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Preface

History of graph colouring.

The first results about graph colouring deal almost exclusively with planar graphs in
the form of map colouring. When trying to colour a map of the counties of England,
Francis Guthrie postulated the four colour conjecture, noting that four colours were
sufficient to colour the map, so that no regions sharing a common border got the same
colour. Guthrie's brother passed on the question to his mathematics teacher Augustus
de Morgan at University College London, who mentioned it in a letter to William
Hamilton in 1852. Arthur Cayley raised the problem at a meeting of the London
Mathematical Society in 1879. The same year, Alfred Kempe published a paper that
claimed to have settled the question, and for a decade the four colour problem was
considered solved. For his accomplishment Kempe was elected a fellow of the Royal
Society and later President of the London Mathematical Society [106].

In 1890, Heawood pointed out that Kempe's argument was faulty. However, in that
paper he proved the five colour theorem, saying that every planar map can be coloured
with no more than five colours, using ideas of Kempe. In the following century, a
vast amount of work and theories were developed to reduce the number of colours to
four, until the four colour theorem was finally proved in 1976 by Kenneth Appel and
Wolfgang Haken. Perhaps surprisingly, the proof went back to the ideas of Heawood
and Kempe and largely disregarded the intervening developments [156]. The proof of
the four colour theorem is also noteworthy for being the first major computer-aided
proof.

In 1912, George David Birkhoff introduced the chromatic polynomial to study the
colouring problems, which was generalised to the Tutte polynomial by Tutte, important
structures in algebraic graph theory. Kempe had already drawn attention to the general,
non-planar case in 1879 [90], and many results on generalisations of planar graph
colouring to surfaces of higher order followed in the early 20th century.

Graph colouring has been studied as an algorithmic problem since the early 1970s.
The chromatic number problem is one of Karp's 21 NP-complete problems from 1972,
around the time of various exponential-time algorithms based on backtracking and
heuristics. One of the major applications of graph colouring — register allocation in
compilers — was introduced in 1981.

This thesis was motivated by Zykov's result in 1949, where he introduced his
deletion—contraction recurrence theorem in [161; 162]. Though this theorem is well-

vil
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known in the literature, it has not received much attention in the algorithm design field
until now. Zykov's approach makes a connection between different graphs through his
edge deletion and vertex contraction operations. From a colouring point of view, these
graphs may have the same properties. As Hell and Nesetfil describe in their work [85] in
2004, these operations can be expressed through graph homomorphisms. However, the
homomorphism approach does not provide any implementation or any algorithm, but
the approach motivates algorithmic steps. The author designed special homomorphism
classes for the graph colouring problem with different implementations in ([96-101]).
Despite the implementations being different, a general framework has been worked out
to form a basis for a new colouring approach. This thesis is about the author’s results
and it contains various novel colouring strategies within a new framework.

Istvan Juhos
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Notation

Xij or T;;
xVy

Xy or(x,y)
XKy
Diag(x)

e

I

J

Ji

pii

XVY

XeY or (X,Y)
XoY
diag(X)

()"

the set of all natural numbers
the set of all real numbers
column vector of real numbers

transpose of vector x, a row vector
-1
p—norm of vector x: (D, |x;|*)7

Length of vector x: ||x| = ||x]|2
117
= 0.

Vectors x and y are orthogonal: ||;(|\||§,||

Vectors x and y are parallel:

i—th component of vector x
a matrix of real numbers

Induced i—norm of matrix X: || X]||; = max { ”ﬁ;’ﬂ"‘i}

Entrywise 2—norm of matrix X: />~ - X7

i—-th row of matrix X

j—th column of matrix X.

(i,7) element of matrix X: z;; :== Xj;

element-wise OR operation between two binary {0, 1}" vectors x and y
dot product of vectors x and y: xTy

dyadic product of vectors x and y: xyT

Zero matrix with x in the main diagonal. Direct sum of the elements: P, x;
vector of all ones.

identity matrix: Diag(e).

matrix with all its entries being one: e ® e.

a matrix, where entry J;; = 1, otherwise zero: J¥ = I; ® ;.

a permutation matrix: I — J% + J¥.

element-wise OR operation between two binary {0, 1}"*" matrices X and Y
sum of element-wise product of matrices X and Y (see dot product).
element-wise product of matrices X and Y (Hadamard-Schur product).
a vector formed by the main diagonal of the X matrix: (X o) e

a graph: G = (V,E) or G = (Vg, Eg)

vertex set

edgeset: FCV xV

colour set

adjacency matrix of graph G (abbreviated form: A)

select coloured objects, e.g. coloured vertices 1V

select uncoloured objects, e.g. uncoloured vertices V"
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N S0 & x ™3I 3

)
I

=
=

~—

=,

O(g(x))

number of vertices: |V

number of edges: |F|

number of colours: |C]

chromatic number

clique number

independence number

Lovasz-theta

permutation of {1,2,...,n} elements

The Kronecker delta function. [x =] =1 and if y # z, then [z = y] = 0.
|f(x)] <c-|g(x)|, where ¢ > 0 for z > x¢, f and g are functions of x
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Chapter 1

Introduction

1.1 Contributions of the thesis

This thesis offers a general framework for graph colouring methods, where the tra-
ditional colouring scheme is defined via special graph homomorphisms motivated by
[85; 161; 162]. These special homomorphisms proved useful in the design of algorithms
by the author ([94; 96-102]). Three main reasons can be given for why this framework
is useful.

First, this approach in general provides a potential decrease of the computational
cost of colouring algorithms. In order to achieve this goal, special homomorphisms
are applied which subsequently reduce the problem. In a parallel implementation, these
reduction steps can be performed as one atomic operation, hence they do not introduce
any extra computational effort. This helps algorithms to run faster.

Second, it provides a uniform and compact way in which algorithms can be defined.
Embedding algorithms in the same common framework supports both their structural
and performance comparison, which can be anyway problematic. Furthermore, it may
give a deeper and comparable insight into the structure of algorithms. The framework
itself generalises the formal colouring approach. With this generalisation an algorithm
can be extended in a natural way, which may result in new algorithms.

Third, it opens the way to novel applications that extract useful information to help
algorithms during their search. On one hand, a problem reduction step may reveal the
skeleton of the problem and this may lead to a reconsideration of previous assumptions
in a strategy. Hence existing algorithms can be enhanced after being embedded in the
framework. On the other hand, the novel problem description results in novel informa-
tion that can be used to extract and support a new scheme of the colouring process
where new aspects can be identified.

This thesis has been organised so as to demonstrate and highlight these advantages via
examples, experimental results and theoretical observations.



2 Introduction

1.2 Overview of the Thesis

This thesis summarises the results obtained by the author over the past few years.
The results can be separated into different groups according to the parts of the graph
colouring framework developed by the author:

Concept The author defined the problem via certain graph homomorphisms. The
author called these Quotient and Power methods.

Model The author described the concepts by concrete representations with suitable
operations, resulting in his Merge Models with his nomenclature. Merge Models
provide a novel description of the colouring problem. The operations, i.e. the
Merge Operations, subsequently change the state of the model and direct it to a
possible solution of the original graph colouring problem.

Strategy The author developed strategies in the model (Merge Strategies), which
define possible directions toward a solution.

Algorithm The author constructed general frameworks (Merge Frameworks) in which
strategies can be embedded. These frameworks in conjunction with the strate-
gies form colouring algorithms (Merge Algorithms). Such algorithms generate a
sequence of model operations according to the strategy to provide a candidate
solution for the original problem.

Thesis points according to the author’s publications [94-102]

THESIS 1 The author, applying certain graph homomorphisms, defined two gen-
eral concepts to redefine the graph colouring problem, namely the Quotient
and Power methods [96; 99; 100]. He provided a concrete description of
the general methods using matrix representations and Merge Operation of
the rows or columns. He called these descriptions Merge Models. Based
on the Merge Models the original problem undergoes an evolution and pro-
duces homomorphic graph images. These models can be a basis of novel
and existing algorithms too. Embedding an algorithm into a Merge Model
may considerably decrease its computational efforts. Moreover, such an
embedding supports the structural analysis of the algorithms in a common
way and makes available a natural extension of them, which may result in
an increase in their performance. Traditional colouring schemes distinguish
between the colours and the vertices of the graph. Merge Models integrate
them into one single object. This anticipates a uniform algorithm design,
where colour choices do not differ from the vertex choices.

THESIS 2 Based on the Merge Models of the colouring, the author unified and
generalised the formal sequential colouring model in three different Merge
Frameworks [100; 101]. These frameworks provide a uniform and com-
pact description in which algorithms can be defined and analysed in the
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same systematic way. Furthermore, exploiting the uniform description, he
sketched some explanations of how the structure of algorithms can have an
influence on the overall performance. Existing sequential colouring algo-
rithms fit into one of the Merge Frameworks, and the frameworks provide
novel approaches for algorithm design.

THESIS 3 The author provided a way to reduce the computational cost of colour-
ing algorithms after embedding them into a Merge Framework [97; 99].
This improvement was demonstrated and analysed via experiments as well.
In the experiments he analysed the phase transitions of different algorithms
implemented in different Merge Frameworks. Furthermore, the author pro-
vided a natural extension of sequential colouring algorithms in the Merge
Framework, which results in an increase in their efficiency.

THESIS 4 In each Merge Model the colouring operation is replaced by a Merge
Operation. Several Merge Strategies were developed by the author. Since
the models use matrix representations, he was able to define some of his
strategies by applying special matrix row operations as well as matrix norms.
The novel strategies of the author are listed below:

— Extended Hajnal; Extended Welsh-Powell (co—norm) [97]
— Spectral norm[101]

— Spectral norm approximations [101]

— Dot product (entrywise norms) [97]

— Cosine [97]

— Zykov-tree and Lovasz-theta [94; 102]

These strategies can be combined with different Merge Models and Merge
Frameworks to form different algorithms. The performance analysis of
these strategies are given. The novel algorithms are compared with sev-
eral well-known benchmark algorithms. The novel algorithms outperformed
the well-known algorithms in a standard benchmark set of graph instances.
Moreover, their efficiency revealed in a more difficult-to-solve graph in-
stance set, where the graphs are generated during the phase transition
region, where finding a solution becomes really hard. In this case, the
comparison is fair; that is, it cannot be manipulated by a good choice of
the benchmark instances since the generated instances represent well all
instances from difficult-to-solve graph classes.

THESIS 5 The author introduced the notion of a Merge Path in [101]. A Merge
Path arises from the properties of the dynamically changing model during
its evolution. Elements of such a path are associated with colouring steps.
He was able to describe an abstract graph colouring approach based on
Merge Paths, which allows the application of artificial intelligence methods
in graph colouring e.g.:
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— Using a training set of known graphs, a supervised learning algorithm
[95] can learn certain optimal Merge Paths that are associated with optimal
colouring steps. Then using the learnt knowledge, colouring steps for an
unknown graph instance can be predicted.

— In an unsupervised learning task optimal Merge Paths of known
graphs are clustered. Then unknown graphs, which are not involved in
the clustering, can be classified in order to predict their properties such as
their chromatic number.

THESIS 6 He embedded his colouring strategies into a meta heuristic, an evo-
lutionary algorithm and created the following evolutionary operators for
colouring [96-98; 101] :

— A mutation operator by acquiring difficult vertices in a candidate
solution and forcing their early colouring

— A fitness function which solves the fitness granularity problem of the
colouring

These novel meta heuristic algorithms performed well in an experimental
comparison with different benchmark algorithms, on different benchmark
graphs and difficult-to-solve generated problem sets as well.

Table 1.1 contains cross-references between thesis points and publications.

[95] [ [96] [ [97] | [98] | [99] | [100] | [101] | [102]
THESIS-1 ° ° °

THESIS-2 ° °
THESIS-3 ° °

THESIS-4 ° ° °
THESIS-5 °

THESIS-6 ° ° °

Table 1.1: Cross-reference between thesis points and publications
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1.3 Overview of the chapters

This section provides an overview of how the publications of the author are related to
the chapters of the thesis as well as to the thesis points.

Chapter 1 gives an overview of the thesis.
Chapter 2 summarises necessary definitions which will be used in this thesis.

Chapter 3 introduces the Graph Colouring Problem. It consists of definitions
and analyses it from several aspects. It details important structural proper-
ties of graphs which may have an influence on the solution of the problem.
Exploiting some structural features, we offer some simplification techniques
of the original problem. Furthermore, we give an insight into the problem
difficulty by complexity results and characterise hard-to-solve problem in-
stances, which are a basis of our experimental investigations. In our analysis
various bounds are provided to restrict the search space exploration. We
overview the possible search spaces of the different representations of the
problem.

Chapter 4 outlines the related work published in this field in the literature. It
discusses some important real-life applications of graph colouring, providing
graph instances from different sources. We describe various approaches
available to solve the Graph Colouring Problem. Afterwards, we discuss
several well-known graph colouring algorithms. The algorithms detailed
with the provided graph instances serve as benchmarks in our experimental
investigations.

Chapter 5 discusses graph homomorphism approaches of the Graph Colouring
Problem and its consequences.

Chapter 6 introduces special graph homomorphisms for the colouring problem
forming the Quotient and Power methods for the Graph Colouring Problem
defined by the author in [96; 99; 100].

Chapter 7 describes the modelling of special graph homomorphisms by the so-
called Merge Models using special matrix representations and matrix op-
erations devised by the author in [96; 99; 100]. This chapter introduces
different structures which may help colouring algorithms and which employ
Merge Models.

Chapter 8 defines Merge Frameworks based on the Merge Models (see Juhos
et al. [100; 102]). These frameworks are generalisations of the traditional
sequential colouring schemes. They provide a general algorithm frame to
assist the design and implementation of colouring algorithms. These frame-
works also contain abstract strategies for the algorithm steps.
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Chapter 9 introduces novel strategies for the algorithm steps which can be

embedded into a Merge Framework to form an algorithm defined by the
author in [95-98; 101; 102]. It consists of the analysis of the strategies be-
sides their definition. The analysis shows a natural enhancement possibility
of existing strategies when they are embedded into a Merge Framework.
Example extensions are provided based on two well-known strategies. In
another result of the analysis, a general idea for the strategy design is in-
cluded, which offers a way for the application artificial intelligence methods
in the colouring process.

