also a CU type algorithm,the 
olour 
hoi
e is greedy and the Dot Prod and Cosine row-pair 
hoi
e strategiesare applied as a se
ond row 
hoi
e strategies. Here they 
hoose un
oloured row fora greedily sele
ted 
oloured row, i.e. always on the last 
oloured row. This s
hemeis the so-
alled independent set approa
h in a

ordan
e with it traditional name (seeSe
tion 4.2.1), where the 
olour sele
tion is greedy. However not just a greedy 
olouredrow 
hoi
e 
an be applied. Hen
e a 
learer 
hara
terisation is given by the CU MergeFramework, where not only a greedy 
oloured row/
olour 
lass 
hoi
e 
an be applied.An experimental 
omparison is provided below with well-known ben
hmark algorithms,whi
h are des
ribed in Se
tion 4.2.
CUgreedy

dotprod(A adja
en
y matrix )1 M ← A2 u← [ ] // Empty 
hoi
e of an un
oloured row index3 repeat4 c← arg mini{i : M col
ui = 0} // Choose the �rst available 
oloured row5 if c = [ ]6 then r = 17 else r = Mc8 u←

[

arg maxi

{

〈r,Mi〉 : M col
ci = 0

}]

1
//Choose by max. dot prod.9 M ← merge(M, {u, c})10 until Munc is empty11 return M

CUgreedy
cos (A adja
en
y matrix )1 M ← A2 u← [ ] // Empty 
hoi
e of an un
oloured row index3 repeat4 c← arg mini{i : M col

ui = 0} // Choose the earliest available 
oloured row5 if c = [ ]6 then r = e7 else r = Mc8 u←
[

arg maxi

{

〈r,Mi〉
‖r‖‖Mi‖ : M col

ci = 0
}]

1
//Choose 
ol. row by max. 
osine9 M ← merge(M, {u, c})10 until Munc is empty11 return MIt always 
hooses the last 
oloured row index c. When it is empty, i.e. c = [ ], theninstead of the row r = Mc the e ve
tor (the ve
tor with all one entries) are sele
ted.Hen
e the maximisation pro
ess in the un
oloured row sear
h 
an be performed. Hen
ethe Dot Produ
t strategy takes the maximum row sum and provides the 'maximal degreevertex'. Similar to the Erd®s algorithm (see Se
tion 10.1.2), when c = [ ], the mergeis a simple re
ord of the 
hosen un
oloured row Mu in the 
oloured row; that is, it
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oloured sub Merge Matrix. When u 6= [ ], the 
oloured row 
hoi
e isperformed by either the maximal Dot Produ
t strategy or Cosine strategy (see se
tions9.7 and 9.8). The r is a 
onstant in the 
osine maximisation, so it 
an be left out fromthe expression; hen
e only the 〈r,Mi〉
‖Mi‖ is 
onsidered, i.e. the length of the orthogonalproje
tion of r onto Mi.10.2.9 ExperimentsHere we des
ribe the experimental results of two Merge Algorithms whi
h apply 
olouredrow 
hoi
e strategies introdu
ed by the author in [100℄.Algorithms introdu
ed by the author in [100℄These algorithms were presented in Se
tion 10.2.8.The CUgreedy

dotprod algorithm takes the last available 
oloured row and merges as manyun
oloured rows with it as possible, using a maximum Dot Produ
t strategy. Itapplies the Binary Merge Square (see Se
tion 9.7).The CUgreedy
cos algorithm uses the same prin
iple as CUgreedy

dotprod, but the 
oloured row
hoi
e is based on the Cosine strategy (see Se
tion 9.8).Ben
hmark algorithmsBen
hmark algorithms were implemented in a suitable Merge Framework, so as tohave a 
ommon basis for a 
omparison. Hen
e their running times di�er slightly. Theexperiments fo
uses on their e�e
tiveness; that is, how many 
olours they used in their
olouring.
CUgreedy

Erdös : It is based on the Integer Merge Square Model in the CU Merge Framework.It takes the last available 
oloured row and merges as many un
oloured rows withit as possible, using a minimum un
oloured degree strategy detailed in Se
tion10.1.2.
UCgreedy

dsatur : A non-ba
ktra
k version of the DSatur algorithm, it performs only one
olour assignment applying the saturation degree heuristi
 based on the IntegerMerge Table Model and UC Merge Framework (see Se
tion 10.1.1).Ben
hmark graphsThe ben
hmark graph set is the same k−
hromati
 (k ∈ {3, 5, 10, 20}) equipartitegraph set in the phase transition as that in the experiments des
ribed in Se
tion 10.2.6.But here 20 unique instan
es were generated per probability group, ex
ept for k = 30,where 30 instan
es were examined to get a better 
on�den
e limit here be
ause thetwo algorithms had a similar performan
e.



10.2 Novel Merge Algorithms 115Means of ComparisonsThe 
ompared algorithms perform only one 
olour assignment without any ba
ktra
kingor other spa
e exploration. Hen
e, the experiments just 
ompared their e�
ien
y
onsidering single 
olour assignments. Therefore only one run was ne
essary. On ea
hinstan
e we performed one run. The number of 
olours obtained in the runs wereaveraged over the edge probability groups, i.e. graphs having the same same edgeprobabilities. The 
on�den
e intervals were also 
al
ulated, but they just 
on�rmedour anti
ipated results, hen
e they were not plotted here.ResultsFigure 10.4 shows the results for ea
h algorithms. The Cosine strategy performed
learly better than the others ex
ept for the 3−
olouring where DSatur performedequally well. The Dot Produ
t strategy was ranked se
ond, while DSatur performs wellon sparse graphs having small 
hromati
 number, the Erd®s heuristi
 performs well ongraphs that require more 
olours, espe
ially on dense graphs, i.e. that have a highaverage number of edges (high edge density). What is interesting is the lo
ation of theregion of the phase transitions. Figure 10.4 shows that it depends not just on the edgedensity of the graphs but also on the applied algorithm, espe
ially the graph densitywhere DSatur exhibits its worst performan
e when it moves away from the others within
reasing k. DSatur and Erd®s heuristi
s apply just se
ond order information, asopposed to the other two algorithms, where �rst order information is used (see �rstand se
ond 
o-stru
tures in Se
tion 7.2). The Erd®s heuristi
 uses the se
ondary orderstru
tures in the opposite way to that of DSatur and our results show how this a�e
tsthe performan
e, sin
e their e�e
tiveness are opposite as well.10.2.10 Con
lusionsIn the UC experiments in Se
tion 10.2.5, where Dot Produ
t and Cosine strategies wereapplied for 
oloured row 
hoi
es, here these strategies performs well too as un
olouredrow 
hoi
e strategies. The 
onne
tion between the performan
e and the stru
ture ofthe DSatur and the Erd®s heuristi
 were 
hara
terised well in the Merge Frameworks.They use the same merge 
o-stru
ture but in opposite way, hen
e their performan
egoes in the opposite dire
tion when the 
hromati
 number of the graphs in question
hange.10.2.11 Algorithms in the CC Merge FrameworkIn the CC Merge Framework, 
oloured and un
oloured rows are not distinguished. Astrategy always takes every row into a

ount. Only one, a row-pair 
hoi
e strategy mustbe de�ned to perform a merge sequen
e until a �nal Merge Matrix is obtained. In orderto represent an algorithm in the CC Merge Framework let us introdu
e the followingnotation: CC −
hoose, where 
hoose stands for the only row-pair 
hoi
e strategy.
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olours used through the phase transition.The general CC Merge Framework is de�ned as follows with a general 
hoose row-pair
hoi
e strategy:CC - 
hoose(A adja
en
y matrix )1 M ← A2 repeat3 {i, j} ← arg choose{i,j}{Mi,Mj : i 6= j, Mij = 0} //Choose two row indi
esa4 M ← merge(M, {i, j}) //Merge i and j rows/
olumns5 until M is not mergeable6 return MaMij = Mji = 0 is the merge 
ondition, i.e. there is no edge.Four di�erent novel algorithms will be de�ned whi
h are introdu
ed by the author in[94; 97; 101; 102℄ and apply the four strategies of Se
tion 9.7, 9.8, 9.6 and 9.9. Ea
hof them is based on the Binary Merge Square Model. However the other Merge Models
an be also utilised in a

ordan
e with Chapter ??. The strategies are des
ribed below.Here just the {i, j} = arg choose{i,j}{Mi,Mj : i 6= j} general 
hoi
e strategy is de�nedas a repla
eable part of the general CC Merge Framework.



10.2 Novel Merge Algorithms 117Dot Produ
t (CC − dotprod)

{i, j} = arg max
{i,j}
{〈Mi,Mj〉(1−Mij) : i 6= j}Two rows are 
hosen for a merge if they have maximal dot produ
ts among the possiblerow pairs. The Mij = 0 merge 
ondition 
an be given by using the (1−Mij) term inthe 
ase of Binary Merge Squares.Cosine (CC − cos)

{i, j} = arg max
{i,j}

{ 〈Mi,Mj〉
‖Mi‖‖Mj‖

: i 6= j, Mij = 0

}Two rows are 
hosen for a merge if they have a maximal 
osine among the possiblerow pairs.Approximated spe
tral norm (CC − σ̃)

{i, j} = arg min
{i,j}







√

√

√

√

l
∑

r=1

〈(M/ij)r, (M/ij)r〉2 : i 6= j, Mij = 0





Two rows are 
hosen for a merge if they have a minimal approximated spe
tral normamong the possible row pairs. M/ij is the Merge Square after merging i and j rows,where (M/ij)r is the r-th row of the merged matrix and l is the number of rows/
olumnsin the merged matrix. This de�nition follows from Eq. 9.27, where 〈(M/ij)r, (M/ij)r〉 =

〈(M/ij)r, e〉 is the r-th row sum, due to the Binary Merge Matrix representation, andthe 
onstant term l is left out of the denominator. This strategy 
an be de�ned without
M/ij trial merges by an e�
ient dire
t 
al
ulation and an update te
hnique (see se
tions9.6 and 9.6 for details).Zykov-tree+Lovász-theta (CC−Zykovθ̄)

min
t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E}Let the approximated solution of this semi-de�nite optimisation problem be Z̃opt ina

ordan
e with Eq. 9.43. Two solvers were applied for this optimisation. In orderto get a faster exe
ution the 
ombination of a boundary point method [134℄ and aninterior point method [142℄ is applied. Later it was applied for very dense graphs(edge density>0.89) 4, when the 
andidate solution approa
hed, the �nal Merge Ma-trix. Otherwise the 
al
ulation was done by a boundary point method. The row-pair
hoi
e strategy for a merge was de�ned by the and Ẑ = (Z̃opt+1)◦(1−I) (see Se
tion9.9) as follows:
{i, j} = arg max

{i,j}

{

Ẑij(1−Mij) : i 6= j
}



118 Merge AlgorithmsIn order to further improve the speed and the de
ision a

ura
y, an (i, j) edge additionwas introdu
ed for ea
h step using the following
{i, j} = arg min

{i,j}

{

Ẑij(1−Mij) : Ẑij < 0
}Further details 
an be found in Se
tion 9.9. CC − Zykov+

θ̄
will stand for the variantwhen not only one edge, but all edges are added whi
h satisfy the following 
ondition5

{

Ẑij(1−Mij) : Ẑij < 0
}10.2.12 ExperimentsThe experimental setup was the same as that outlined in Se
tion 10.2.9.ResultsFigure 10.5 shows the results of every 
ombination for di�erent values of χ. Hen
e thespe
tral norm approximation performs the best ex
ept for very sparse graphs, when theDot Produ
t strategy and DSatur with lo
al de
isions perform better. The reason forthe worse performan
e of CC − σ̃ on sparse graphs is the small number of 
hangesin the norm in the sele
tion of 
andidate verti
es pairs for a merge. Be
ause of theapproximation used, several di�erent values be
ome the same, hen
e too many 
an-didates are sele
ted for tie breaking. The 
ombination of the CC framework with theCosine does not always perform well, espe
ially for smaller 
hromati
 numbers; how-ever, it 
an outperform baseline methods for dense graphs. As the 
hromati
 numberand the edge density in
rease Cosine strategy in
reases its performan
e and it 
an beatevery other. Dot Produ
t's performan
e lies between that of Cos and the CC − σ̃algorithms; its strength lies with smaller 
hromati
 numbers and sparse graphs. Fig-ure 10.6 gives the best and the ben
hmark results of Figure 10.5. Furthermore, Figure10.6 shows the (CC − Zykovθ̄) and (CC − Zykov+

θ̄
) results as well. Both the novel

(CC−Zykovθ̄) strategy and the (CC−Zykov+
θ̄
) strategy perform very well espe
iallyfor denser graphs. The phase transition is shifted for these algorithms, where otheralgorithms 
an outperform their impressive results. Where more edges are added inthe (CC −Zykov+

θ̄
) strategy it has slight in�uen
e on the results of the 3−
hromati
experiments, but its performan
e worsen in the higher 
hromati
 region.10.2.13 Con
lusionsAll the novel strategies presented here perform well in the CC Merge Frameworks,and most 
ases they outperform the ben
hmark algorithms. Though there is no 
learwinner, the (CC − Zykovθ̄) algorithms a
hieve quite impressive results, but the otheralgorithms 
an outperform their results in their phase transition region. Furthermore,5Not only that edge, whi
h 
orresponds to the minimum value.
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120 Merge Algorithmsthe (CC− σ̃) has also good results espe
ially for graphs whi
h have a higher 
hromati
number. Nevertheless, (CC − Zykovθ̄) 
olours e�
iently these graphs and they usemu
h more 
omputational e�ort than the others. They have to perform several semi-de�nite optimisations to a
hieve these good results. These optimisations make themslower than the others, whi
h use only a 
ouple of elementary operations for theirstrategies, hen
e they are suitable for solving larger graph instan
es.10.3 SummaryIn this 
hapter we demonstrated the e�
ien
y of the strategies des
ribed in Chapter 9when embedded into one of the Merge Frameworks. Our experiments showed that theyperform well when applied as un
oloured or 
oloured row 
hoi
e strategies, or row-pair
hoi
e strategies. Ben
hmark algorithms were de�ned in a suitable Merge Framework,and these de�nitions allowed us to make a stru
tural 
omparison. In addition, ourexperimental results and the stru
tural analysis revealed a 
orrelation in the 
ase ofDSatur and Erd®s heuristi
s.In the next se
tion we will look at the Merge Models and Algorithms in more detail.



Chapter 11Analysis11.1 Introdu
tionIn 
hapters 7, 8 and 9 a new general 
olouring approa
h was 
onstru
ted based ona spe
ial graph homomorphism. Chapter 10 showed the pra
ti
al bene�ts of theseapproa
hes by an experimental investigation. This 
hapter shows the result of a theo-reti
al analysis of the approa
hes and dis
usses software and hardware implementationaspe
ts, as des
ribed by the author in [94; 96�102℄.11.2 Whi
h Merge Model is better?This se
tion brie�y dis
usses the bene�ts and drawba
ks of the Merge Models intro-du
ed in Chapter 7.Integer or Binary Merge Matri
es Integer Merge Matri
es supports ba
ktra
kingbe
ause they retain all the edges of the original graph, and hen
e a merge is reversible.Instead of row addition, a row subtra
tion 
an provide an unmerge operation, supportingba
ktra
king. In Chapter 10 we presented algorithms whi
h exploit the 
o-stru
tureproperties of these models, su
h as the Erd®s and DSatur heuristi
 use them for tiebreaking. Furthermore, they support the extension of the Merge Models for improper
olouring s
hemes, as outlined in Se
tion 10.1.1. However, retaining all the edges
an support some strategies, but there may be drawba
ks as well. The edge retainingintrodu
es redundan
ies hen
e the �nal Integer Merge Matrix is not predi
table. The�nal Merge Matrix is de�ned exa
tly for the Binary Merge Squares it is the adja
en
ymatrix of the Kk 
omplete graph. This is useful in algorithm design (see Se
tion 9.10).Sin
e a Merge Square is an adja
en
y matrix, strategies 
an always be repeated inthese merged matri
es, but several strategies 
an work with the other merge matri
esas well. Unfortunately, it does not support ba
ktra
king, as it loses some of the originaledges. An implementation of a Binary Merge Matrix 
an be e�e
tive be
ause the binaryoperations and stru
tures are supported by the 
omputer hardware and software.Merge Squares or Merge Tables The implementation of the Merge Tables 
an bedone more e�
iently, sin
e the merges a�e
ts only the rows, while in the 
ase of MergeSquare the two dimensional 
hanging, i.e. the number of rows and 
olumns, requires121