Chapter 10 contains different novel Merge Algorithms introduced by the author

in [96-98; 101; 102]. A Merge Framework with concrete Merge Strategies
form Merge Algorithms (colouring algorithms). A definition of well-known
benchmark algorithms in a suitable Merge Framework is provided as well.
A thorough experimental investigation compares the benchmark algorithms
with the novel Merge Algorithms on several standard benchmark problem
sets.

Chapter 11 analyses the novel Merge Models and Merge Algorithms from vari-

ous aspects, providing proofs for their efficiency. It includes efficient hard-
ware and software implementation details as well [99; 100].

Chapter 12 This chapter consists of an appendix providing further interesting

details about the Graph Colouring Problem and a summary of the thesis in
English and in Hungarian.

Table 1.2 shows cross-references between the chapters and the publications.

[95] [96] [97] [98] [99] [100] [101] [102]
Ch.6 . . o Quotient and Power methods
Ch. 7 . o o Merge Models
Ch. 8 . Merge Frameworks
Ch.9| e Merge Strategies
Ch.10 Merge Algorithms
Ch.11 ° Analysis

Table 1.2: Cross-reference between chapters and publications



Chapter 2
Preliminary definitions

This chapter summarises definitions which will be used in this thesis in accordance with
[49; 138; 150]. Some general definitions have a slight restrictions for the sake of better
utilisation in our topic.

Definition 2.1 (Graph) A graph is a pair G = (V, E) of disjoint finite sets, where
E CV x V. The elements of V' are the vertices of the graph G, the elements of E
are its edges.

Vi denotes the vertex set and E denotes the edge set of the graph G, if the graph G
must be emphasised in the notation. An edge between the vertices v and w is denoted
by vw.

Definition 2.2 (Isomorphic) G = (V, E) and G' = (V', E’) are isomorphic graphs,
if there is a bijection ¢ : V — V' withvw € E < ¢(v)p(w) € E'

Definition 2.3 (Undirected and directed graph) A graph G is said to be undi-
rected, if the relation E CV x V' is symmetric; otherwise, the graph is said to be
directed.

Unless it is explicitly stated, a graph is undirected. The edges of an undirected graph
are called undirected edges and the edges of a directed graph are called directed edges.

Definition 2.4 (Loop edge) The edge e € E of a graph G is a loop edge, if e = vv,
where v € V.

Definition 2.5 (Incident) A vertex v is incident with an edge e if v € e; then e is
an edge at v.

The two vertices incident with an edge are its endvertices or ends, and an edge joins or
connects its ends.

Definition 2.6 (Adjacent or neighbour vertices) Two vertices v and w of G are
adjacent, or neighbours, if vw € E.
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Definition 2.7 (Edge density) Let G = (V, E) be a graph. The number % is the

edge density of G.

Note that the value of (g) is the maximum number of edges in a graph.

Definition 2.8 (Empty graph) The empty graph is either the graph with no vertices
and hence no edges or any graph with no edges.

Definition 2.9 (Complete graph) G is a complete graph if all its vertices are pair-
wise adjacent. A complete graph on n vertices will be denoted by K,,.

Definition 2.10 (Regular graph) A regular graph is a graph where each vertex has
the same number of neighbours.

Definition 2.11 (Simple graph) A simple graph G is an undirected graph, which
has no loop edge.
An example of a simple graph can be seen in Figure 2.1.

V4

V= {U17U27U37U47U57U6} Us v

_ Vg V2
E = {v1vq, v9v3, V304, V4U5, UsUg, UgU1, V31, U3Ug }

(%1

Figure 2.1: A simple graph

Definition 2.12 (Multigraph) A multigraph is a pair (V,E), which contains a vertex
set V and an edge multiset £. Where £ consist of edges between any two vertices and
multiple edges are permitted.

If V! CV, then G — V' is obtained from G by deleting all the vertices in V' NV and
their incident edges. If V' = {v} is a singleton, G — v is written rather than G — {v}.
For ' CV xV,G—E =(V,E\FE)and G+ E = (V,E U E'); furthermore for
e € E, G—{e} and G + {e} are abbreviated to G — e and G + e.

Definition 2.13 (Complement graph) G is the complement graph of graph G, if
VG:VG’ andE(;:VG X VGf\EGf.

Definition 2.14 (Sub-graph) G'(V', E’) is a sub-graph of G = (V, E), if V! C V
and E' C E. Denote it by G' C G.



For example H = (V' E’) is a sub-graph of Figure 2.1, if V' = {vy,v9,v3} and
E' = {{v1, v}, {ve,v3},{vs,v1}}. The graph H is a complete graph on three vertices,
namely the Kj.

Definition 2.15 (Clique) A clique is a complete sub-graph of a graph.

Since H is a complete sub-graph of G, therefore it is a clique in G.

Definition 2.16 (Maximal clique) A maximal clique is a complete sub-graph that
is not contained in any other complete sub-graph

Definition 2.17 (Maximum clique) A maximum clique is a clique containing the
largest possible number of vertices.

A maximum clique is necessarily maximal, but the converse does not hold. Take v, and
vs vertices of Figure 2.1 with the edge between them. They form a complete graph
on two vertices, called K5. This K5 is not part of a larger clique in G, hence it is a
maximal clique, but not a maximum because graph H, which is a K3 is larger clique.
H is the largest clique, and hence it is a maximal clique. Although, H is not unique.
There may be more than one maximum and consequently several maximal cliques in
a graph. Vertices vy, v3, vg with edges between them also form a K3 clique, which is
maximal too.

Definition 2.18 (Independent set) An independent set of a graph is a subset of
vertices such that no two of them are mutually adjacent.

There is a strong connection between cliques and independent sets since an independent
set of a graph is a clique in the complement graph.

Definition 2.19 (Maximal independent set) A maximal independent set is an in-
dependent set that is not a subset of any other independent set.

A graph may have different maximal independent sets of widely varying sizes as we saw
in the case of cliques.

Definition 2.20 (Maximum independent set) A maximum independent set is an
independent set containing the largest possible number of vertices.

A vertex which is not in a maximum independent set must be connected to a member
of the set. Otherwise, the vertex in question should be member of the maximal inde-
pendent set. Take an example vertex set S = {vy,v3,v5} from our example graph in
Figure 2.1. It is a maximum independent set and the vertices which are not included
{ve,v4,v6} are adjacent to one of the vertex in this set and form another maximal
independent set.

Definition 2.21 (Neighbour set) Let G be a graph and v € V. Neighbour set is
the set of neighbour vertices of v and denoted by N(v): N(v) = {w : vw € E}.
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N(.) can be extended to set of vertices. If S'is a set of vertices, then N(5) = [ J,cq N(v).
If S is a maximum independent set of graph G, then V'\ S = N(S) Otherwise, if there
was a vertex u ¢ N(.S) then S would not be maximum, since S U u would be a larger
independent set.

Definition 2.22 (Vertex degree) The degree of a vertex v is the number of its
neighbours: d(v) = |N(v)|.

The minimal vertex degree in a graph is denoted by §, while the maximum is denoted
by A. From now on an we will use an abbreviated form of d(v;), denoted by d;, where
V; € V.

Definition 2.23 (Dominating Set) D is a dominating set of vertices of a graph G,
if D C Vi and N(D) = Vg \ D.

A dominating set covers all vertices of a graph which are not included. Dominating
sets are closely related to independent sets. An independent set is also a dominating
set if and only if it is a maximal independent set. Hence, any maximal independent set
in a graph is necessarily a minimal dominating set as well.

Definition 2.24 (Dominated and dominant vertex) v is a dominated vertex by
a set of vertices D C Vi of a graph G, if N(v) = N(v) N N(D). A dominated vertex
has neighbours which are all adjacent to some other vertex, the dominant vertex.

Definition 2.25 (Partition) A set {V;,...,Vi} of disjoint subsets ! of a set V is a
partition of V if V = Ule Vi and V; # () for every i.

Definition 2.26 (Vertex contraction) Vertex contraction is an operation where two
vertices are replaced by one single vertex. If u,v € V, then G/{u,v} or G/uv repre-
sents the graph after contraction of the u, v vertices.

A vertex contraction can result in multiple edges when the contracted vertices were
connected to the same vertex. Multiple edges created by a vertex contraction can be
either kept or collapsed into one single edge. Keeping or collapsing will be marked, if
it is not clear from the context.

Definition 2.27 (Edge contraction) Edge contraction is the vertex contraction of
two adjacent vertices. If e € E, then G/e is the appropriate graph after the edge
merge.

From here on vertex contraction will mean contracting unconnected vertices only, oth-
erwise we will use the term edge contraction. All these definitions will appear in some
form in the thesis, but for our topic, vertex contraction will be the most important one
that will crop up many times throughout this thesis.

Wi jVinV =0, i#]



Chapter 3
Graph Colouring Problem

The graph colouring problem (GCP) is an important subset of constraint satisfaction
problems [35; 62; 104; 145]. It has many real-world applications such as scheduling,
register allocation in compilers, frequency assignment and pattern matching [1; 18; 25—
27; 31; 36; 47; 61; 108; 129; 130; 135]. Here the problem will now be defined as
follows:

Definition 3.1 (Graph vertex k-colouring) Let G be a graph and C' a set of colours,
where |C| = k. Graph k-colouring is a map of vertices to colours:

c:VIC o, v c(y)

Put briefly, graph vertex k-colouring (or simply graph k-colouring) is an assignment of
colours for each vertex. The problem occurs in the colouring process when we consider
edges as constraints.

Definition 3.2 (Proper graph vertex k-colouring) A proper graph vertex k-co-
louring, if it exists, is a k-colouring where adjacent vertices are assigned different colours:

sur

c:V—C , vi—cly) , V(u,v) €l =clv)#c(v)
Definition 3.3 (Graph minimum vertex colouring) Graph minimum vertex y-co-
louring is a proper x-colouring where x is the smallest integer needed to get a proper
colouring.

The smallest number of colours that can properly colour vertices is called the chro-
matic number of a graph and will be denoted by x. A graph G is k-colourable if its
vertices can be coloured properly by & colours; in other words, if its chromatic number;
is at most k. It will be called k-chromatic if k is its chromatic number. In a particular
colouring, a subset of vertices assigned to the same colour is called a colour class. Fig-
ure 3.1 shows a proper colouring, which is minimum as well. Sets {v, v5}, {ve, v4, v6}
and {wv3} are the colour classes in Figure 3.1. Definition of k-colouring consists of
a condition for the existence of such an assignment. The parameter k plays very im-
portant role on the feasibility of a k-colouring. Section 3.4 provides several bounds on
the feasibility. Without any qualification, the colouring of a graph is always a proper
vertex colouring so that no two adjacent vertices receive the same colour as seen in

11
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Figure 3.1. Although, Section 3.1.1 describes other type of colourings as well. Since a
vertex with a loop edge could never be coloured properly, it is understood that graphs
in this context are loopless. Moreover, it is reasonable to restrict the colouring to
simple graphs, where the edges are undirected. However, different graph types can be
seen in several generalisations of the problem. The terminology of using colours goes
back to map colouring initiated and analysed by the following authors in the period
of 1852-1890: Guthrie and De Morgan and Hamilton and Heawood and Cayley and
Kempe and Heawood [4; 8; 65; 83; 84; 157]. Colours like red and blue are only used
when the number of colours is small, but generally colour names are substituted by
numbers 1,2,3, ..., however they will be referred as colours. Unless stated otherwise,
the unqualified term 'graph' usually refers to a simple graph. Without loss of generality
we shall only consider connected graphs!, that is when there is only one component.
Figure 3.1 shows a proper colouring. Colours are shown as different angle coloured half

circles in certain figures where colours are used for the sake of clarity.
Uy

Ve V2

U1

Figure 3.1: A proper colouring of a graph.

A colouring using at most k& colours is called a k-colouring. There are three main
questions:

1. Can a graph be coloured with k colours?
2. What is a k-colouring of a graph, if it exists?

3. How many k-colourings exist for a graph?

This thesis concentrates on the algorithmic aspects of the colouring, hence we will
mostly be concerned with answering question 2, but we cannot ignore the other two
questions stated above. The two other questions can assist us in algorithm design.
However, providing a k—colouring (question 2.) serves to answer the k—colourability
(question 1), but sometimes the k—colourability itself can be answered more easily,
without providing any colouring. It is often important to know whether a graph is
k—colourable or not, e.g. before starting an expensive k—colouring algorithm. Several
methods have been developed to quickly determine a k—colourability. These methods
usually provide bounds for k, and some of these bounds can be found in Section 3.4. A
trivial example, when the answer to question 1 is straightforward, is when k is greater

1There is a path from any vertex to any other vertex in the graph.
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than the maximum vertex degree. In this case k& colours are quite sufficient for a
proper colouring as each vertex has fewer neighbours than the available number of
colours. Non-trivial examples are the perfect graphs where the chromatic number is
computable in polynomial time according to [105; 110; 111]. Usually, when task is
the k—colouring, finding one solution for a colour assignment is enough. Nevertheless,
Section 3.1.4 shows how important is to analyse the whole set of solutions before we
design an efficient colouring algorithm. This chapter collects necessary and interesting
information about graph colouring to motivate and help understanding the rest of the
thesis. To have better insight into the problem, it provides problem analysis besides
the introduction of definitions and concepts.

3.1 Graph colouring definitions

3.1.1 Improper colouring and semicolouring

We saw an example of a proper colouring in Figure 3.1. Now we shall focus on proper
colourings, but first we shall mention other colouring types as well because they can
be also useful in the design of proper colouring algorithms. One possibility is when an
algorithm tries to exploit the features where not only proper but improper colourings
are also available.

Definition 3.4 (Graph vertex improper colouring) Animproper colouring is a colour-
ing where at least one constraint is violated:

sur

c:V—C , vi—cly) , IHv,v) €l =clvy)=cl)

Solvers which apply improper colouring have to cope with the violated colouring, so they
have to correct the colouring to get a proper colouring. On the one hand, this relaxation
of the problem, where improper colourings are available leads to broader search space.
This has its drawbacks since it is more likely that we will not find a solution. On
the other hand, it removes the constraints temporarily in the space exploration which
supports more flexible algorithm design. We can design search paths through those
elements of the space which are not available in proper colouring. These paths can
provide a shortcut to a solution.