122 Analysismore 
omputation and 
ause implementation problems. Nevertheless, the Merge Squarestru
ture better supports an analysis, hen
e their stru
ture and the dimensions aresimilar to the original problem and are des
ribed by similar graphs. But a Merge Tablealways makes available the original graph stru
tures, as their 
olumns represents theverti
es of the original graphs.11.3 Enhan
ed algorithmsIn se
tions 9.4.1 and 9.4.2 two novel algorithms of the author were introdu
ed basedon two 
urrent non-merge based algorithms, namely the Welsh-Powell heuristi
 and theHajnal heuristi
 (see Se
tion 4.2.3 and 4.2.4). The extended version of these in the UCMerge Framework brings an improvement in the performan
e of the original algorithms(see Juhos et al. [97℄). Se
tions 9.4.1 and 9.4.2 detailed the improvements in atheoreti
al point of view and here several experimental results demonstrate our �ndingsin a standard ben
hmark set of graphs (see Se
tion 4.1). Table 11.1 
learly showsthe di�eren
e in performan
e between the original version and the extended version ofthe algorithms. The bias was set to ν = 0.9 in ea
h experiment performed (see Eq.9.4). The novel extended version of the algorithms 
learly outperforms the originalGraph |V | |E| χ UCWP
greedy UCext−WP

greedy UCH
greedy UCext−H

greedyqueen10_10 100 2940 ? 17 15 16 14queen11_11 121 3960 ? 17 15 20 15queen12_12 144 5192 ? 19 17 22 17queen13_13 169 6656 13 23 18 23 18DSJC125.1 125 1472 ? 7 6 9 7DSJC125.5 125 7782 ? 23 22 26 22DSJC125.9 125 13922 ? 53 52 62 54DSJC250.1 250 6436 ? 11 10 14 11DSJC250.9 250 31366 ? 93 88 97 89DSJC500.1 500 24916 ? 18 16 22 16DSJC500.5 500 125249 ? 71 66 76 67DSJC500.9 500 125249 ? 169 165 185 166�at300_20_0 300 21375 20 44 42 46 43�at300_26_0 300 21633 26 47 44 50 43�at300_28_0 300 21695 28 44 43 48 44latin_square_10 900 307350 ? 213 148 148 145le450_5
 450 9803 5 12 8 19 10le450_5d 450 9757 5 14 9 19 11le450_15a 450 8168 15 18 17 26 18le450_15
 450 16680 15 26 25 36 25le450_25a 450 8260 25 26 25 34 25Table 11.1: Results of extended algorithms. The number of 
olours used by the Welsh-Powell (WP) and the Hajnal (H) algorithms and their extensions. The extended algo-rithms are denoted by 'ext-' pre�xes.



11.4 Redu
ed 
omputational 
ost 123two algorithms. These experiments are based on the graphs of the DIMACS ben
hmarkrepository (see Se
tion 4.1). The experiments were performed on the same graph set asthose applied in the experiments des
ribed in Se
tion 10.2.2. The extended algorithmsprodu
ed mu
h the same results, outperforming the original ones. Here some otherdi�
ult-to-solve instan
es are presented in order to demonstrate the e�
ien
y of thenovel algorithms.11.4 Redu
ed 
omputational 
ostIn [52; 145℄, Eiben and van Hemert et al. pointed out that the number of 
onstraint
he
ks is the key fa
tor in the 
omputational 
ost in 
olouring algorithms. However,there 
an be other fa
tors whi
h a�e
t the running time; 
onstraint 
he
ks 
hara
terisewell the 
omputational e�orts several times. Merge Models provide 
onsiderable de-
rease in running time for those algorithms whi
h performan
e strongly 
orrelated withthe 
onstraint 
he
king (see Juhos et al. [99℄). This se
tion introdu
e the results of theauthor. Our ben
hmark algorithms in Se
tion 4.2 are typi
al examples for su
h graph
olouring solvers. When solving a graph 
olouring problem as a sequential 
olouringwhile using the original graph representation to 
he
k for violations, approximately n2(= |V |2) 
onstraint 
he
ks are required to get to a valid 
olouring. In 
ontrast, a MergeModel (MM) supported s
heme uses at most n · k number of 
he
ks ( |V | ≥ k ≥2 χ).This is possible be
ause ea
h vertex will be 
ompared with at most the existing 
olour
lasses, of whi
h there are no more than k or χ if a solution exists. Hen
e, theirquotient determines the improvement of a Merge Model supported 
olouring, whi
his proportional to the n/k ratio. We verify this 
laim theoreti
ally and empiri
ally aswell. In traditional s
hemes, adja
en
y matrix representation plays the key role in theGCP 1. We have two 
hoi
es when 
olouring a vertex for 
onstraint 
he
king; eitheralong the already 
oloured verti
es (Acol), or along all the neighbours of the vertex
onsidered (Aneigh). In the following, we show how to 
onsiderably redu
e the numberof 
onstraint 
he
ks by applying our proposed Merge Models (Amm). Let π is thesequen
e of the verti
es o

ur in the 
olouring pro
ess. De�ne x

d (x) as the 
oloured-degree of the vertex x being 
urrently 
oloured, whi
h refers ba
kwards to the already
oloured verti
es and y

d (x) of the un
oloured-degree refers forwards to the un
olouredvertex. Furthermore, denote kπ(x) the number of 
olours used before x would havebeen 
oloured a

ording to π. Notation ∑ is always ∑n
i=1 in this se
tion.Corollary 11.1 ([99℄) Given a random graph Gn,p with �xed p edge probability andgiven a 
olouring algorithm A, then the following performan
e is expe
ted on averagebased on 
ounting 
onstraint 
he
ks #(.):1. 
he
king the 
oloured verti
es: #(A
ol) = O(n2)2. 
he
king the neighbours: #(Aneigh) = O(n2)3. 
he
king the merged-verti
es/
olour 
lasses: #(Amm) ≤ O

(

n2

log n

)



124 AnalysisProof1. Che
king the already 
oloured verti
es requires as many neighbour 
he
ks as thenumber of the edges, be
ause we have to 
he
k the t number of 
oloured verti
esif the t+ 1. vertex 
omes to 
olour, that is,
#(A
ol) =

∑

i =
1

2
n(n− 1) = O(n2) (11.1)2. When the neighbours of the vertex 
urrently being 
oloured are 
he
ked for 
on-straint violation, the number of performed 
onstraint 
he
ks are equal to the sumof the degrees, i.e., twi
e the number of edges

#(Aneigh) =
∑

di = 2|E| ∝ pn(n− 1) = O(n2) (11.2)3. Using a Merge Model representation, Merge Operations provide merged-verti
es,whi
h represent 
olour 
lasses, thus 
he
king along them, requires at most asmany 
he
ks as the number of 
olours used at that moment. The worst 
ase iswhen the 
olouring is tight, meaning vertex x is in position π(x) 
oloured by atleast the 
olour kπ(x).
#(Amm) ≤

∑

ki = n
P

ki

n
∝ nrχ ∝ n rn

2 log n
(11.3)