Definition 3.5 (Graph vertex k-semicolouring [103]) A graph k-colouring is a
k-semicolouring if at least half of the vertices are coloured properly.

c: V25 Cove olvy), Y(v,v;) € E' = c(v) # c(vy), E' C E,|E|/2 < |F|
Relying on a semicolouring, one can design an O(k(n)log, n)-colouring algorithms
according to the following [103].

Lemma 3.1.1 If an algorithm can k(n)-semicolour any n-vertex graph G, where k(n)
increases with n, then it could be used to O(k(n)log, n)-colour G.
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Recall our previous statements, GG is a simple graph and k-colouring means proper k-
colouring. Moreover, contracting two vertices refers to unconnected vertices and edge
contraction will identify contraction of connected vertices. Multiple edges created by
a vertex contraction can be either kept or collapsed into one single edge. Keeping or
collapsing will be marked if it is not clear from the context.

3.1.2 Chromatic and Achromatic number

Minimum colouring can be defined as finding a partition of the vertex set into minimum
number of independent sets. Consequently, the union of such two independent sets
results in a non-independent set, otherwise we would be able to reduce the number of
components in the partition.

x = min{k : {V;}i_, partition of V, ViNE =0, (V;UV;)NE # 0} (3.3)

The maximisation of this expression (Eq. 3.3) leads to another important number
namely the achromatic number.

¢ =max{k : {V;}}, partition of V, V,NE =10, (V;UV;)NE # 0}

The achromatic number tells us how badly a colouring algorithm can perform. The
number of colours used by and algorithm is between these two numbers, but they rarely
attain these bounds (see Section 3.3). There are two additional numbers which can
have a big influence on the performance of an algorithm, namely the clique and the
independence number.

3.1.3 Clique and independence number

Definition 3.6 (Clique Number) The clique number w(G) of a graph G is the num-
ber of vertices in a maximum clique of G.

The problem of computing the clique number for a given graph is an N P-complete
problem ([82; 139]). Since a clique is a complete sub-graph, a complete graph requires
as many colours as the number of its vertices for a proper colouring. Hence at least as
many colours are needed for a proper colouring of a graph as the size of its maximum
clique. This holds w < . According to Motzkin and Straus, formulation [66; 127]
cliques can be characterised by a submatrix in the adjacency matrix (Figure 3.2(a) and
3.3). The submatrix of an adjacency matrix A which belongs to a clique is a matrix
with every entry equal to one except the main diagonal, which has zeros 2 (Figure
3.2(a)). To mask out this submatrix one can use a characteristic matrix of the edges
of the clique (Figure 3.2(b)) which has ones in the appropriate positions, otherwise
it contains zeros. The problem of clique finding turns into the problem of finding an
appropriate clique mask which masks out a clique submatrix from the adjacency matrix.

2The 0-s have been replaced by dots for the sake of clarity.
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V1 V2 V3 V4 Vs Ve X1 Xro I3 g I5 T
v 0 1 1 1 z1 1 1 1
(%) 1 0 1 . i) 1 1 1
V3 1 1 0 1 1 T3 1 1 1
Uy . . 1 1 . T4 . . .
S N | x5
w 1 - 1 - 1 - Te

(a) A clique submatrix in the adjacency  (b) Characteristic matrix of the clique.
matrix

Figure 3.2: Matrices belongs to clique of {vy, vy, v3} vertices.

Definition 3.7 (Independence number) The independence number a(G) of a graph
G is the cardinality of the largest independent set of GG.

Finding a maximum independent set in essence means finding of a maximum clique
in the complementer graph. Consequently, the problem tight is the same, i.e. NP-

complete. As k-colouring defines a partition of V' into k-independent sets {V;}~_,, the
v
: . @) 7 : . . .
One can think of finding suitable independent sets which form appropriate partition of

following holds y < Colour classes are independent sets in a minimum colouring.
the vertex set. Therefore it is reasonable to examine the number of independent sets in
a graph. The number of independent sets also represent the number of maximal cliques
due to their complementary nature. The number of different size maximal independent
sets as well as the number of maximal cliques is between n —logn — O(loglogn) and
n —logn according to Erd&s [54]. A similar formulation can be given for independent
sets as for cliques using the adjacency matrix of the complementer graph. The submatrix
of an adjacency matrix which corresponds to an independent set is a matrix with all
entries equal to zero, i.e. the opposite of the clique submatrix case (see Figure 9.8).
Ordering the rows and relevant columns of an adjacency matrix according to colour
classes in a k-colouring, we get the k number of zero blocks in the main diagonal.
Hence, a colouring problem can be formulated by these zero blocks, as described in
Section 3.1.4.

3.1.4 Colouring matrices

According to Section 3.1.3, the submatrix of the adjacency matrix which corresponds
to an independent set is an all zero matrix. Colour classes form independent sets
with the associated zero submatrices. The entries of these zero submatrices define the
corresponding colouring, where the vertices belongs to an all zero submatrix get the
same colour. These relations can be expressed by a colouring matrix X = (z;;), which
is a {0, 1} matrix. It is defined by the conditions

1 if e(v;) = c(v;)

35
0 otherwise (3.5)

xij =

An extreme example is the identity matrix, which colours each vertex differently. In
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contrast, the matrix of all ones assigns just one colour for each vertex. With a complete
graph needs identity colouring matrix for proper colouring, the colouring matrix with
all one entries is suitable for the empty graph only. Consider the {V;}*_; partition of
vertices into k independent sets, which provides a k-colouring, where V; is the i-th
colour class of n; number of vertices. Taking vertices in the order of the colour classes,
we can describe the colouring by a colouring matrix which has 1 blocks in the main
diagonal and zeros elsewhere. A few examples can be found in Figure 9.9. We note
that such a matrix has the following properties ([51; 124]): (v;,v;) € E = x;; =0; X
is symmetric; X is positive semi-definite: X > 0.

3.2 Number of colourings

For a graph there may be several possible k-colourings. The following section is con-
cerned with their cardinality. The number of colours in a k-colouring can be expressed
by a polynomial, called the chromatic polynomial. The chromatic polynomial is defined
as the unique polynomial of degree n through the points (k, p(k)) for k =0,1,... n.

Definition 3.8 (Chromatic polynomial) The chromatic polynomial counts the num-
ber of ways a graph can be coloured using no more than a given number of colours. If
the number of colours is k then the chromatic polynomial is denoted by p(k).

The values of the polynomial count the equivalent colourings as well (see an example
in Section 11.7). The chromatic polynomial contains as much information about the
colourability of G as the chromatic number does. Indeed, the chromatic number is the
smallest positive integer that is not a root of the chromatic polynomial. Thus y =
min{k : p(k) > 0}. Section 11.8 contains an example for the chromatic polynomial.

3.3 Complexity

Unfortunately, there is no known convenient method for determining the chromatic
number of an arbitrary graph. Determining whether a graph admits k—colouring is diffi-
cult in general. However there is a polynomial time algorithm for cases £ = 1 and k = 2,
but for & > 3 the problem becomes N P-complete [80; 104; 138]. Thus finding the
chromatic number is, computationally, a hard problem. It is not only N P—complete,
but there is also no polynominal time algorithm that can colour every graph G using
fewer than ncy colours for a specific small positive constant € [160]. To understand
the difficulties involved better, the authors of [73; 144] demonstrated that colouring
3—colourable graph with 4 colours is still NP—hard. As for the achromatic number,
determining it is N P—hard as well (see [62]).
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3.4 Bounds of the chromatic number

In Section 3.3 we saw how difficult is to approximate the chromatic number in general
[160], but there are polynomial time computable bounds of the chromatic number which
approximate well the chromatic number in particular cases. Moreover, the bounds allow
us to relate the chromatic number and the structural properties of a graph. This section
will describe such bounds.

Brooks' theorem states a relationship between the degree of a graph and its chro-
matic number. According to the theorem, for a graph where every vertex has at most
A neighbours, the vertices may be coloured with just A colours, except for two cases.
Complete graphs and cycle graphs of odd length require A + 1 colours.

Brooks’ [20]. If the graph is not complete or not an odd cycle, it has the following

bound
x<A (3.6)

In Section 3.1.3 we gave bounds where the chromatic number is characterised by the
size of the maximum clique and independence set.

Clique number and independence number.

w<x<

13

(3.7)

The difference between the w and x can be arbitrarily large [70; 128]. However, there
is no effective way to determine the clique number, because it requires much effort as
that for the chromatic number. But there is a graph property which can be efficiently
computed. This property provides a better lower bound for the chromatic number
than the clique number. Nevertheless, the difference between this property and the
chromatic number can still be large [56]. Lovasz introduced a graph property called
which is computable in polynomial time and gives a better lower bound than w. §(G)
is computed in the complementer graph G, which explains the 'bar’ symbol. In fact,
it serves as the vector chromatic number, which is the solution of a relaxed graph
colouring problem (see Section 9.9).

Lovasz [109].
w<fh<x (3.8)

The result is tight for perfect graphs where w = 6 = y Not only is the value of the
property important, but the way it obtained can be very useful too (see Section 9.9). A
study of @ provides helpful information about graphs. It also has applications in other
areas besides graph colouring.

Hoffman and Wilf [88; 154].

max

1+

<X < e + 1 (3.9)
The difference between the \,,,, and x can be large (see Section 3.7), but in Section 9.5
we shall see that this bound is useful in colouring algorithm design. Also, a relationship
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may be seen when we examine the relations between induced matrix norms. The spectral
norm is the smallest among the induced norms. For graphs the spectral norm is equal
to the largest eigenvalue \,,q,. Since A = ||A]|; = ||A]|oc and Aoz < A, hence

X< Amae +1 <A+ (3.10)

For regular graphs the equality \,,.. = A holds. Both lower and upper bounds can
help in algorithm design. Identifying the target colouring and the starting k can be
an important in a colouring process. This can be achieved by determining an upper
bound value. Knowing the lower bound may also be useful in the preparatory step of
the colouring process, where a graph can be simplified by applying this bound. Vertices
with degree lower than a lower bound value can be removed (see [29]), while an upper
bound can be a target colour in the beginning of a minimal colouring process.

3.5 Characteristic polynomial

Many bound estimates in Section 3.4 were obtained from an algebraic analysis of the
colouring problem. Usually, the analysis is based on some matrix which characterises
the problem. Different matrices may be associated with a graph. One obvious example
is the adjacency matrix, which is illustrated in Figure 3.3.  This matrix encodes the

V4
Vp VU2 VU3 Vg Vs Vg
Vs U3 vy - 1 1 1
vy 1 . 1 . . .
v3 1 1 . 1 . 1
Vg V2 Uy . . 1 . 1 .
vs - . . 1 . 1
v 1 . 1 . 1 .
U1

Figure 3.3: A graph GG and its adjacency matrix.

graph encoding important properties. Most notably its eigenvalues, its determinant and
its trace. The eigenvalue problem for this is

Av = \v — (M —A)v=0 (3.11)

Let the eigenvalues of this equation be \;, where A\ ue = A1 > Ao > - > N\, = A\uins
and let vy, va,... vy, be the eigenvectors, respectively. This is a well studied equation
in the literature and there are several solvers which can compute all the solutions
efficiently. Owing to the definition of the trace and the relation with the sum of
eigenvalues, the following condition holds trA = > .a; = > ,\; = 0. For non-
bipartite graphs A\jaz > —Amin [45], while for bipartite graphs the absolute values of
the eigenvalues are equal. In Section 3.4 we showed how the eigenvalues can be used
to set bounds on the chromatic number. Also, in sections 9.4.2 and 9.5 we describe
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efficient colouring strategies based on the the principal (the largest) eigenvalue and the
principal eigenvector. The eigenvalues as roots of a polynomial pa(z) = II;(x — \;)
give the characteristic polynomial of A.

Definition 3.9 (Characteristic polynomial) The characteristic polynomial of a ma-
trix is defined by
pa(z) = det(A — 1) (3.12)

The characteristic polynomial of a graph is the characteristic polynomial of its adjacency
matrix. It is a graph invariant, i.e. isomorphic graphs have the same characteristic
polynomial, hence it is more interesting in the light of the great symmetry of the
problem (see an example in Section 11.7). Next, write p4 in the form

pa(x) = det(z] — A) = 2" — cy2™™ 4 - -+ (=1)"¢, (3.13)

The polynomial coefficients also encode interesting features of the graph which can
be of help in the colouring process as well. Section 9.7 describes an application for
colouring. From [9], the coefficients of the characteristic polynomial of a graph satisfy
, 52, (=1)"c, = II;\; = det A.  Section 11.8
contains an example for the characteristic polynomial.

the conditions: ¢; = 0, —c; = |E

3.6 Search spaces

This section describes search spaces which generally arise in graph colouring algorithm
design.

3.6.1 Permutation space

Using a greedy colour assignment, there is always a permutation of a vertices which
generates a solution. Section 4.2 contains more details about the greedy colour assign-
ment problem. Next, let us see a solution (Figure 3.1) and order vertices according
to its colour class identifier, where the same colour vertices appear in a natural order
(Figure 3.4). Note that the colour class identifiers may be changed without changing
a solution. The vertices belonging to a colour class can be listed in not only a natural,
but arbitrary order. Hence several permutations can result in the same performance
colouring, producing a symmetry in the space. After creating a permutation of vertices,
we do a greedy colour assignment to the vertices, in the order of their appearance in the
permutation. Greedy colouring produces a colouring which requires no more colours
than the original solution. This procedure may lead to different colourings. This is
because a low degree vertex which does not have any neighbour in any colour class
can get different colours, resulting in another optimal colouring. However they can
be removed before starting a colouring (see Section 3.4). Based on this approach, an
algorithm must search in the permutation space of the vertices. Even though the size of
this search space is large (n!), it has been proved a better representation for sequential
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colouring schemes in [7; 52] than the vectorial colour assignment scheme, which has k™
elements (see Section 3.6.3). The graph colouring problem has large symmetries (see
an example in Section 11.7), thus the n! space will be reduced considerably. Recall
that the vertices belonging to the same colour class can appear in an arbitrary order.
Hence, several permutations may result in the same candidate solution. An algorithm,
which searches in the permutation space, always targets the minimum colouring case.

™= <U17U57U27U47U67U3> Cg = (17 1727 2727 3)

Figure 3.4: A solution represented as a permutation 7 in a greedy colouring c,.

3.6.2 Independent set space

Since the colour classes form independent sets, a search can be performed in this
space. The search itself may be a search of an appropriate characteristic vector which
selects a suitable subset of the set of all independent sets. Although it assumes the
generation of all independent sets, which is time and space consuming task as the
number of independents sets can be huge (see Section 3.1.3). Therefore, a dynamic
generation approach can be applied instead of the static one, which generates all sets
in advance. Hence a search must be done in a dynamically changing environment,
starting with e.g. the one-size independent sets, namely, the vertices. An algorithm
can sequentially combine independent sets by performing a union of some of them. The
interpretation of this approach in a colouring language might be a re-colouring scheme
where the starting colour palette is n, which colours each vertices differently. In order
to reduce the number of colours used, an algorithm must properly re-colour the vertices
by using an (n — 1)-colour palette. This process is continued until no further reduction
is possible. Usually, a greedy variation of this approach is applied in the literature
[70; 72; 77; 103; 152]. Namely, a colour is chosen in advance and some vertex choice
strategy is applied. The colour chosen is assigned to each possible vertex. When no
further such assignment is possible, an algorithm gets another colour and goes on in
the same fashion for the remaining vertices, not affected by the previous colourings. In
an independent set formulation, it means that one can find an independent set, that is
a dominating set and where no further vertex can be encompassed. Then removing the
dominating set, the algorithm continues this same strategy for the remaining vertices.
Figure 3.5 shows the colour classes (independent sets) of the colouring of Figure 3.1.

S = {U17U5} Sy = {U27U47U6} Sy = {Us}

Figure 3.5: A solution represented as a set of independent sets.

3.6.3 \Vector space

In Section 3.6.2 we introduced a search space where independent sets, i.e. colour classes
were generated as constituents of the colouring. These approaches require a {0, 1} char-
acteristic vector x with k& non-zero component which designates k& independent sets,
if the goal is a k—colouring. See a colouring in Figure 3.6 and its representation as
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a characteristic vector in Figure 3.6. In the case of minimum colouring, the space of
all possible {0, 1} vectors, whose dimension is the number of possible independent sets
(see in Section 3.1.3). Although this approach is quite time-consuming. Unfortunately,
it assumes the generation of all independent sets in a graph in advance, which requires
2" independent set examinations, using a brute force approach. Furthermore a sophis-
ticated generation of the independent sets may require extra computation effort. The
benefit of this formulation is that it is possible for an algebraic method to be applied
on a relaxed version of the problem, where x is no longer binary {0, 1} valued but real
valued. The characteristic vector x can be decomposed into k characteristic vectors
{vi}%_, that form a polyhedron. Each of these vectors have only one non-zero element,
which designates an independent set. Hence, each v; represents only one independent
set. A colour assignment to a vertex may be simply interpreted as a discrete colour

(S S, S5 Sy ...}
(1 1 1 0 ..)

Figure 3.6: Characteristics vector of independent sets Sy, Ss, S3 of a solution in the set
of all independent sets.

assignment function. The assignment can be represented by an n-tuple, an integer
vector on n elements. The size of the search space is k™ in the case of k—colouring
and n™ if we desire minimum colouring. However n™ can be reduced based on the upper
bounds and lower bounds of the problem (cf. the bounds given in Section 3.4).

3.7 Random G, ,, graphs

There are many classes of graphs that could and should be used to test colouring
algorithms. The most natural class is perhaps the class G, ,., the random graphs,
where n is the number of vertices, and for each pair of vertices an edge is assigned
with probability p., i.e. an edge probability. This class of graphs has been extensively
studied from a colouring aspect, especially for p, = % where the number of the possible
instances is the biggest. According to [12; 13; 58; 71], asymptotically, for a fixed
probability p, and b = 17—1106, the chromatic number is almost surely be

n

~ 3.14

X 2log,n (3.14)

Furthermore, if d = ¥ is the average degree in the graph, then the following holds
X ~ #‘f}d. The average degree in a graph is a lower bound for the largest eigenvalue

[45; 46] 3 and hence the gap between the largest eigenvalue and the chromatic number
can be arbitrary large.
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3.8 Phase transition

Graph k—colouring exhibits a phase transition depending on the ratio of constraints to
the maximum number of possible constraints ('), where the number of solvable problem
instances quickly drops to zero. At that transition constraint solvers require the most
search effort to find solutions for solvable problem instances. Recent investigations
[43] have shown a good explanation towards explaining the rise in difficulty during
the phase transition. To demonstrate the existence of the phase transition, take
a class of k—colourable random graphs, where the graph structure is known. Let
Geqn=200,p. k=5 be the set of 5—colourable equipartite random graphs on 200 vertices.
In the case of equipartite graphs, each colour class has nearly the same number of
vertices. Moreover, p. defines the edge probability (see random graphs in Section 3.7);
whose value describes the number of the edges in the graph. Section 4.1 provides further
details about equipartite graphs. A sequence of graphs are generated by modifying
the edge probabilities from 0 to 1 in a systematic way. Hence the number of edges of
the generated graphs is varied in a region called the phase transition. This is where
hard-to-solve problem instances are generally found, which is shown using the typical
easy-hard-easy pattern in Figure 3.7. The graphs are all equipartite, which means that in
a solution each colour is used approximately as much as any other. The demonstration
graphs are generated using a well-known graph k—colouring generator of Culberson
[44]. The graph set consists of groups according to the following edge probabilities
pe € {0.01,0.03,0.05,...,0.98}. Each group has ten graph instances generated by
using the same p,, but different random seeds {1,2,...,10} in the generation. The
same random order of the vertices is fixed for each graph. Then a greedy colour
assignment is applied for each graph; that is, taking the ordered vertices of a graph,
the first vertex get the first colour and all following vertices get the first available colour
which produced proper colouring. Section 4.2.2 contains more information about the
greedy colouring and its analysis. This procedure is repeated nine times to get ten
different random orders. Hence, there were ten colourings for each graph instances.
The number of colours of the colourings was averaged for each p, groups, i.e. number
of colours of ten colourings for ten graphs of a p, group resulted in 200 values. These
averages with 95% confidence intervals are plotted in Figure 3.7. A competition graph
set in the literature may contain only particular instances of graph families. Therefore,
generated instances, which include the phase transition region, are necessary in an
experimental comparison of different colouring algorithms.

3.9 Summary

In this chapter we provided an insight into the graph vertex k—colouring problem and
investigated it from several angles. In the next chapter we will give an overview of the
work done on this problem in the literature.
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Figure 3.7: Phase transition of the greedy colouring in the G.; ,,—200.p. k=5 graph class.






Chapter 4

Related work

Graph colouring has a wide range of real-world applications to solve constraint satisfac-
tion problems, hence its results are of great intrest for researchers. Since the problem
first appeared in the literature, a lot of research has been done in this field. This chap-
ter reviews the major application areas of graph colouring and describes approaches for
solving the problem. In addition, interesting graph instances and concrete algorithms
are given with which the various approaches can be compared experimentally.

4.1 Benchmark graphs

This section describes a set of benchmark graph instances used in the experiments
performed in Chapter 10. They are drawn from a large number of sources. Their de-
scription reveals how a real-world problem can be defined as a graph colouring problem.

The DIMACS archive. A common repository was created for testing colouring
algorithms in the Second DIMACS Challenge [93] in 1992. Graph colouring was one
of the problems addressed in the challenge. The purpose of the competition was to
encourage and coordinate research in the experimental analysis of algorithms. Later
the repository was extended by Trick adding other instances [143].

Random k-equipartite graphs. Next, define the following class of graphs to provide
another testbed for our algorithms. Let G.,, . x be the set of such G, , random
graphs (see Section 3.7), where the vertex set of G is partitioned into k as nearly
equal sized sets. These graphs form the class of random equipartite graphs. They are
one of the most difficult to solve instances because they have the largest symmetry
and the largest number of instances in the G, , class. To get an instance in this
class one can k—partite vertices and draw edges only between the members of different
subsets with a certain probability, i.e. an edge probability p.. Of course, the chromatic
number of such an instance is not greater than k, but it strongly depends on the edge
probability. Indeed, for a zero edge probability the chromatic number drops to one. The
edge probability of a k—partite graph lies in the inequality range 0 < p, < ((::B -
Varying p systematically, experiments may reveal those regions where algorithms have

difficulties, namely the phase transition region. In order to produce test instances of
equipartite graphs, Culberson’s graph generator [44] was used here.

25
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4.2 Benchmark algorithms

This section provides benchmark algorithms which are commonly used to compare the
performance of methods [17; 48; 70; 75; 151]. The performance of these methods serves
as reference in the experimental comparison of the algorithms described in this thesis.
Finding a solution of the colouring problem is hard in general, as shown in Section 3.3.
Hence one can rely on heuristics which do not provide an exact solution, but only an
approximate one. However, several algorithms have been developed to solve the graph
vertex colouring problem, but none of them is optimal, their performance is always
depending on the investigated problem. There are several polynomial time algorithms
(see [70; 75; 77; 103; 151; 152]) that provide a guarantee for the approximate solution
of the colouring for a given number of colours. Some of our benchmark algorithms
have this guarantee, but for certain problems their performance can be worse than
those algorithms which do not ensure such a guarantee.

4.2.1 Traditional sequential colouring schemes

According to the authors of [70], there are two traditional sequential colouring ap-
proaches. The first is the sequential colour assignments, where vertices get colours in
a greedy manner; that is, each vertex gets the earliest available colour. Algorithms in
this scheme take uncoloured vertices in order via some strategy then apply a sequential
greedy colour assignment to the vertices, as described in Section 4.2.2. The search space
is the space of vertex permutations, as seen in Section 3.6. This greedy colouring ap-
proach works well with several vertex ordering strategies, as shown in [17; 48; 75; 151].
These algorithms use some heuristics and usually without any guarantee of the number
of colours to be used. Furthermore, there is always an order of the vertices which
results in an optimal colouring with the greedy colouring approach. See Section 4.2.2
for further details. The second approach is the maximal independent set procedure,
where instead of uncoloured vertices, the colours or colour classes are taken step by
step. Colour classes form independent sets. At the start, there are no colour classes,
hence it starts with an empty colour class, i.e. an independent set. Then it fills this
set with uncoloured vertices, according to a vertex choosing strategy, until its satu-
rated; that is, no more uncoloured vertices can be encompassed. Saturation occurs
when the set becomes a dominating set; that is, each external vertex is connected to
one of the internal vertices. In terms of a colour assignment, take the first colour and
colour as many vertices as possible with the same colour. If a colour class is saturated,
then it creates a new one and continues in the same fashion, That is, when no more
uncoloured vertices can be coloured with the current colour, take a new colour and
colour with the new colour as many uncoloured vertices as possible, repeating this step
until uncoloured vertex exists. Algorithms which provide a guarantee for a maximum
number of colours used in their colouring apply this approach [70; 77; 103; 151; 152].
This above approach can be interpreted as a maximal independent set strategy [70].
In fact, a colour choice is a choice of a colour class, which is an independent set. With
this strategy, an empty independent set — a new colour — is created and filled with
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vertices until it becomes maximal, i.e. when no more vertex addition is possible. To
illustrate this, start with a single vertex, a one-element independent set and put as
many non-neighbour vertices into this set as possible in order to increase the size of the
independent set to its maximum. After a while the set becomes a maximal independent
set, i.e. each non-included vertex will have a neighbour vertex in the independent set.
Then continue with the rest of the vertices in the same fashion. In traditional se-
quential colouring schemes one is concerned with coloured and uncoloured sub-graphs,
denoted by G and G respectively. Algorithms exploit information taken from both
sub-graphs. Hence we shall now define some of their important properties:

Definition 4.1 (Uncoloured degree) The uncoloured degree of a vertex v is the
number of uncoloured neighbours of v: d""*(v) = [{v; |v; € N(v) , v; € G""“}|.

Definition 4.2 (Coloured degree) The coloured degree of a vertex v is the number
of coloured neighbours of v: d®(v) = |{v;|v; € N(v) , v; € G}|

Definition 4.3 (Colour saturation degree) The coloured saturation degree of a

vertex v is the number of different neighbour colours of v: d***(v) = [{c(v;)|v; €
N(v), vj € G}

The same notation is used for their maximum and minimum as for the maximum degree
A and minimum degree §, with the inclusion of the appropriate superscripts “7¢,c! sat,

4.2.2 Greedy colouring scheme (A +1)

Greedy colouring takes an order of the vertices and assigns colours sequentially to them
in a greedy manner. That is, a vertex gets the earliest available colour. Vector x
contains the sort keys of the ordering of the vertices. It is predetermined by a vertex
ordering strategy.

GREEDY COLOURING ALGORITHM(G, C, x)
1 fort—1ton

2 do

3 v [argmaxy, {x; v € V'Y
4 vV =V1

5 c+minC\ {c(v;)|v; € N(v)}
6 c(v) —c

7 return [{c(v;)}",]

The greedy colouring method takes the uncoloured vertex v which has the maximum
value in the sort key vector x. Then it finds the earliest available colour ¢, then assigns
c to v. The first available colour is that colour which has a minimum index and is not
assigned to any of the neighbours of v. Note that C' = {1,...,k} and every colour
assignment implies that the G*°! = G4+ and G*"¢ = G*"“—v sub-graphs are updated
each time. There may be the same degree vertices and they form a vector of currently



28 Related work

chosen vertices v in the order of their choice. The algorithm always chooses the first
v, among them. The greedy colouring procedure does not provide any strategy for
ordering the vertices. Many heuristics exploit the power of the greedy performance and
try to further refine the upper bound of the number of colours used. These heuristics
explore the space of the vertex permutations. The vertex choice of these heuristics can
result in a set of vertices if no other choice is present, the first being chosen among
them by taking a natural order. A vertex ordering heuristics which uses greedy colouring
cannot perform worse than A + 1 as they keep the colouring below the Brook’s bound
(see Section 3.4). Nevertheless, for particular graphs the greedy performance varies
greatly, but for large G,,,. random graphs, almost surely, it consumes approximately
T colours, where b = 17—1pe ([70; 71]); that is, approximately twice as many as
the chromatic number (see Section 3.7). Section 3.8 detailed an experiment where
greedy colouring was performed by taking 5—colourable equipartite random graphs on
200 vertices. The phase transition occurred when the edge probability approached
pe = 0.4; that is the performance of the greedy colouring became worse in this region.
= log12230200 = 19.28, which seems quite good
after analysing the plot of Figure 3.7. However, for other p.—s, the expression gives
over and underestimations: for p, = 0.2 it is 8.42 and for p. = 0.8 it gives 60.75. Note

that the expression belongs to random graphs and our analysis covers only random

The expected number of colours is 1

equipartite graphs on 200 vertices. Nevertheless, this expression characterises well the
greedy colouring at the peak of the phase transition.