= O(n2/ logn)

n
rn

2 log n
∝ rp

2p
n(n−1)

log(n−1)
= pn(n−1)

log(n−1)2p/r (11.4)where r is 
onstant2 and χ ≈ n
2 log n

a

ording3 to [13℄. For further details seeSe
tion 3.7 and 4.2.2. 2As the theorem above tells us the asymptoti
 behaviour of the algorithms, we 
an
he
k the worst 
ase behaviour of the A using these di�erent approa
hes. It is 
learthat the appli
ation of the A
ol for dense graphs are better against the #(Aneigh), and
onversely, A
ol has worse properties in sparse graphs 
ompared to #(Aneigh). Thefollowing theorem states that using our Merge Model approa
h, #(Amm) will alwaysoutperform the other te
hniques mentioned previously.Corollary 11.2 ([99℄) Let G be an arbitrary graph, then the following relations hold1. #(Amm) ≤ #(A
ol)2. #(Amm) ≤ #(Aneigh)Proof1. The number of 
olours is less than the number of 
oloured verti
es, i.e.
#(Amm(x)) ≤ kπ(x) ≤ π(x), and #(Amm) ≤∑

ki ≤
∑

i.2 This is true in the 
ontext of the naturally de�ned greedy algorithms r ≈ 2 [44; 71; 117℄, butother algorithms have been designed to perform better.3Note that the logarithmi
 base here is 1

1−p .
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ed 
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ost 1252. If x

d (x) refers to distin
tly 
oloured verti
es then #(Amm(x)) =
x

d (x). Oth-erwise, if x

d (x) refers to the same 
oloured verti
es as well as distin
t onesthen #(Amm(x)) =
x

d (x), sin
e merged-verti
es en
ompass the same 
olouredverti
es. Consequently,
#(Amm(x)) ≤ d(x) due to d(x) =

x

d (x) +
y

d (x), and
#(Amm) ≤∑

x

d (x) ≤∑

d(x). 2One 
onsequen
e of Corollary 11.2 tells us more. Namely, an MM based algorithm 
ouldperform better than that whi
h 
ould just 
he
k the 
oloured neighbours. However, toimplement su
h an algorithm, whi
h just 
he
ks the 
oloured neighbours, we have touse additional 
omputation e�orts. Thus an MM algorithm performs even better.In Figure 11.1(a), we show how mu
h the speed of DSatur and the evolutionary algo-rithm (see Se
tion 10.1.1) in
reases when measured as the ratio of 
onstraint 
he
ksused to solve the problem when without using Merge Models and when using MergeModels on a standard test ben
hmark set of graphs (see DIMACS problems in Se
tion4.1). For DSatur, the lowest speed in
rease is 4.56, while the largest speed-up is 36.1.For the evolutionary algorithm, the lowest speed in
rease is 1.81, and the largest speed-up is 41.4. Depi
ted in Figure 11.1(b) is the 
orrelation of the speed-up ratios of thetwo algorithms with the ratio n/χ, i.e., the number of verti
es divided by the 
hromati
number. DSatur has a 
onstant of proportionality of 0.948 and an asymptoti
 errorof 10.0%, while the evolutionary algorithm has a 
onstant of proportionality of 0.695,and an asymptoti
 error of 9.8%. We predi
ted this speed-up in Se
tion 11.4, and ourtheory agrees well with the observed 
orrelation, espe
ially for DSatur.
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126 Analysis11.5 ImplementationsIn a k-
olouring, we need just |V | − k 
ontra
tion steps to get a solution instead ofthe n required by the traditional 
olouring methods, e.g. in a 
olour assignment. Alot of hardware nowadays provides CPUs with ve
tor operations, whi
h opens up thepossibility of performing the atomi
 Merge Operations in one CPU operation, therebyraising the overall e�
ien
y. Sin
e nowadays 
omputer pro
essing units (CPUs) supportparallel operations, e.g. ve
tor addition operations (VADD) or ve
tor OR operations(VOR). Hen
e, a Merge Operation may be only one instru
tion instead of n = |V | or
d(xi) instru
tions. In this 
ase at most n − k number of VADD or VOR operationsare needed for a valid 
olouring. The order of real-life graphs 
an vary from a hundredverti
es to thousands of verti
es. Using spe
ial hardware instru
tions available onmodern 
omputers, Merge Operations 
an be redu
ed to one 
omputer instru
tion.For example, a Merge Operation 
an be performed as one VADD or VOR operation ona ve
tor ma
hine, su
h as the Xbox game station [32℄. The IBM PowerPC CPU usedin an Xbox [32℄ has 49 152 (3 · 128 · 128) bits for this operation. Thus we 
an useone binary Merge Operation for graphs having at most 49 152 or one integer MergeOperation for graphs having at most 4 000 number of verti
es. The latter is due tothe fa
t, a 
ell value of an Integer Merge Matrix is always being less than n. Hen
ein the Integer 
ase the n is 
al
ulated by n ⌈log2 n⌉ = 49 152, be
ause ⌈log2 n⌉ bitsare required for ea
h of the n integer-valued 
ell of a row. Note that in the 
ase ofMerge Squares the dimension of the rows de
reases, hen
e after a 
ertain number ofmerges the further Merge Operations will require only one VADD or VOR operation.Nevertheless, having a smaller VADD of VOR size, say l, the ne
essary VADD or VORoperations are ⌈n/l⌉ (n − k), whi
h 
an still signi�
antly redu
e the 
omputationale�orts for a merge. In parti
ular, if l ≥ n, then we get ba
k the n − k as mentionedpreviously. Examples that show how su
h hardware 
an speed up 
omputation 
anbe found in surveys in [34; 141℄. In re
ent years, we have witnessed a surge inlow-
ost hardware that is 
apable of e�
iently performing spe
i�
 operations. Animportant reason behind this surge is the extensive use of Graphi
s Pro
essing Units(GPU) in 
omputer games and re
ently, in 
omputer 
onsoles. This in turn has ledto general-purpose 
omputation on GPUs, whi
h 
an provide a number of advantagesover traditional high-performan
e 
omputing fa
ilities. Spe
i�
ally, in the 
ontext ofGeneral-Purpose 
omputation on Graphi
s Pro
essing Units (GPGPU), the advantage isthat a

elerated graphi
s 
ards are now 
heap, and most desktop and laptop ma
hines
ontain one with a large number of GPUs. Their energy 
onsumption is 
onsiderablylower than that of Central Pro
essing Units (CPUs). By making use of them in a
omputational sense, we bring parallel 
omputing hardware as 
lose to the end-user aswe wish. We 
an 
ompute on their desktop or provide remote a

ess to GPUs installedelsewhere. Also, re
ent advan
ements in speed seem to be in favour of the GPU, notthe CPU [38℄. Besides hardware implementations, parallelism 
an be a
hieved via asoftware implementation as well [3℄. Parallel 
omputing on one ma
hine or distributed
omputing on several ma
hines may be also options for a software implementation.In analogy to the hardware implementations, a Merge Operation 
an be distributed



11.6 Summary 127using an appropriate software pa
kage whi
h 
an support either parallel or distributed
omputation. However, software pa
kages may have 
omputational overheads but forextremely large graphs their usage 
an be worthwhile.11.6 SummaryIn this 
hapter we analysed the appli
ation of the Merge Models from various aspe
ts.We demonstrated improvements in the performan
e of an algorithm after embedding itinto a suitable Merge Model. Without any 
hange in the algorithm steps, the represen-tation of the problem in a Merge Model provides a de
rease in the 
omputational e�ort.However, the embedding permits a natural enhan
ement of the algorithm as well. Itmay bring signi�
ant improvements in the performan
e of an existing algorithm. After,pra
ti
al implementations issues were dis
used, whi
h 
an further improve the e�
ien
yof a 
on
rete implementation of a Merge Model on a parti
ular hardware or softwareplatform.