4.2.3 Welsh-Powell (max; min{d; + 1,})

The Welsh-Powell heuristic approach [151] is based on the greedy algorithm. The basis
of the uncoloured vertex choice is the degree. This variant of the greedy colouring
applies a vertex ordering. Vertices are ordered according to decreasing vertex degrees.
The d; = d(v;) is the degree of the vertex in the i-th position in the ordering. Then
greedy colouring is applied to the vertices in order, which uses at most max; min{d; +
1,i}. Let [ . ] be an operation which generates a vector from the elements of a set,
taking a natural order.

WELSH-POWELL COLOURING ALGORITHM(G, C)

1 fort—1ton

2 do

3 v« [arg max,, oy une dg(v;)]

4 V=V

5 ¢ —minC\ {c(v;) |v; € N(v)}
6 C(U) — C

7 return [{c(v;)}" ]

The colouring constraints are specified by the edges. The Welsh-Powell heuristic con-
siders the highest degree vertex as the most constrained one. i.e the most difficult one
to colour. However, during a sequential colouring the colouring constraints are specified
by the number of neighbouring colours. It is a variant of the greedy colouring where
the x = d, where d contains the degrees of the vertices.
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4.2.4 Hajnal (A, +1)

The Hajnal heuristic approach [75; 153] applies a similar assumption as the Welsh-
Powell heuristic approach, but its bound may be better than A + 1. The maximum

1 i.e. the principal

number of colours used by this heuristic is equal to the maximum
(the largest) eigenvalue A, of the adjacency matrix of G. This bound is provided
by a greedy colour assignment where the order of the vertices is determined by the
components of the principal eigenvector 2. Each eigenvector component is associated
with a vertex according to the corresponding adjacency matrix rows/columns. This
variant of the greedy colouring defines the sort key vector x by the components of the

principal eigenvector.

HAJNAL COLOURING ALGORITHM(G, C, x)

1 fort—1ton

2 do

3 v — [arg max,, {x; | v; € V""¢}]
4 V=V

5 ¢ —minC\ {c(v;)|v; € N(v)}
6 c(v) «— ¢

7 return [{c(v;)}! 4]

4.2.5 DSatur of Brélaz

The DSatur heuristic [17] rely on the colour or colour saturation degree d** of vertices
in the current state of the colouring, i.e the number of different neighbour colours of
a vertex. The Welsh-Powell and the Hajnal heuristic do not consider the state of the
current colouring, but DSatur does it. Hence it is reasonable to distinguish between the
coloured and uncoloured sub-graphs of the original graph GG. Objects belonging to the
coloured or uncoloured sub-graphs are denoted by “® and “"¢ subscripts, respectively,
e.g. Veland Vure = V\ Vel DSatur chooses the most constrained vertex in terms of
the colour degree; that is, it chooses the maximum colour degree vertex and performs
a greedy colouring on it. Since DSatur does not re-colour, there is no sense in using
the colour degree for the already coloured vertices. For tie breaking, when more than
one vertex has the same colour degree, the Welsh-Powell heuristic is applied in the
G""¢ graph. It looks for the vertex that has the highest uncoloured degree A" among
the uncoloured vertices. The uncoloured degree d""® = dgunec is then calculated in the
uncoloured graph G*"¢, i.e. the edges of coloured vertices are not taken into account.

YFor graphs A\naz > —Amin. equality occurs only in the case of bipartite-graphs.
2The adjacency matrix is symmetric, hence the right and the left eigenvectors are the same.
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DSATUR COLOURING ALGORITHM(G, C')
1 fori«—1ton
2 do
3 U — {v; | d**(v;) = A% v, € Vure}

4 v — [v; | d""(v;) = A v, € U]

5 V=V

6 c=14+minC\ {c(v;)|v; € N(v)}
7 clv) =c

8 return [{c(v;)}r,]

Dsatur put the most saturated vertices into the U set. If there are more than one
such vertex, then applies a trial for tie breaking by the degrees of the elements of U.
The final tie breaking is performed by choosing the first of the same maximum degree
vertices of U as seen in the greedy colouring scheme. Then a the vertex chosen gets a
colour by a greedy colour assignment.

4.2.6 Erdés (O(nlogn))

The Erd8s heuristic makes similar assumptions as DSatur but in the opposite way,
however he recommended it for a theoretical analysis, and several algorithms apply his
principle or similar assumptions [77; 152]. An Erdés O(n/logn) heuristic [70, p. 245]
works as follows. First, take the first colour and assign it to the vertex v that has the
minimum degree. Vertex v and its neighbours are removed from the graph. Continue
this in the remaining sub-graph in the same fashion until the sub-graph becomes empty,
then take the next colour and use the algorithm for the non-coloured vertices and so
on until each vertex is assigned a colour. This approach guarantees O(n/log x(n))
number of colours in the worst case. However, an algorithm which has proved bounds
for the number of colours used in a colouring makes an exact analysis possible, but other
algorithms without such a bound can perform better in many cases. Next, separate
the coloured and uncoloured sub-graphs as well, as described in Section 4.2.5 for the
DSatur heuristics. Here the minimum degree of the uncoloured vertices will be denoted
by §""(v) = dgunc(v) = min;{d""“(v;) | v; € V¥"}.
Let V. be the colour class of ¢, i.e. the set of the same coloured vertices.

ERDGS COLOURING ALGORITHM(G, C')

1 c«1

2 fori—1ton

3 do

4 v [v; | d"(v;) = 6™, N(v;) NVe =10, v; € VUne]
5 if v=/]

6 then c—c+1

7 else v« vy

8 c(v) = ¢ [/ v becomes the member of V,

9 return [{c(v;)} ]

The vector v consists of the uncoloured minimum degree vertices, which can get the
current colour ¢, keeping the rule of the proper colouring; that is, the neighbours of
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these vertices cannot be in the colour class V.. The first vertex of these vertices is
selected and c is assigned to it. The last colour ¢ is updated only when v is empty, i.e.
there is no further vertex which can get a colour c.

4.2.7 Evolutionary algorithm — standard fitness

An evolutionary algorithm (EA) is a subset of evolutionary computation, a generic
population-based metaheuristic optimisation algorithm. One popular approach for deal-
ing with graph k—colouring is evolutionary computation [40; 42; 52; 55; 68; 133],
where a set of candidate solutions (the population) is continuously changed (evolved)
until it fulfils a certain stop condition. The evolution of the population is divided into
generations. Candidate solutions can be modified or combined, creating new candi-
dates between two generations. We use a standard steady state evolutionary algorithm
[6; 53] to search through the space of permutations (see Section 3.6.1). The steady
state model keeps the size of the population constant throughout the generations. This
algorithm maintains a population IT of permutations of the vertices. Each permutation
7 is evaluated by the so-called fitness function f(7), which defines the goodness of a
candidate solution 7. Here, f(mw) = k(m) — x, where x is a lower bound of the chro-
matic number (e.g. 1). The k(m) determines the number of colours used by a greedy
colouring (see Section 4.2.2), using the 7 order of the vertices. Randomly generated
permutations form the initial population. Then the appropriate fitness values are calcu-
lated in each generation. After doing the fitness calculation each candidate solution is
modified (mutated) by a certain probability p,..; and each candidate pair is combined
(recombinated) based on another probability p,...- to get new candidate solutions in
the search space. Recombination or crossover is the common name of the two operand
change operators, which produce one or two new permutation(s). A selection is per-
formed in the set of the original and new elements of the population to create the next
population. This procedure continues until the stop condition is satisfied. Then the
greedy colouring by the best candidate solution, i.e. permutation, provides the output
of the algorithm. The settings of the evolutionary algorithm :

INITIALISATION: uniform random generation of permutations.

MUTATION: simple swap mutation, which selects at random two different elements
in the permutation and then swaps them (see Figure 4.1(b)).

CROSSOVER: 2—point order based crossover (0x2), as shown in Figure 4.1(a). The
two permutations m; and m, are cut at two points. The first and the last part
of the permutations are inserted without any change into the two new candidate
solutions 7] and 7). After the central part in the new permutations is ordered
according to the element order in the other permutations.

SELECTION: 2—tournament selection, where it employs elitism of size one; that is, it
keeps the best candidate solution. Tournament selection involves running several
"tournaments" among a 2 individuals chosen at random from the population.
The winner of each tournament (the one with the best fitness) is selected.

STOP CONDITION: the algorithm terminates, when it reaches a certain number of
generations or number of fitness evaluations. Furthermore, when an optimal
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solution is found, here, usually the fitness is zero at an optimum point. In our
case, it is achievable if Y = .

EA;" (G, C)

1 II <« random permutations(population size)

2 while termination condition

3 do

4 for m € II  // Evaluate each permutation

5 do

6 k(m) « max{Greedy colouring(G,C,m)}  [/Number of colours used
7 f(r) — (kr —x) // Fitness ?

8 IT =11 U mutation(IL, pput) U crossover(IL, prover)

9 IT = selection(11, f)
10 7 « best(I1, f)
11 return Greedy colouring(G,C, )

ay is a lower bound of .

™ = Vg 10}1 1)04 V3 Uy Us

o = V3| V2 7Us ’84 Vg ’1011 swap(va,vs)

T = ol o Ol e e v U1 Vg U3 Vg Us Vg —— V1 U5 U3 V2 U4 Vg
} i D D (b) Swap mutation

Ty = U3 |V2 Us | Uy Vg U1

(a) Order-based crossover (0x2).

Figure 4.1: EA operators. Elements v, v, of m; are ordered according to the order of
these elements in 7, in Fig.4.1(a)

4.2.8 Evolutionary algorithm — Stepwise adaptation of weights

The Stepwise Adaptation of Weights (SAW) was introduced in [52] as a very promising
technique for colouring graph 3-colouring problems. The basic idea behind sAw is to
learn on-line about the difficulty of constraints in a problem instance. This is achieved
by keeping a vector of weights that associates the weights with constraints. In the
context of graph k-colouring, every edge is assigned a weight. These weights then
get initial values of one. Next, a basic evolutionary algorithm is used to solve a given
problem instance. Every generation is interrupted in order to vary the vector of weights
using the best individual of the current population. Every constraint violated by this
individual is incremented by one. Then the evolutionary algorithm uses this new vector.
The fitness of an individual equals the sum of the weights of all the constraints it
violates. By adapting this fitness function using the vector of weights may prevent the
evolutionary algorithm from getting stuck in local optima.
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4.3 Algorithm approaches

Extending the list of Section 4.2, this section discusses other frequently used approaches
as well to solve the graph colouring problem. Lots of algorithms have been created and
studied to solve the graph minimum vertex colouring problem. Actually, these algo-
rithms come in two main types: the exact algorithms where finding of a solution is guar-
anteed, but the time involved may be considerable due to the complexity of the problem
(see Section 3.3); and the non-exact, the approximation algorithms where however a
solution is not guaranteed but one may find a solution or a good approximation of it in
a reasonable time. The latter methods may have stochastic components. Some recent
surveys of these methods can be found in [60; 91; 114; 158] The graph colouring prob-
lem can be exactly solved by an exhaustive search, i.e. systematically exploring a search
space [43; 44; 93]. Unfortunately, when the size of the instances grows the running
time for exhaustive search soon become prohibitively large, even for instances of fairly
small size. To improve the efficiency of the search, several heuristics were developed to
generate a 'good’ starting candidate solution which may be close to an optimal solution
[17; 48; 70; 75; 77; 108; 116; 131; 137; 151-153]. Then starting the exploration process
with the generated candidate solution, a systematic search can considerably improve the
performance. Usually, the exploration is based on an examination of the local environ-
ment of the generated solution and it assumes that a neighbourhood relation is defined
on the elements of the search space. This approach led to the development of local
search methods [5; 24; 30; 60; 79; 87]. These methods usually apply some heuristic to
generate a new candidate solution from an existing one in its local environment. But
though a heuristic can considerably improve a solution they do not always provide an
optimal solution, hence these methods belongs to the class of approximate algorithms.
Many algorithms studied today employ a stochastic process in the local search to guide
a candidate solution to a suboptimal solution or, hopefully, to an optimal solution.
Several of these approaches maintain a population of candidate solutions. Examples
of such methods include tabu-search [10; 87], simulated annealing [28; 92] and ant
colony optimisation [21; 39]. One popular approach for dealing with graph colouring
is evolutionary computation [6; 40; 42; 52; 55; 59; 68; 81; 115; 133; 145]. In the
development of algorithms for graph colouring, various integer programming formula-
tions of the problem could be used. Several such formulations, usually involving binary
variables, have been proposed. These variables can identify different structures: e.g.
independent sets [118]; a variable for each possible colour and vertex [33; 120; 122];
acyclic orientations of a graph [57]. In several formulations an optimal solution can
be represented as a binary vector of the variables. These binary vectors constitute a
polytope, a colouring polytope. These polytopes are the central topics of the prob-
lem analysis [22; 67]. Several relaxed versions of these integer programmes have been
developed to approximate a face of a colouring polytope [50; 103; 118; 121; 136|. Dif-
ferent techniques may improve the efficiency of these methods e.g. column generation
with branch-and-bound [23; 118; 136| or branch-and-cut [122]. Actually the branch-
and-bound technique implicitly uses Zykov's idea (see [136]). This idea is detailed
separately in the next section.
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4.3.1 Zykov-tree approach

In the middle of the last century Zykov came with the idea, of applying an edge addition
or vertex contraction instead of a colour assignment in the colouring problem. During
these operations new graphs are created from the original one which may inherit the
parent graph's properties.

Theorem 4.1 (Zykov theorem [162]) Let G be a graph. If {v,w} ¢ E, then
X(G) = min{x(G +vw), x(G/vw)}

Proof

Let C be the set of proper colourings and |c| the number of colours used by a colouring
¢ € C, then x = min{|¢; € C|} = min{min{|¢;| : ¢;(v) # ¢;(w)}, min{|c;| : ¢;(v) =
()} = min{x(G + vw), x(G/vw)} -

Two vertices v and w get either the same or different colour in any colouring. Therefore,
there may be a contraction or edge between them. A Zykov binary tree ([14; 162])
is built on these two operations of two unconnected vertices of a graph. Here we
connect them or contract them, keeping their neighbours with simple edges. According
to the Zykov theorem, one of the result graphs with these operations has the same
chromatic number as the original graph (see 4.2). The construction of the Zykov-tree is
terminates, when no further reduction is possible. Hence, the leaves consist of complete
graphs K;. Each of them describes a colouring where contracted vertices get the same
colours. Consequently, x = min; |V (K;)|. The Zykov-tree is not uniquely determined,
however. It depends on the order in which non-adjacent vertex pairs are chosen. Each
Zykov-tree has exactly one branch that is exclusively generated by contractions. Later,
Zykov's idea was described via graph homomorphism (see Chapter 5).

U.—A G/Uw
N

SN

& A

Figure 4.2: A Zykov-tree

Zykov's theorem itself does not give a colouring algorithm, but offers suggestions for
its design. This is the basis of an algorithm by Corneil and Graham for x(G), which
searches through the Zykov-tree in a depth-first manner. Despite some technical refine-
ments, this algorithm is inferior to the other sequential algorithms [37]. Today the use
of the Zykov-tree in algorithm design has fallen into oblivion, but vertex contractions
are applied in several other areas of graph theory and it has remained a powerful tool
e.g. in proof by induction. Moreover, despite its rare usage today in the colouring
process, this thesis was mainly motivated by Zykov's original idea.
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4.4 \ertex contractions

Although, Zykov introduced his vertex contraction theorem [162] in the middle of the
last century, it has not been applied much. There are a numerous applications of
vertex contractions in the literature, but usually not for colouring ([14; 19; 29; 43;
45; 63; 113; 132; 146; 147]). The term of 'contraction’ may have aliases such as
'merge’, 'identification’, 'gluing’, 'fusing’, "amalgamating’ or 'coalescing’. The latter is
commonly used in the domain of register allocation problems ([19; 63; 113; 132; 146]).
Coalescing is a terminology frequently used when two registers are coalesced where
this is safe, in order to eliminate move operations between distinct variables (registers).
Register allocation can be modelled as a graph colouring problem too. If the problem
is represented by graph colouring, coalescing is a contraction of unconnected vertices.
The purpose of merging may either be the simplification or the fusing of several simple
graphs into one larger graph [112]. The vertex contraction technique is most helpful
in proof by induction on the number of vertices or edges in a graph, where we can
assume that a property holds for all contractions of a graph, and we can use it to
demonstrate this for the larger graph.  Usually, algorithms use vertex merging for
graph simplification and for combination graphs. For instance, a simplification is
done by merging two or more unconnected vertices to get fewer vertices before or
during colouring. In [29], [147] and [43] a pre-processing of graphs is performed before
colouring, where two vertices in a graph are merged to one if they are of the same
colour in all colourings. This is analogous to studies of the development of a backbone
or spine in the satisfiability problem [11; 126]. Here, the application of merging refers
to removing one of two unconnected vertices. In fact, we also could remove edges that
belong to the removed vertex. The only reason for performing these merges is to remove
unnecessary or unimportant vertices from the graph in order to make it simpler. Those
vertices that fulfil some specific condition will be removed from the data structure
which describes the graph. This process will result in a loss of information.  The
second approach is to consider two graphs, that have certain colouring properties. For
example one property might be that they are not k-colourable. Then the two graphs are
joined by merging vertices from both graphs to create a more complex graph, where the
desire is that the original properties are inherited. In both cases the identified vertices
get the same colour. A nice example is the Hajés construction [76; 112] where
k—uncolourable graphs are built from building blocks. One of the construction steps is
a vertex contraction which may join building blocks.

Although, we shall be concerned with merging unconnected vertices, the Hadwiger
conjecture [74] deserves a mention which is “one of the deepest unsolved problems
in graph theory” [15]. The conjecture can be defined by edge-contractions where con-
nected vertices are merged together by deleting the edge between them. The conjecture
refers to graph colouring. Namely, each k-colourable graph contains K}, a complete
graph on k vertices as minor; that is, G has a sub-graph for which a K, is reachable
by applying edge-contractions. An equivalent form of the Hadwiger conjecture (the
reverse form of that stated above) is that if there is no sequence of edge-contractions
that brings graph G to the complete graph K}, then G must have a vertex colouring
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with £ — 1 colours. In spite of the different terms, from here on the terms 'con-
traction’ and 'merge’ will be used where applicable. 'Contraction’ is a widely used
expression in the literature, but so is ‘'merge’. The following models are based on the
vertex contractions/merges of vertex-related structures such as the appropriate rows of
the adjacency matrix. The name 'contraction’ characterises well the identification of
two objects as one, hence identification reduces the size of the graph. Nevertheless,
the name 'contraction’ does not appropriate term to describe operations on related
structures of vertices so the term 'merge’ seems more suitable because there can be no
conventional shrinking in an associated graph.

4.5 Summary

This chapter discussed some important real-life applications of graph colouring and pro-
vided graph instances from different sources. We discussed several well-known graph
colouring algorithms and described various approaches to solve the Graph Colouring
Problem. Zykov's theorem introduces a new aspect, where colours are no longer needed
to define and handle the problem. It implies a generalisation of the colouring and can
be expressed via a graph homomorphism, where the vertices of a graph are mapped to
vertices in another graph instead of mapping colours.

The contents of this thesis is supported by graph homomorphisms as well, therefore we
keep separated chapter (Chapter 5) for them. In this thesis we generalise the Zykov's
approach by introducing different models (Merge Models). We will demonstrate the
novel models efficiency via a theoretical and experimental analysis as well. Merge
Models reformulate the original problem, In this reformulated environment three dif-
ferent general frameworks will be introduced to describe an abstraction for algorithms
based on the Merge Models. They provide a uniform and compact way in which al-
gorithms can be defined. Embedding algorithms in the framework supports both their
structural and performance comparison in a common basis, which can be anyway prob-
lematic. Traditional colouring schemes can be identified in one of the frameworks and
extended schemes may be provided. The framework itself generalises the formal sequen-
tial colouring approach. Due to this generalisation such an embedding an algorithm
can be enhanced, resulting in new algorithms. The novel aspect of the Merge Models
implies the development of novel colouring strategies, i.e Merge Strategies. The Merge
Models describes special graph homomorphisms, hence their analysis may reveal con-
nections between strategies and different graph properties. Many novel efficient Merge
Strategies will be provided which outperform several standard benchmark algorithms.
Moreover, a general strategy design will be described which allows the application of
machine learning techniques in the algorithm design.



Chapter 5
Graph homomorphism

The problem of k-colouring has another interpretation by using graph homomorphisms.
In fact, we can generalise the k-colouring problem. The main benefit of the homomor-
phism approach is that we can get rid of the colours and we can design pure graph
algorithms exploiting properties of the graphs stem from the description of particu-
lar homomorphisms. This section describes how we can make equivalence between
k-colouring and certain graph homomorphisms.

5.1 H-colouring

Let H be a fixed graph. The homomorphism problem for H asks whether a graph
G admits a homomorphism to H. A homomorphism of G to H is also called as
H-colouring of G.

Definition 5.1 (H-colouring) Let G and H be graphs. A homomorphism of G to
H isamaph : G — H, where we map vertices Vi — V (H) such that {z,y} € Eq —

{h(z), h(y)} € E(H).
If there exists a homomorphism h : G — H we shall write G — H and G - H means

there is no such homomorphism. If G — H we shall say G is homomorphic to H or
that G is H-colourable. Note that the map is not necessarily surjective.

Definition 5.2 (Complete H-colouring) Complete H-colouring, if exists, is a sur-
jective H-colouring G =5 H .

Composition hq o hy of homomorphism h; : G — H; and hy : Hi — H, is homo-
morphism of G — H, (see Figure 5.1(a)). Compositions will play an important role
in the design of sequential colouring algorithms using homomorphisms, in this case
consecutive homomorphisms will substitute each colouring steps.

Although, the substitution will bring several benefits, we cannot avoid the complexity
of the k-colouring problem. The following theorem shows how hard it is to find a
homomorphism between two graphs.

Theorem 5.1 (Hell and Nesetril, 1990 [85]) /f H is bipartite or contains a loop,
then H-colouring is polynomial time solvable; otherwise, H is N'P-complete.
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(a) The procedure for composing homomorphisms (b) Vertex set partition of a H-colouring

5.2 H-colouring and k-colouring

From the above definition it is clear that homomorphism preserves the adjacency relation
and G admits an H-colouring if and only if there is a partition of V; into sets .S; so
that each of them is an independent set and there are no edges between the vertices of
Si; and S; if {S;,5;} ¢ E(H). The S; sets represent the vertices of H (as illustrated
in Figure 5.1(b)). Recall that a k-colouring of G is a mapping ¢ : Vo — {1,2,...,k},
where adjacent vertices have distinct colours, which means that ¢(u) # ¢(v) whenever
{u,v} € Eg. Hence, colour classes {S;}¥_ , form independent sets and there is an
edge between any two colour classes S; and S; if and only if their components are
connected. If k& = x, then there are no colour classes so S; and \S; are unconnected,
otherwise we could decrease the number of colours used, applying a common colour for
their members. The S;-s form a vertex set of a complete graph. However, for larger k
than y we can get unconnected S;-s, e.g. for k = n, but here we should notice that
the condition c¢(u) # c¢(v) is equivalent to the condition {c(u),c(v)} € E(K}); that
is, we can embed graphs defined by colour classes into a complete graph and we may
conclude the following.

Proposition 5.1 Homomorphisms h : G — K, are precisely the k-colourings of G.

As mentioned above, the embedding of a graph defined by colour classes does not
necessarily result in a complete graph, but for those special cases when the result is a
complete graph the homomorphism will be a complete H-colouring.

Definition 5.3 (Complete k-colouring) Complete H-colouring, if it exists, is a
complete Kj.-colouring.

Each complete k-colouring of GG is associated with a partition of vertices into & non-
empty independent sets, any two of which are joined by at least one edge.
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5.3 Chromatic and Achromatic number

Theorem 5.2 (Colour Interpolation Theorem [86]) /fa graph admits a complete
ky-colouring and ko-colouring then it admits a complete colouring for all k, where
k1 < k < k.

The smallest & where the graph G admits a k-colouring defines the chromatic number
of G (Eq. 5.1) and the largest k& where the graph G admits a complete k-colouring
defines the achromatic number of G (Eq. 5.1). Note that any y-colouring of a graph
must be complete.

X(G) = mkm{k | G — K} (5.1)
v(G) = ml?x{k | G 5 K (5.2)

Thus we may conclude from the Colouring Interpolation Theorem that G admits a
complete k-colouring for any k& between its chromatic and achromatic number.

Proposition 5.2 Let G be a graph. For each k, x(G) < k < (G), G admits a
complete k-colouring.

It is not hard to verify that if G — H then x(G) < x(H). Indeed, if H — K}, exists
then GG is Kj-homomorphic thanks to the composition of homomorphisms. Conse-
quently if x(G) > x(H), then G -» H. We can similarly prove that if G — H, then
w(G) < w(H), using a K — G homomorphism, based to the following equation:

w(G) = mgx{k | K, — G}

5.4 Summary

In this chapter we saw how the H—colouring problem generalises the traditional k-
colouring problem. The k-colouring was interpreted as a homomorphism. The creation
of such a map is not easy for any kind of target graph. Nevertheless, the complexity of
the H-colouring remains the same for k-colouring, but the benefits of creating of graph
homomorphisms instead of colour assignments can be exploited. On the one hand, as
only one structure is necessary for the graph, we can omit the colours. On the other
hand, using the possibility of homomorphism compositions, we can transform a graph
into other graph instances which can tell us more about the structure of the original
problem. Moreover, we can generate a homomorphic graph series between a graph
and a complete graph by successive homomorphisms (see Figure 5.1(a)). These graph
series or consecutive homomorphisms correspond to particular sequential colourings.
In the next chapter we will present different approaches for achieving homomorphisms
like this for k—colouring. Although, [16; 107; 148; 159]. describes how we can define
other graph colourings such as circular and fractional colourings through H-colouring,
defining various target graphs. Furthermore, H-colouring can be analogously stated for
any relational system H, e.g. for the general constraint satisfaction problem.






Chapter 6
Quotient and Power methods

In this chapter we shall define graph colouring processes as a series of homomorphisms
using quotient or power graphs, where the vertices which get the same colour will be
'glued’ or 'grouped’ together, respectively, to form a new vertex set. Here a modified
vertex set usually results in a modified edge set as well.

These graph operations produce helpful graph structures which can be exploited
for an efficient colouring and also help provide a deeper insight into the colouring
procedure. Moreover, they allow us to design efficient new or redesign existing graph
colouring algorithms in a framework supported by quotient or power graphs (see Juhos
et al. [96-102]).

In the following we shall introduce the theory of quotient and power methods and
later on we shall discuss the implementation details by describing current and novel
colouring methods.