Appendix11.7 Symmetry in the 
olour assignment
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 11.2: Di�erent optimal 
olourings for the graph shown in Figure 3.1Serial v1 v2 v3 v4 v5 v6No. 1: 1 2 3 1 3 2No. 2: 1 2 3 2 1 2No. 3: 1 2 3 2 3 2No. 4: 1 3 2 1 2 3No. 5: 1 3 2 3 1 3No. 6: 1 3 2 3 2 3No. 7: 2 1 3 1 2 1No. 8: 2 1 3 1 3 1No. 9: 2 1 3 2 3 1No. 10: 2 3 1 2 1 3No. 11: 2 3 1 3 1 3No. 12: 2 3 1 3 2 3No. 13: 3 1 2 1 2 1No. 14: 3 1 2 1 3 1No. 15: 3 1 2 3 2 1No. 16: 3 2 1 2 1 2No. 17: 3 2 1 2 3 2No. 18: 3 2 1 3 1 2Table 11.2: The all optimal 
olourings for the graph shown in Figure 3.1. In
ludingequivalent 
olourings, whi
h 
ause symmetri
 solutions. A serial number shows theappropriate 
olouring. Numbers below the header vi−s are the 
olour assignments e.g.
No.1 : c(v1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = 1, c(v5) = 3, c(v6) = 2 where c(v)is the 
olour identi�er assigned to the vertex v. Some solutions generate the samesolutions. E.g. No.1 
olouring is equivalent with No.4.129



130 Analysis11.8 Chara
teristi
 and 
hromati
 polynomials
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(b) A plot of the values of the 
hara
teristi
 poly-nomial: x6 + 0x5 − 8x4 − 4x3 + 9x2 + 4x1 − 1.Figure 11.3: The plots of di�erent polynomials of Figure 3.1



SummaryThis thesis summarises the results obtained by the author over the past few years. Theauthor developed a general framework for graph 
olouring methods, where the tradi-tional 
olouring s
heme is de�ned via spe
ial graph homomorphisms motivated by theZykov theorem [161; 162℄. These spe
ial homomorphisms proved useful in the designof algorithms by the author ([94; 96�102℄). This summary is stru
tured in a similarway to the thesis itself. The results 
an be separated into di�erent groups a

ording tothe parts of the graph 
olouring framework. The author de�ned the problem via 
er-tain graph homomorphisms using quotient and power graphs. The author 
alled theseQuotient and Power methods. Then he des
ribed these graphs and homomorphisms bymatrix representations with suitable operations, resulting in his Merge Models with hisnomen
lature. Merge Models provide a novel des
ription of the 
olouring problem. Theoperations (i.e. the Merge Operations) subsequently 
hange the state of the modeland dire
t it to a possible solution of the original graph 
olouring problem. The authordeveloped strategies in the model 
alled Merge Strategies whi
h de�ne possible dire
-tions to a solution. Furthermore, the author 
onstru
ted general frameworks (MergeFrameworks) in whi
h strategies 
an be embedded. These frameworks in 
onjun
tionwith the strategies form 
olouring algorithms (Merge Algorithms). Su
h algorithmsgenerate a sequen
e of model operations a

ording to the strategy. The end of thesequen
e is a 
andidate solution for the original problem.Quotient and Power MethodsThe author de�ned graph 
olouring pro
esses as a series of homomorphisms usingquotient or power graphs and multigraphs, where the verti
es whi
h get the same
olour will be 'glued' or 'grouped' together to form new vertex sets (see Juhos etal. [96; 100℄). The author 
alled the new 
olouring methods whi
h are based onthese prin
iples Quotient and Power methods. The goal of a Quotient and Powermethod is to �nd a homomorphism whi
h maps the original graph into a 
ompletegraph or homomorphi
 with a 
omplete graph. The homomorphism obtained de�nes a
olouring of the original graph. In order to support the design of sequential 
olouringalgorithms su
h a homomorphism is 
reated as a 
omposition of series of intermediatehomomorphisms. These homomorphisms produ
e helpful intermediate graph stru
tureswhi
h 
an be exploited for an e�
ient 
olouring and also help provide a deeper insightinto the 
olouring pro
edure. Moreover, they allow us to design e�
ient new or redesignexisting graph 
olouring algorithms in a framework supported by quotient or powergraphs (see Juhos et al. [96�102℄). 131



132 AnalysisMerge ModelsThe relation between the original graph 4 and a quotient or power graph/multigraphis de�ned by a graph homomorphism. The author introdu
ed four kinds of matrixoperations, 
alled Merge Operations (or 'merges' for short) to map the adja
en
y matrixof the original graph to its four di�erent homomorphi
 images: 
alled Binary/IntegerMerge Square/Table Matri
es or put brie�y Merge Matri
es), respe
tively, and thensubsequent Merge Operations will produ
e vertex 
olouring [96; 100℄. The authorshowed that Merge Operations produ
e appropriate homomorphi
 images of the originalproblem, modelling the original graph 
olouring problem. Ea
h row of a Merge Matrix
orresponds with an independent set in the original graph. Note that 
olour 
lassesare independent sets, and ea
h vertex 
onstitutes a one-element independent set in theoriginal graph. All the models have their own strong points, and they 
an assist ea
hother indi�erent ways. The author obtained signi�
ant improvements both theoreti
allyand via experiments when an algorithm applied one of these models [99℄. Exploitingtheir good performan
e, the author designed powerful graph 
olouring algorithms in[94; 97�99; 101; 102℄.Merge FrameworksMerge Models provide a model for the graph 
olouring problem via matrix representa-tions and operations. The author introdu
ed three general frameworks for graph 
olour-ing algorithms supported by Merge Models in [100; 101℄. These are generalisations ofthe traditional sequential 
olouring s
hemes. Merge Models repla
e the 
olour assign-ment operation with a Merge Operation, and this eliminates the di�eren
e between the
olour sele
tion and the vertex sele
tion strategies. Merge Models de�ne these di�erentsele
tion strategies in a 
ommon way as a 
ommon row sele
tion strategy. Therefore,a general row sele
tion strategy 
an operate as a 
oloured or un
oloured row sele
tionwhen we would like to model the traditional sele
tion strategies. Here the 
olours onlyindi
ate whether a row has already been taken into a

ount in the merge pro
ess. De-pending on the order of the sele
tion of the di�erent state (
oloured/un
oloured) rowstwo general framework 
an be de�ned: either we 
hoose an un
oloured row �rst andthen 
hoose a suitable 
oloured one (UC Merge Framework) or, 
onversely, we 
an
hoose a 
oloured �rst and then �nd an appropriate un
oloured row for the merge (CUMerge Framework) [100℄. The UC and the CU frameworks provide a generalisation ofthe sequential 
olouring s
hemes. In fa
t there is no need to distinguish between the
oloured or un
oloured states of the rows; just take the set of rows and apply a 
ommon
choose strategy suitable for all of them. After, sele
t an arbitrary row-pair from theMerge Matrix by a strategy and merge them. This approa
h is formulated in the CCMerge Framework [96℄. The rows of the Merge Matrix 
orrespond to 
olour 
lasses,i.e. independent sets. An algorithm in a CC Merge Framework sele
ts two 
olour
lasses/independent sets and 
reates the union of them in the traditional sense. These4Or an equivalent reformulation of the original graph.



Summary 133general frameworks with the new Merge Models support a 
ommon stru
tural analysisof the existing and novel graph 
olouring methods, as shown in [97; 99; 101; 102℄. Allof these frameworks are de�ned in a uni�ed manner using the Merge Model s
heme.An algorithm in one of these frameworks applies a subsequent sele
tion of rows of themerge matri
es and merges them to a
hieve a 
olouring. None of these frameworks hasa 
on
rete strategy for the 
hoi
e of rows for merging. A framework with a 
on
rete
hoi
e strategy, i.e. Merge Strategy, forms a parti
ular algorithm.Merge StrategiesIn order to get a 
olouring algorithm, the algorithm steps must be de�ned; that is, asequen
e of the Merge Operations. A Merge Operation takes two rows/
olumns of aMerge Matrix and produ
es a new Merge Matrix if the merge 
ondition allows it. Byrepeating Merge Operations we will end up with a �nal Merge Matrix where a MergeOperation is no longer possible. The sequen
e of the Merge Operations is 
ru
ial. Itdetermines the quality of the solution, i.e. the number of 
olours used in the 
olouring ofthe original graph. The author des
ribed various Merge Strategies in order to generatee�
ient merge sequen
es, as des
ribed in [94; 96�102℄. These strategies proved usefulin the theoreti
al and experimental parts of our analysis. The novel des
ription of the
olouring pro
ess provides new aspe
ts whi
h 
an be exploited in the design and analysisof Merge Strategies, as des
ribed in the following. This strategies assume Binary MergeModels, but their integer extensions are also available. The importan
e of the IntegerModels are dis
ussed separately. They support the algorithm design, e.g. ba
ktra
kingor tie breaking, as shown in [99℄.The longest merge sequen
e. Sin
e the Merge Matrix rows 
orrespond to 
olour
lasses, the main aim is to redu
e the number of rows by 
onse
utive merges. Thelongest merge sequen
e produ
es the fewest rows. The author in [97℄ introdu
ed twonovel strategies to generate the longest merge sequen
e. The Dot Produ
t Strategyfo
uses on the evolution of the number of non-zero elements during su