6.1 Motivation

Figure 6.1(c) shows a drawing of a graph where the vertices are denoted by circles,
while Figures 6.1(d) and 6.1(e) show different proper colourings of the same graph,
namely a 3-colouring and a 2—colouring. Although, colours and vertices are different
entities, they may be jointly encoded in one object by a circle symbol. Colour entities

are implicitly encoded in the vertex, but they can be handled separately. In Figure
2 (v2,2) (va,2)
(Ulv 1) (vlv 1)
U1
U3 (U?n 3) (U3’ 2)
(c) A graph (d) 3—colouring (e) 2—colouring

Figure 6.1: Different colourings of a graph. Vertices {vy,v9,v3} and colours {1, 2,3}
are not separate entities. One circle encodes information about a graph vertex and a
colour as well.

6.2 colours have been detached from the vertices. Figures 6.2(a) and 6.2(b) display
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the detached colours and their relations in accordance with the 3—colouring and the
2—colouring of Figure 6.1(d) and 6.1(e), respectively. The detached 2—colouring clearly
shows the redundancy, of the colour 2 instances in Figure 6.2(c). In order to eliminate
this redundancy one can eliminate the different instances of the colour 2 and use just
one instance instead, this elimination leads to a compact representation of the colour
relations. If the elimination step is stored, then this compact representation can define
the original 2—colouring. Since the graph of the detached colours inherits the original
vertex relations, this graph is equivalent to the original one. Consequently, colours and
vertices can be identified as a common entity. Depending on the context where they
occur, this entity can be called either as a colour or vertex. Usually, it is reasonable
to call them as a vertex because colours can assist the presentation and the general
explanation for instance colours can be useful progress indicators of a colouring process,
where coloured and uncoloured vertices are distinguished.

. ‘l‘ 2 /:" 2
' ' 10——2
(a) Relation be- (b) Relation be- (c) Relation be-

tween the colours
in a 3—colouring.

tween the colours
in a 2—colouring.
Colour 2 has two
instances. Redun-
dancy.

tween the colours
in a 2—colouring.
Colour 2 has one
instance. No
redundancy.

Figure 6.2: Motivation of quotient graphs. Colours 1,2 and 3 are circles. 2—colouring
introduce choices: keeping redundant colour instances or eliminating redundancy.

The compact representation of the colouring requires storing of each elimination step
to have a chance of recovering the colouring of the original graph. To eliminate this
storing process, first preserve the difference between vetrices and colours, and handle
the vertex — colour relations together with the eliminations. Colours and vertices should
be detached as well, but both are retained as different entities, as illustrated in Figure
6.3. Vertices are the inner circles while colours are the outer circles. This special
positioning of the circles is just to aid understanding, but they could be arranged in
other ways. The vertex — colour assignments are represented by directed edges from
inner circles to the outer ones. Here, the 2-colouring provides the possibility of the
elimination as well. The two instances of the colour 2 may be eliminated by allowing
only one single instance of the colour 2. Figure 6.3(b) shows a colour redundant
representation of the 2—colouring of Figure 6.1(e). But in Figure 6.3(c) the colour
redundancy has been eliminated. This approach provides a compact representation for
the colours and hence the vertex—colour relations. Nevertheless, there is no need to
store the elimination steps, since the vertex — colour relations, i.e. the vertex — colour
assignments are always available. The created graph (Figure 6.3) can be transformed
into the graph of Figure 6.2(c) by contracting the outer circle, as depicted in Figure
6.4.
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(a) Vertex — colour
relations in a
3—colouring.

(b) Vertex — colour
relations in a
2—colouring. Colour
2 has two instances.
Redundancy.

(c) Vertex - colour
relations in a
2—colouring.  Colour
2 has one instance.
No redundancy.

Figure 6.3: Motivation behind power graphs. Vertices v;,v5 and vz are inner circles,
while colours 1,2 and 3 are outer circles. The figures depict vertices — colour relations.
2—colouring introduce choices: keeping redundant colour instances or eliminating re-
dundancy.

-

1@ 2 10— 2

Figure 6.4: Contraction of outer circles.

The approach which keeps the vertex — colour relations is the motivation behind the
power methods, while the vertex — colour identification is the basis of the quotient
methods.

6.2 Quotient method

Definition 6.1 (Topological space [155]) A topological space is a set V' together
with V), a set of subsets of V', satisfying the following axioms: the empty set and V
are in V; the union of elements V is also in V; any finite intersection of elements of V
is also in V.

The set V is called a topology on V. A quotient space comes from the original one by
‘gluing’ the elements of the space. More precisely

Definition 6.2 (Quotient space [155]) Let V' be a topological space and ~ be
an equivalence relation on V. The topological quotient space V// ~ is composed of
equivalent classes of the space V' by relation ~, using a surjective map V. — V/ ~.

Equivalence classes form a partition, conversely, a partition defines an equivalence re-
lation ~ which is the kernel of the surjective map *. If only one equivalence class has
two or more elements, then that class describes the whole partition, i.e. the relation

1The kernel of a function f is ker f = {(v,u)|f(v) = f(u)}
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~. Let S be a subset of V, where v ~ w iff v,u € S. Then following [78] and [125],
we may denote V/ ~ by V/S as well or by using elements of S, e.g. in the case of
S = {v,u} we can also use notation V/vu.

According to [119], the form of the previous definition for a particular case, namely for
graphs, is the following

Definition 6.3 (Quotient graph) Given a graph G = (V, E) and a partition* S of
V', the quotient graph G /S is the graph (S, E) where € = {{S;, S;} | SixS;NE # 0}.

In [94; 100-102] the author described a general model where the graph colouring is
efficiently modelled by special Quotient graphs, forming a general Quotient method for
the graph colouring. They showed that efficient graph colouring algorithms could be
designed based on the Quotient method.

The following relations can be identified between images of H-colourings and Quotient
Graphs, as described in Section 5.1.

Proposition 6.1 (H-colourings and Quotient Graphs) Every quotient graph of
G is a homomorphic image of G and, conversely, every homomorphic image of G is
isomorphic to a quotient of G.

Sy
“'- SQ Sl
53 54
S T e - Sy
(a) A graph G with (b) G/S quotient
partition S graph

Figure 6.5: An example of a quotient graph.

A quotient graph (see Figure 6.5) is a simple graph, thus its edges form a set, but re-
taining different images of the original edges can lead to multiple edges between classes
and induce an edge multiset in a quotient multigraph (see Figure 6.6) in accordance
with Def. 2.12. To distinguish between quotient graph and multigraphs, we shall use
a double slash in our notation for quotient multigraphs e.g. G /S.  Quotient graphs
may be constructed by graph vertex contractions, where each S; is a set of contracting
vertices. Recall that vertex contraction can be applied to connected and unconnected
vertices as well, but we will use edge-contraction for contracting two connected ver-
tices. As mentioned earlier, unless otherwise stated vertex contraction will be used for
unconnected vertices only.

2S:USiandSiﬂSj:(Z)if1'7éj
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(a) A graph G with partition (b) G /S quotient
S multigraph

Figure 6.6: An example of producing quotient multigraph.

Graph vertex colouring defines partition of vertices, where the same colour vertices
form the equivalent classes and, conversely, any partition provides a colouring. That is,
x,y € S; implies {x,y} ¢ F to get a valid graph colouring. To simplify the structure
of the graph we can create a quotient graph by merging vertices in the same class.
Applying a vertex contraction for each colouring steps results in several intermediate
quotient graphs until a complete graph is obtained. We shall see how beneficial the
application of the vertex contration is in the graph colouring. In minimum colouring,
we have to find a homomorphism which results in as small complete graph as possi-
ble. Thus an algorithm must look for the longest sequence of contractions; that is,
the longest homomorphic graph series, because each merge decreases the number of
vertices in the graph, hence the longest path results in the smallest graph.

Though contracted graphs specify a H-colouring process quite well, they lose informa-
tion about the original graph structure when we simplify it via contractions. We will
introduce another method which keeps information about the original graph and works
in harmony with the H-colouring principle as the quotient method does.

6.3 Power method

Instead of contracting or merging vertices we can merge related structures of vertices
to produce a special non-quotient graph. E.g. merging relevant rows of the adjacency
matrix gives rise to a vertex 'grouping’ effect. This grouping can be characterised by
power graphs (see Figure 6.7), which put putting a new vertex called 'group-vertex’
(which encompasses some of the original vertices) into the original vertex set. A group-
vertex takes over the incoming edges from the encompassed vertices. A group-vertex
will be a colour class in the traditional sense, hence all vertices belonging to a group-
vertex may be regarded as coloured vertices with the same colour. A power graph can
be defined on a power set of the vertices of a graph in accordance with [2].

Definition 6.4 (Power graph) Let G = (V, E) be a graph. The vertices of a power
graph G’ = (V', E') are defined by a subset of the power set of the G vertices V' C 2V.
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Power vertices are connected to each other by power edges E' C V' x V.

The author introduced the Power method for the graph colouring problem in [96], where
the graph colouring is modelled by a special Power graph sequence. They demonstrated
the efficiency of the Power method and developed several powerful graph colouring al-
gorithms based on the method described in [97-100].

Figure 6.7 shows how a power graph may be created from a partition of vertices. The
new vertex set is a subset of the power set of the original vertices, where we can find
group-vertices that represent equivalent or colour classes. The original graph is a simple
graph which defines its edge set as a symmetric relation; if (x,y) € E then (y,z) € E.
We can make these undirected edges as combinations of two directed edges, where
one is from a vertex to one of its neighbours and another is the reverse case. The
group-vertices become new endpoints of the directed edges that determines a vertex-
‘neighbour colour’ relation. Therefore we can map two directed edges representing an
undirected edge in the original graph to two power edges of the power graph. This
map is surjective, but not necessarily injective. For example, if neighbours of a vertex
have the same colour, then four directed edges are mapped to three power edges, like
vertices in S; and S5 in Figure 6.7 In order to get an injective edge map we have to

. S St So
Ss T T ’ Sy Ss Sy
(a) A graph G with partition (b) G/S power graph

S

Figure 6.7: An example of producing power graph.

use a power multigraph with a multiset for its edge set, as we saw earlier in the case of
quotient multigraphs in accordance with Def. 2.12. A similar graph homomorphism
can be defined between a graph which is equivalent with the original graph 3 and
its colouring power graphs. Hence, we shall denote it in harmony with the quotient
graphs, but use superscript to represent the power. Thus, denote H-colouring power

graphs by G/ and, likewise, multigraphs by G/<.

Note that contracting the appropriate power vertices (with all the vertices it encom-
passes, e.g. S; and its two vertices in Figure 6.7), results in a homomorphism from a

3Vertices in the related graph are doubled or interpreted as a (vertex,colour—vertex) pair. Initially
each vertex gets different colours, then some of them can share the same colour—vertex; that is, certain
colour—vertices get contracted. An outgoing edge connects a vertex with a colour-vertex.
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(a) A graph G with partition (b) G/S power multigraph

S

Figure 6.8: An example of producing power multigraph.

power graph to a quotient graph .

With our sequential graph colouring approaches we can construct a colouring for a graph
by progressively merging structures of a graph that generates quotient or power graph
sequences. The final graph in the sequence defines a colouring where the contracted or
grouped vertices get the same colour in the original graph. In fact, quotient or power
graph sequences themselves define the whole colouring process. Here the use of colours
for vertices of intermediate graphs was employed in order to see the steps involved.

6.4 Summary

This chapter introduced two methods, namely the Quotient and Power methods for the
graph colouring problem and, in addition, two variants of them. These methods model
the graph colouring problem via certain graph homomorphisms. The composition of
several homomorphisms defines colouring steps in the traditional sense.

In the next chapter we shall provide a matrix representation of these models with special
matrix operations, which results in homomorphic images based on the Quotient and
Power methods.






Chapter 7

Merge Models

The relation between the original graph and a quotient or power graph/multigraph is de-
fined by a graph homomorphism. The author introduced four kinds of matrix operations,
called Merge Operations to map a representation structure of the original graph to its
four different homomorph images, respectively, and then subsequent Merge Operations
will produce vertex colouring [96; 100]. They showed that Merge Operations produce
appropriate homomorph images of the original problem in accordance with Chapter
5, modelling the original graph colouring problem [96; 100]. The representations and
the operations form new colouring models, called Merge Models, that supports parallel
implementations. They got significant improvements both theoretically and via experi-
ments in [99] when an algorithm applied their models. Exploiting the performance they
designed powerful graph colouring algorithms in [94; 97-99; 101; 102]. The details of
their analysis can be found in chapters 10 and 11.

Vertices having the same colour in the traditional colouring process induce merges in the
adjacency matrix, and each edge that is connected to these vertices is either collapsed
into a single edge or forms a multi-edge in the resulting structure. Multi-edges can be
identified as single but weighted edges where their weight counts the multiplicity of the
edge. We shall present matrix representations of the result quotient or power graphs.
There will be two subtypes of representations where one does not depend on the number
of collapsed edges, while the other one does. These representations are used together
with basic Merge Operations to create power graphs where only rows are merged or
produce quotient graphs when the relevant columns are also merged. By combining
these representations with the Merge Operations we will provide four colouring models
called the Binary/Integer Merge Square and the Binary/Integer Merge Table models.
Their representation matrices will be denoted by A, A, T and T, respectively. Here,
Merge Squares are associated with the adjacency matrix of the merged graph, i.e. a
quotient graph. The Integer types assign weights to the edges according to how many
edges are merged. The Binary types approach simply collapses these edges onto the
same one common edge, but it does not preserve their cardinality. The tables track
information about the original vertices, while the squares omit. The graph depicted
in Figure 7.1 and its adjacency matrix will be used as examples to help explain the
different model types.

49
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7.1 Merge matrices

In order to generate sequential colourings, consecutive homomorphisms will be applied
starting with the original graph and ending up with a complete graph of a graph which
is homomorphic with a complete graph. The number of transformation steps can be
followed by the upper index t e.g. A,

Uy
V1 V2 V3 V4 V5 Vg
Vs V3 1 . 1 1 . . 1
o 1 - 1 - . .
s 11 - 1 - 1
V6 U2 ry - . 1 . 1 .
rs - . .01 -1
e 1 - 1 - 1
U1

Figure 7.1: A graph G and its initial Merge Matrix, the adjacency matrix: the v-s refer
to vertices and the r-s refer to rows, i.e. colours. The 0-s have been replaced by dots
for the sake of clarity.