essive mergesand attempts to keep them as low as possible. Though the non-zero elements in aMerge Matrix frustrate the merges, the number of zeros assist them. Hen
e the CosineStrategy takes the number of non-zero elements into a

ount, but also 
onsiders thenumber of zeros present.Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matri
es.It is reasonable be
ause the rows of the adja
en
y matrix whi
h 
orrespond to the same
oloured verti
es in an optimal solution are almost parallel. Their parallel behaviourbe
omes 
learer with ea
h su

essive merge. In the 
ase of Merge Square Model, thereis a 
ertain modi�
ation of the Merge Matri
es based on a semi-de�nite optimisationby Karger et al. [103℄, whi
h further supports the Cosine strategy. Exploiting this fa
t,the author in [94; 102℄ de�ned the Zykov-tree and Lovász-theta strategy.Colour similarities In fa
t a Zykov-tree and Lovász-theta strategy is based on theestimation of the 
olour similarities of the verti
es of the quotient graphs. The ad-ja
en
y matrix des
ribes an exa
t 
olour dissimilarity relation, where the verti
es in



134 Analysis(edge-)relation 
annot get the same 
olour. The opposite approa
h is the 
olour sim-ilarity relation. A parti
ular 
olouring 
an be de�ned via a 
olour similarity relationbetween the verti
es, where only the same 
oloured verti
es are in
luded in the rela-tion. This relation 
an be represented by a {0, 1}-matrix, namely a 
olouring matrix.It des
ribes whether two verti
es are 
oloured with the same or di�erent 
olours. Al-though the optimal solutions 
an be represented in this form, they are unknown be
ausethey are the solutions of the problem. Despite this, their average 
an be approximatedby a solution of a semi-de�nite program (see Karger et al. [103℄), whi
h provides theLovász-theta. Hen
e, a non-exa
t, an approximated 
olour similarity relation be
omesavailable between the verti
es. This 
an be des
ribed by a real-valued matrix, wherethe largest and the smallest values 
ontain valuable information. Using this informationand Zykov's work in [161; 162℄, the author 
reated the Zykov-tree and Lovász-thetastrategy in [94; 102℄, where quotient graph verti
es are 
onne
ted or merged a

ordingto their approximated similarities. The approximation be
omes more exa
t with ea
hsu

essive merge supporting more 
on�dent de
isions of this strategy.Norm minimisation in the resulting state. The Dot Produ
t Strategy sele
ts tworows whi
h produ
e the maximum dot produ
t, then merges them. This introdu
es aminimisation in the entrywise norms in the resulting Merge Matrix. A �nal Merge Ma-trix whi
h 
orresponds to an optimal solution has the smallest entrywise norm amongthe possible merge matri
es (homomorphi
 images). Hen
e, the entrywise norm min-imisation approa
h is reasonable. In addition su
h a Merge Matrix has minimal indu
ednorms as well. This observation led us to apply the steepest des
ent norm minimi-sation strategy, in parti
ular the steepest des
ent Spe
tral Norm Strategy, whi
h wasintrodu
ed by the author in [101℄ and was found to be an e�
ient strategy.The Spe
tral Norm Strategy must �rst make several trial merges. With the resultingtrial merge matri
es, this strategy makes spe
tral norm 
al
ulations to 
reate a sele
tionof a row-pair for merging. Cal
ulating the spe
tral norm is 
omputationally expensive,but Merikoski and Kumar on
e introdu
ed an e�
ient spe
tral norm approximation in[123℄. Based on their results, the author adapted his Spe
tral Norm Strategy to anapproximated spe
tral norm strategy [101℄. Owing to this, this strategy 
an exploit anupdate me
hanism where an investigation of the resulting Merge Matri
es is no longerneeded as it is just based on the 
urrent Merge Matrix. In addition this reformulationrevealed a 
onne
tion with the Dot Produ
t strategy.Matrix properties � Merge Paths The author introdu
ed the notion of Merge Paths[101℄. Certain graph properties like matrix norms may be evaluated during the sele
tionof two rows for a Merge Operation. Gathering these graph properties into a ve
tor(e.g. eigenvalues) they form the basis of the de
ision. The 
hanges of the propertyve
tor during the merge pro
ess des
ribe a path 
alled the Merge Path. This path isresponsible for determining the 
olouring and the end of the path de�nes the quality ofthe 
olouring.Unfortunately, the ideal path (whi
h results in an optimal solution) is of 
ourseunknown; the task of 
olouring is to �nd this path. The author introdu
ed a generalstrategy whi
h approximates an optimal Merge Path [101℄. The start and the end



Summary 135points of the path are usually known and the 
urve of the path may be estimated byusing preliminary knowledge. In order to build the knowledge base the Merge Pathapproa
h 
an be 
ombined with arti�
ial intelligen
e methods, su
h as the instan
ebased learning or 
lustering in a

ordan
e with the results des
ribed in [95℄.Enhan
ed heuristi
s and meta-heuristi
s A non-merge based 
olour strategy 
anbe extended and enhan
ed by reformulating the strategy in a Merge Model. A BinaryMerge Square 5 is the adja
en
y matrix of a quotient graph. Consequently, if a strategy
an operate on the adja
en
y matrix of the original graph, then the same strategy 
an
ooperate with an merged adja
en
y matrix with an intermediate Merge Square as well.It introdu
es a dynami
 re
onsideration pro
ess where previous de
isions of a strategy
an be revised after ea
h Merge Operation by exploiting the additional information
ontained in the intermediate matri
es. The author in [97℄ showed the e�
ien
y ofsu
h an extension.The author in [96℄ applied the stru
tural properties of the Merge Table Models in themeta-heuristi
s design. The author introdu
ed a better granular �tness fun
tion thanthe traditional one for the evolutionary solvers of the 
olouring problem. This resultedin a smoother lands
ape of the obje
tive fun
tion, whi
h in
reased the e�
ien
y of theoptimisation pro
ess. Moreover the author de�ned a mutation whi
h for
es the di�
ultverti
es by a Merge Table Model (for whi
h the 
olouring is problemati
) in advan
ein the merge/
olour assignment.Merge AlgorithmsThe author in [94; 96�102℄ 
ombined various novel Merge Strategies with di�erentMerge Frameworks and analysed their performan
e. The algorithms were 
omparedwith standard ben
hmark algorithms on various ben
hmark graphs. The experimentalanalysis showed that the novel Merge Algorithms perform well in the 
omparison. Theygenerally outperformed the ben
hmark algorithms espe
ially in the phase transitionregion where the problems be
ome hard.Con
lusionsThe new 
olouring approa
h presented in this thesis demonstrates that graph 
olouring
an be e�e
tively modelled by quotient or power graphs. It provides a potential redu
-tion in 
omputational 
ost, as well as a uniform and 
ompa
t way in whi
h algorithms
an be de�ned. Embedding algorithms in the framework supports both their stru
turaland performan
e 
omparison in a 
ommon way, whi
h 
an be anyway problemati
.The framework itself generalises a formal 
olouring approa
h. Due to this generalisa-tion su
h an embedding an algorithm 
an be enhan
ed, resulting in new algorithms.The novel problem des
ription results in novel information that 
an help us to extra
tand support a new s
heme of the 
olouring pro
ess.5Usually this extension 
an be applied on the other Merge Models as well.



ÖsszefoglalásJelen értekezés összefoglalja a szerz® elmúlt évekbeli munkásságát a gráf színezés te-rületén. A szerz® kifejlesztett egy általános keretrendszert gráf színezési algoritmusokszámára, ahol a hagyományos színezés spe
iális gráf homomor�zmusokon keresztül ke-rült de�niálásra, Zykov munkássága nyomán [161; 162℄. Ezen homomor�zmusok hasz-nosnak bizonyultak az algoritmus tervezésben (lásd Juhos et al. ([94; 96�102℄). Ezenösszefoglaló az értekezés struktúráját követi.Kvó
iens és Hatvány MódszerA szerz® a gráfszínezési folyamatot kvó
iens és hatványgráfok segítségével, gráf homo-mor�zmusokon sorozatával de�niálta (lásd Juhos et al. [96; 100℄). A homomor�zmusokaz azonos szín¶ 
sú
sok következetes összehúzásából vagy 
soportba foglalásából szár-maznak. A szerz® Kvó
iens és Hatvány Módszernek nevezte el az ezen elven alapulószínezési módszereit. Ezeknek 
élja egy olyan homomor�zmus megtalálása amely azeredeti gráfot egy megfelel® teljes gráfba vagy azzal homomorf gráfba képezi. Az ígykapott homomor�zmus meghatároz egy színezést az eredeti gráfra. A szekven
iális szí-nezési eljárások támogatása végett a tekintett homomor�zmus további homomor�zmu-sok egymásutánjaként, kompozí
iójaként kerül el®állításra, megadva egy ún. közbens®homomor�zmus sorozatot. Ezen homomor�zmusok hasznos közbens® gráf struktúrákathoznak létre, amelyek vizsgálata hatékony színezési eljárásokat eredményeztek valaminta színezési folyamatba egy alternatív betekintést nyújtanak (lásd Juhos et al. [96�102℄).Merge ModellekGráf homomor�zmusok de�niálják a kap
solatot az eredeti és a kvó
iens vagy hatványgráf/multigráf között. A szerz® de�niált négy mátrix m¶veletet, amelyeket Merge M¶-veleteknek, vagy röviden Merge-nek nevezett el (lásd Juhos et al. [96; 100℄). EgyMerge M¶velet az eredeti gráf szomszédsági mátrixát képezi le egy mátrixba amely egykvó
iens gráf/multigráfot vagy hatvány gráf/multigráfot határoz meg, ezeket a szerz®Bináris/Integer Merge Square-nek és Bináris/Integer Merge Table-nek, vagy összefog-laló nevükön Merge Mátrixoknak nevezte el. Egymást követ® Merge M¶veletek sorozatahoz létre egy hagyományos értelemben vett színezést. A Merge Mátrixok sorai független
sú
s halmazokat határoznak meg. A színosztályok, valamint a 
sú
sok önmagukbanis független 
sú
shalmazokat alkotnak. A Merge M¶veletek hagyományos értelemben136



Összefoglalás 137ezek unióját jelentik. Ezen modelljét a színezésnek a szerz® Merge Modellnek nevezteel. A modell támogatja a párhuzamos szoftver és hardver implementá
iót. Egy szek-ven
iális színezési algoritmus amely ezen modellre épül jelent®s teljesítménybeli javulástkönyvelhet el. A szerz® ezen javulást elméletileg és tapasztalatilag is alátámasztotta(lásd Juhos et al. [99℄) valamint hatékony új színezési eljárásokat dolgozott ki ezenmodellek segítségével [94; 97�99; 101; 102℄.Merge KeretrendszerA Merge Modellek a gráfszínezést mátrix reprezentá
ió és spe
iális m¶veletek útjánde�niálják. A szerz® kidolgozott három általános keretrendszert amelyek absztrakt szí-nezési algoritmusokat határoznak meg (lásd Juhos et al. [100; 101℄). Ezen absztrak
iókaz általánosításai a tradi
ionális színezési sémáknak. A Merge M¶veletek helyettesítika hagyományos értelemben vett színezést. A Merge Modellekben elt¶nik a különbség aszín és a 
sú
s kiválasztási stratégiák között. Elegend® egy általános sorválasztási stra-tégiát meghatározni, amely alkalmas színezett vagy színezetlent sorok kiválasztására is,ha a tradi
ionális színezési sémákat akarjuk követni. Azonban itt a színek 
sak jelzésérték¶ek, jelzik, hogy egy sor érintett volt-e már a Merge M¶veletben. Attól függ®en,hogy milyen sorrendben választjuk ki a különböz® állapotú (színezett/színezetlen) soro-kat kaphatunk két eltér® keretrendszert: vagy el®ször egy színezetlen (Un
oloured) sortválasztunk, majd egy színezettet (Coloured) a Merge M¶velethez (UC Merge Keretrend-szer) vagy fordítva (CU Merge Keretrendszer). Ezen keretrendszerek általánosításai ahagyományos színezési sémának (lásd Juhos et al. [100℄). Valójában nem szükségesmegkülönböztetni a színezett és színezetlen státuszokat, egy kiválasztási stratégia vá-laszthatna tetsz®leges két sort egy Merge Mátrixból, hogy végrehajtsa rajtuk a MergeM¶veletet. Ez a megközelítés a CC Merge Keretrendszerben lett de�niálva (lásd Juhoset al. [96℄). Egy sor a Merge Mátrixban egy színosztályt azonosít, azaz független 
sú
s-halmazt. Hagyományos értelemben a CC Merge Keretrendszerben egy algoritmus kétszínosztályt/független 
sú
shalmazt választ majd ezek unióját képezi. Ezen keretrend-szerek az új színezési modellel támogatják az egységes algoritmus analízist (lásd Juhoset al. [97; 99; 101; 102℄). Mindhárom keretrendszer egy egységes szerkezetet tükröz.Az algoritmusok ezen keretrendszerekben Merge Mátrix sorok sorozatos kiválasztásátvégzik, majd végrehajtanak rajtuk egy Merge M¶veletet, mely eredményeképpen el®állegy színezés. Egyik általános keretrendszernek sin
s konkrét sorkiválasztási stratégiája.A keretrendszerek konkrét kiválasztási stratégiákkal alkotnak algoritmusokat.Merge StratégiákA Merge Algoritmusok minden lépésben egy Merge M¶veleteket hajtanak végre a MergeMátrix két kiválasztott során. A sorok kiválasztásához valamilyen kiválasztási straté-giára (stratégiákra) van szükség. A sorozatos Merge M¶veletek végén az záró MergeMátrix áll amelyen további Merge M¶velet nem végezhet®. A sorok kiválasztása a m¶ve-



138 Analysislet végrehajtások során fontos ez határozza meg a színezés min®ségét, azaz, hogy hányszínt használtunk fel az elért színezésben. A szerz® különböz® sorkiválasztási stratégi-ákat, Merge Stratégiákat határozott meg, amelyek segítik a hatékony sorkiválasztást,melyeket elméletileg és tapasztalati úton is elemzett (lásd Juhos et al. [94; 96�102℄).A felsorolt stratégiák Bináris Merge Modelleket feltételeznek, bár Integer Modellbelipárjuk is megadható. Az Integer Modellek az algoritmus tervezésben nyújtanak számostámogatást, mint például a visszalépés vagy a másodlagos döntéshozatal (lásd Juhoset al. [99℄).A leghosszabb Merge sorozat. Mivel a Merge Mátrix sorok színosztályokat azono-sítanak. Ennélfogva a 
él a sorok számának 
sökkentése. Ezt a leghosszabb Mergesorozattal létrehozásával érhetjük el. Ennek érdekében a szerz® bevezetett két stra-tégiát (lásd Juhos et al. [97℄). A Dot Produ
t Stratégia nem-zéró elemek alakulásátköveti nyomon a Merge-k során. Megkísérli azok számát minimálisan tartani. A Bár anem-zéró elemek meggátolhatják a Merge M¶veleteket, a zéró elemek segítenek támo-gatják azokat. Így a Cosine Stratégia �gyelembe veszi mindkett® alakulását a Merge-ksorán és annak megfelel®en alakítja a sor kiválasztásokat.Párhuzamos sorok. A Cosine Stratégia el®nyben részesíti a párhuzamos sorokat aMerge Mátrixokban. Ez ésszer¶ választás azért is mert a szomszédsági mátrix soraiamelyek azonos színosztályhoz tartoznak egy optimális színezésben majdnem párhuza-mosak. A Merge-k során a keletkez® kvó
iens gráfokhoz tartozó Merge Square Mátri-xokban ez a párhuzamos tulajdonság egyre karakteresebbé válik. A Merge Square-ekésszer¶ módosításai Karger et al. [103℄ munkássága nyomán további támogatást nyújta Cosine stratégia számára. Felhasználva ezt az szerz® de�niálta a Zykov-fa és Lovász-theta stratégiát (lásd Juhos et. al. [94; 102℄)Szín hasonlóság Valójában a Zykov-fa és Lovász-theta stratégia a 
sú
sok szín ha-sonlóságának be
slésén alapszik. A szomszédsági mátrix egy szín különböz®ségi relá
ióthatároz meg, mivel a 
sú
sok amelyek (él-)relá
ióban vannak nem színezhet®k azono-san. Ennek ellenkez®je a színezési relá
ió. Egy színezés megadható egy szín hasonlóságirelá
ió meghatározásával, itt 
sak az azonos 
sú
sok állnak relá
ióban. A relá
ió egy
{0, 1}−mátrixszal kifejezhet®, ez a színezési mátrix. Ez megadja, hogy két 
sú
s azo-nos szín¶ vagy különböz®. Bár az optimális színezések mátrixa is megadható eképpen,ezek alkotják a feladat megoldását, tehát ezekre nem támaszkodhatunk. Noha ezeknem ismertek, az átlaguk közelíthet® egy szemi-de�nit program megoldásával amely aLovász-theta-t is szolgáltatja eredményül. Így egy közelített szín hasonlósági relá
iótkapunk. Amely egy valós érték¶ mátrixszal írható le, melyben a legnagyobb és legki-sebb elemek fontos informá
iót hordoznak. A szerz® ezen informá
iókat valamint Zykovmunkásságát felhasználva (lásd [161; 162℄) elkészítette Zykov-fa és Lovász-theta stra-tégiát. Ahol egy kvó
iens gráf 
sú
sai összekötend®k vagy Merge-lend®k a ki
si illetvenagy közelített hasonlósági értékeknek megfelel®en. Az összekötési (él hozzáadási) ésMerge M¶veletek során a hasonlóság egyre karakterisztikusabbá válik, támogatva ezzelaz egyre értékesebb sor kiválasztásokat.Norma minimalizálás az eredményben. A Dot Produ
t Stratégia azt a két sort vá-lasztja ki Merge-elésre, amelyeknek maximális a skaláris szorzatuk. Ez az eredmény



Összefoglalás 139Merge Mátrixban az elemenkénti normák minimalizálását eredményezi. A záró MergeMátrix, ami egy optimális megoldáshoz tartozik, rendelkezik a legkisebb elemenkéntimátrixnormával az összes lehetséges záró mátrix közül. Emiatt az elemenkénti normaminimalizálása ésszer¶ stratégia. Továbbá egy optimális zárómátrixnál a származtatottmátrixnormák is minimálisak. Ez a meg�gyelés vezetett a szerz® legnagyobb norma
sökkentés stratégiájához (lásd Juhos et al. [101℄). Spe
iális esetben ez a spektrál-norma minimalizálási stratégiához vezet, amely a legkisebb a származtatott normákközött és ennélfogva jó karakterizá
iója egy mátrixnak. A szerz® a spektrálnorma mi-nimalizálási stratégiát elemezte, amely hatékonynak bizonyult az elemzések során. Aspektrálnorma próba Merge-ket kell, hogy végezzen. Az eredmény mátrix normája ha-tározza meg a kiválasztási stratégiát. Ez számításigényes feladat. Merikoski és Kumarmegadott több hatékony spektrálnorma közelítési formulát. (lásd [123℄). Felhasználvaezen formulákat a szerz® adaptálta a Spektrálnorma stratégiát és közelített spektrál-norma stratégiákat vezetett be (lásd Juhos et al. [101℄). A közelítéssel lehet®ség nyílika választási stratégia közvetlen meghatározására az aktuális Merge Mátrixból próbaMerge-ek nélkül. Továbbá a közelít® formula rámutat a Dot Produ
t Stratégiával valóhasonlóságra.Mátrix tulajdonságok � Merge Útvonal A Merge sorozatok nyomán a mátrixoktulajdonságai követhet®k. A kívánt mátrix tulajdonságokból alkossunk egy tulajdon-ságvektort. Ezek a vektorok alkothatják az alapját a kiválasztási stratégiáknak. Azegymást követ® tulajdonságvektorok egy útvonalat, a Merge útvonalat, határoznakmeg (lásd Juhos et al. [101℄). Ez az útvonal elemei összefüggésben vannak a színezéslépéseivel az útvonal vége pedig a színezés jóságával. Az ideális útvonal amely opti-mális színezéshez vezethet nem ismert, mert a feladat egy ilyen útvonal megtalálása.Az optimális útvonal kezd® és a végpontjai általában ismertek, a szerz® bevezetett egyáltalános stratégiát amely az optimális Merge Útvonal közelítésén alapszik (lásd Juhoset al. [101℄) felhasználva egy el®zetes tudást. Az el®zetes tudás megszerzése a szerz® aMerge Útvonal kon
ep
iót intelligens tanulási és klaszterezési eljárásokkal ötvözte (lásdJuhos et al. [95℄).Kiterjesztett heurisztikák és meta-heurisztikák A szerz® a nem Merge alapú színezésistratégiák egy Merge kiterjesztését határozta meg, az illet® stratégiák egy megfelel®Merge Modellbe való beágyazásával (lásd Juhos et al. [97℄). A kiterjesztet straté-giák teljesítményének elméleti és tapasztalati vizsgálata javulást mutatott az eredetihezképest. A kiterjesztés egyik a Bináris Merge Square-ek példáján egyszer¶en nyomonkövethet®, habár általában a kiterjesztés a többi Merge Modellre is érvényes. A szom-szédsági mátrixa egy kvó
iens gráfnak. Így egy stratégia amely az eredeti gráf szom-szédsági mátrixán m¶ködik, az egy Merge Square Modellel képes együttm¶ködni. Ezlehet®séget biztosít egy dinamikus felülvizsgálati eljárásra amely során minden MergeM¶velet után, a stratégia képes el®z® döntéseit megváltoztatni, azon új informá
iókalapján amely a keletkez® Merge Mátrixban elérhet®.A Merge Modellek strukturális jellemz®i támogatást nyújtanak meta-heurisztikáktervezéséhez is (lásd Juhos et al. [96℄). A szerz® gráfszínezési evolú
iós algoritmusokszámára de�niált a Merge Table modellek segítségével egy �nomított �tnesz függvényt



140 Analysisa hagyományosan alkalmazott �tnesz javításaként. Melynek eredményeként egy simábboptimalizálási felületet kapunk, amely növeli az optimalizálás hatékonyságát. Továbbáegy mutá
ió operátort de�niált amely a színezésben a Merge Modellek alapján nehezenszínezhet® 
sú
sokat el®reveszi a színezési folyamatban.Merge AlgoritmusokA szerz® kombinálta a Merge Stratégiáit a különböz® Merge Keretrendszereivel vala-mint elemezte ezek teljesítményét (lásd Juhos et al. [94; 96�102℄). Az így keletke-zett algoritmusok összehasonlításra kerültek standard 'ben
hmark' eljárásokkal számos'ben
hmark' gráfon. A kísérleti eredmények igazolták a szerz® algoritmusainak haté-konyságát, melyek általában felülmúlták a 'ben
hmark' eljárásokat különösképpen azún. 'phase transition' területen ahol az igazán nehéz problémák találhatók.KonklúzióA szerz® új színezési megközelítése a gráfszínezés hatékony modelljének bizonyult. Je-lent®s 
sökkentést hozhat az algoritmusok számítási komplexitásában. Továbbá egy-séges és tömör leírását biztosítja a színezési eljárásoknak, biztosítva ezzel az egységesszerkezetben vett strukturális elemzését. Az algoritmusok implementálása ezen közösmódon lehet®séget biztosít az egységes teljesítmény mérésre. Az új színezési keretrend-szer általánosítja az eddig színezési sémákat. Ezen általánosítás következményekéntegy algoritmus beágyazása a modellbe annak kib®vítése mellett teljesítmény javulássalis járhat. Ezen új megközelítés új informá
ió kinyerési te
hnikákat is támogat amely azalgoritmus tervezésben segíthet valamint új irányokat adhat a probléma elemzéséhez.
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