The initial Merge Matrix is the adjacency matrix of G: A% = ALl = 700) = T} .= A

Here we shall only deal with valid colourings, hence simple non-adjacent vertices can
be merged together. In the case of Merge Squares representations, a Merge Square is
the unweighted or weighted adjacency matrix of a quotient graph, thus columns and
rows refer to the same objects of the graph, namely to the merged vertices/colour
classes. The condition of the merge depends on the relation between vertices, i.e. the
edges of the quotient graph. The coincidence of a given row and column of the Merge
Square must be zero. We can easily see that this condition is the same for Merge
Tables (MT), but it breaks the symmetry of the representation. Therefore, we have
to check the adjacency between a normal the original vertex (which refers to an MT
column) and a merged vertex-set/colour classes (which refers to an MT row). We can
summarise the merge conditions by the following:

ol = alf = 9 = ) 0 ()

Consequently ayg = ag.i-] = 0 and thanks to the inherited graph property ag} = a% =
az[? = a%- = 0. Next we shall define the following matrices:

P=1,®I R=1;,®1, W=P—-R (7.2)

where [; is the i—th row of the identity matrix, P (Plus) will be used for addition (or
bitwise—OR. operation) of the j-th row of a matrix to the corresponding i-th row. R
(Reduction or Minus) will support the subtraction of the j-th row from itself, thereby
setting its components to zero. This could also be done by a bitwise exclusive or (XOR).
In the case of the third matrix, W combines these operations together. Here let a and
b define the i-th and j-th row vector of a matrix for step t. We now define the four
models formulated both as row/column operations and matrix manipulations. First the
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integer-based models and then the binary-based model, which do not track the number
of edges folded into an edge.

7.1.1 Merge Tables

With addition or bitwise-OR. two rows of an adjacency matrix creates a power graph
structure, which characterises a relation between the original vertices and the neighbour-
ing colours or colour classes. We may associate rows of an adjacency matrix to colour
classes or power vertices and columns to vertices of the original graph. The matrices
of these power graphs are known as Merge Tables owing to their shape. As previously
mentioned, there are two subtypes, namely a weighted type and an unweighted type,
based on how the number of the edges are taken into account in the merging process.

The Integer Merge Table

Integer Merge Tables keep track of multi-edges. As we said earlier we can refer to a
multi-edge by a weight, counting the number of edges folded into one edge during the
merging process.

A row-based formulation of the i-th and j-th row of T after merging the j-th
vertex into the i-th: let t; be the i-th row and t_; be the column vector. Then

TV =at+b , TH=b-b=0 (7.3)
A matrix-based formulation
T+ — iyl = (I+ W)TM (7.4)

where W is defined in Eq. 7.2. In Figure 7.2, rows r; and r4 have merged, after which
the row r, is removed to get a collapsed Merge Table. An Integer Merge Table model
does not lose any edge from the original graph because it keeps track them as multiple
edges. Multiple edges are represented by values which are greater than one. It occurs
when two rows have non-zero elements in the same positions in the merge. In Figure
there is a 2 in the ({ry, 74}, 73) position of the collapsed Merge Table. This value of
2 appears as a multiple edge which starts from v3 to the only power node {vy,v4} in
Figure 7.2(c). Due to this fact, the sum of the matrix does not change. We could
normalise entries of Integer Merge Tables in several ways, one can be the leaving out
the counting the number of edges folded together to get a {0, 1} binary matrix.

The Binary Merge Table

The binary version of the Merge Tables focuses on the relation but not the degree of the
relation between edges and colours. Here we have two options; apply a piecewise OR
operation (see equations 7.5 and 7.7) or apply Integer Merge Table model and subtract
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Vi V2 V3 Vg Vs Vg Vi V2 V3 Vg Vs Vg
mo-o 11 - .1 {ri,ray - 1 2 - 1 1
To 1 . 1 . . . T9 1 . 1 . .
o1 1 - 1 - 1 - 11 - 1 - 1
T4 . . 1 . 1 . T4 . . . . . .
s . . . 1 . 1 s . . . 1 . 1
e 1 - 1 - 1 - T 1 -1 -1

(a) Adjacency matrix Ac (b) Integer Merge Table T(G/{v1-val)

V1 V2 VU3 U4 Vs Vg

U3 {Tl, 7‘4} . 1 2 . 1 1
- 1 - 1 . )
s 1 1 - 1 - 1
vy - N e |
{v1,v4} e 1 - 1 - 1

P Iti h G/ {vi.va}
(c) Power multigraph & (d) Collapsed Integer Merge Table T(G/{v1:va})

Figure 7.2: Merging (addition) rows 71,74 of Ag results in a T(G/{v1:v1}) Merge Table.

irrelevant items from it. The latter solution may be useful in algebraic methods (see
equations 7.6 and 7.8), while the former is easy to implement.

A row-based formulation

T = avb T = o (7.5)
(2 ) Vi )
aob=  diagla®b) = Z(a@b)]i

i

A matrix-based formulation

T =T N a@b)(I; @ 1)

J

where P and R are defined in Eq. 7.2. In Figure 7.3, row r4 is merged with row r;
to form {ry, 74}, after which r4 is deleted. ~ An option to get a Binary Merge Table
from the integer counterpart can be that when each non-zero elements are multiplied
by the reciprocal value of the element. Unfortunately, this piecewise operation does not
support well the algebraic computation, nevertheless it can be useful in the practical
implementation. A Merge Table describes relation between vertices and colour classes,
but a power graph can be transformed into an appropriate quotient graph of the original
graph by contractions as seen in Figure 6.3. Then vertices and power vertices/colour
classes can be identified only one object either vertex or colours depending on the
context where we would like to use them. The application of a Merge Operation to
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V1 V2 V3 Vg Vs Vg V1 Vg2 V3 V4 Vs Vg
rn - 1 1 - - 1 {riray - 11 - 11
o1 1 o1 - 1 .
r 11 - 1 - 1 s 1 1 - 1 - 1
Ty . . 1 . 1 . T4 . . . . . .
T T | - A T |
e 1 - 1 - 1 . e 1 - 1 - 1

(a) Adjacency matrix Ac (b) Binary Merge Table T'(G/{v1:v4})

V1 V2 Vs Ug Vs Vg

@ U3 {ry,74}y - 1 1 - 1 1

\W " T9 1 . 1 . . .

s 1 01 - 1 - 1

v vy - R T |
{Uh U4} e 1 - 1 - 1

c) Power graph G/{vi v}
(<) Power grap (d) Collapsed Binary Merge Table T(G/{v1-v4})

Figure 7.3: Merging (bitwise OR) rows 71,74 of Ag results in T(G/{*1:v4}) Merge
Table.

the rows and the relevant columns as well we arrive to quotient graph where vertices
becomes colours and conversely.

7.1.2 Merge Squares

The result matrix after a merge of rows and appropriate columns is square, more exactly
either weighted or unweighted adjacency matrix of the vertex contracted graph. Similar
to the Merge Tables we will define their counterpart Merge Squares.

The Integer Merge Square

A row/column-based formulation let a; be the i-th row and & ; be the column
vector and define a; and a_; in the same way for the j-th row and column.

Al —atp | Al —g7 (7.9)

7 J

AT —a7 7 | Al —p (7.10)

— _J

A matrix-based formulation
AT = Al Al Al T (7.11)

Since a!; = 0 and a!;, = 0, it follows that WAMWT=0. Due to this, we can rewrite
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Eq. 7.11 as
AP = (T + WA +W)T (7.12)

where W is defined in Eq. 7.2. Note that the condition of the merging of the row i and
Jis t;] = t3 = t;; = t;; = 0. Redefining the starting matrix according to To = A — 1
allows us to keep track of which vertices have been encompassed by a merged vertex.
The original Merge Operation should not be modified. In this case, —1 entries then
refer to the merged vertices. We should also take this modification into account in the
algorithm design. In Figure 7.4, a Merge Square has caused both columns and rows to
be merged. The result is an adjacency matrix of the merged graph with weights on the
edges that describe the number of edges that were merged.

Vi V2 U3 Vg Uy Vg {vr,va} va vz v w5 we
rn - 1 1 - - 1 {r1,7r4} . 12 - 1 1
rn 1 - 1 - - . Ty 1 1. . .
rg 1 1 - 1 - 1 r3 2 1 - . -1
rwoo- - 1 - 1 s ) e
S | - 1 |
r¢ 1 - 1 - 1 . 76 1 -1 - 1 -

(a) Adjacency matrix Ag (b) Integer Merge Square A(G/{vi:v4})

{U1,U4} Vg V3 VUs Vg

U3 {Tl, 7’4} . 1 2 1 1
r 1 R
rs 2 1 . . 1
rs 1 |
, Uy
(c) Quotient graph G // {vi,v4} "6 ! - b

(d) Collapsed Integer Merge Square A (G/{vi-v4})

Figure 7.4: Merging (addition) rows rq, 7, of Ag results in Integer Merge Square.

Note that the merge condition, in the case of the row i and j, is a;; = a; = ay =
aj; = 0 in accordance with Eq. 7.1. Hence after a merge a;; = as; + a; + & + ay;
remains zero. We could also use up a;; cells to store additional structural information.
Starting with the Ag = A — I matrix instead of the pure adjacency matrix A, we could
then count the number of vertices encompassed by a merged vertex, while keeping
the original Merge Operation ! . In this case, diagonal entries will contain all the
cardinalities. However, an algorithm should handle the modified diagonal elements.
Similar to the Integer Merge Tables, the Integer Merge Square model does not lose any
edges either, but store them as multiple edges. Thus, the sum of the matrix does not

change in this model.

LA+ I is an alternative here.
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The Binary Merge Square

A row/column-based formulation Let a; be the j-th row and let a ; be the
corresponding column vector. Then

A = avp , A= oT (7.13)
A= A _aop AT =0T (7.14)
A=Al A o (7.15)

A matrix-based formulation

A = Al (pAW 4+ A PTY — (RAW 4 AMIRT) (7.16)
Alrl = Al (pAPTY — (RAWRT) (7.17)

where P and R are defined in Eq. 7.2. Figure 7.5 shows a binary merge collapse that
does not perform a count of the merged edges.

U1 Uy U3 Uy Us Vg {vi,v4} vo v3 vy vs v
rno- 1 1 - - 1 {ri,r4} : 1 1 - 1 1
o 1 - 1 - .. T 1 A
s 1 1 - 1 - 1 T3 1 /P |
ry - - 1 - 1 ry . e
rs - - - 1 - 1 s 1 R |
e 1 - 1 - 1 - re 1 o1 .1 .

(a) Adjacency matrix Ag (b) Binary Merge Square A(G/{v1:vs})

{01,114} Vg V3 Us Vg

US {7‘1, T4} . 1 1 1 1
To 1 . 1 . .
T3 1 1 1
U6 B X :Z 1 11

(c) Quotient graph G/{vy,v4}

(d) Collapsed Binary Merge Square A(G/1vi:v4})

Figure 7.5: Merging (addition) rows 7,74 of Ag results in a Binary Merge Square

In a Binary Merge Square model a merge results in a simple graph from a simple graph,
since it just collapses the multiple edges. The same behaviour can be seen here with
the Integer Merge Square model. If some row is merged into the i—th row then the
a; elements remain zero due to the merge condition (7.1). A Binary Merge Square is
simply the adjacency matrix of the resulting simple graph after a merge. If necessary,
Ag can be used to identify the adjacency matrix of the original graph, which contains
the clearest representation of the generated problem after a merge. This is quite useful
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if an algorithm focuses just the core of the problem.

Merge Algorithms work on Merge Models, performing subsequent merges until the
Merge Operation becomes unfeasible. These merges generate a matrix sequence and a
corresponding graph sequence. The following definitions identify states of the matrices
and graphs during an algorithm run.

Definition 7.1 (Merge Matrix and merge graph) The Merge Matrix is a general
name for a matrix of an integer or Binary Merge Table or square. The merge graph is
the corresponding power or quotient graph.

Definition 7.2 (Initial Merge Matrix and merge graph) Let G be the graph to
be coloured. The initial merge graph is G and the initial Merge Matrix corresponds to
the adjacency matrix of G.

Definition 7.3 (Final Merge Matrix and merge graph) The final Merge Matrix
is that matrix where no more merges are possible. The corresponding merge graph is
the final merge graph.

Definition 7.4 (Intermediate merge matrices and merge graphs) Intermediate
merge matrices and merge graphs are those between the initial and final merge matrices
and graphs, respectively.

Generally, when speaking about any of the merge representations we use the term
Merge Matrix instead of calling them a table or square. Now let M denote a general
Merge Matrix in the following. We may associate each row of a Merge Matrix with an
appropriate vertex in the corresponding quotient or power graph and designate those
vertices as merge vertices. The number of non-zero elements the constraints do not
decrease by any of the Merge Operations since addition or binary-OR do not decrease
entries; that is, non-zero entries remain non-zero. But a zero entry may become non-
zero after a merge. This process leads to the saturation of non-zero entries. The main
task of the colouring strategies is to control this saturation process and prolong it as
much as possible, because the number of rows describe the number of colours used.
Hence a prolonged merge sequence leads to fewer rows in the final Merge Matrix. This
is a key concept in Merge Algorithms.

7.2 Sub- and co-structures

Sub-structures Since sequential colouring uses steps where one colour is assigned
for each step, the coloured and uncoloured parts of the graph change in a step-by-
step fashion. Now it is worth defining the relevant parts of merge matrices separately
in the coloured and uncoloured sub-graphs. Superscripts ¢ and “"¢ stand for partial
structures e.g. for sub-merge-matrices M and M""¢, respectively. Figure 7.6 shows
these partial structures in the case of Integer Merge Tables, where M = T<! and
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Mvne = Tune, Eq. 7.19 reveals more precisely the content of a sub-merge-matrix. The
rows in the coloured and uncoloured sub-merge-matrices are referred to coloured and
uncoloured rows, respectively.

Ui V1 V2 V3 Vg4 Vs Vg
Ty o1 1
Vs, V3 {7’5, T3} 1 1 . 2 . 2
(c) T“"¢ uncoloured Merge Table
Vg V2 V1 V2 Vg Vg Vs Vg
n - 1 1 - - 1
T9 1 . 1
U1 r¢ 1 - 1 - 1

(b) Relevant power multi-
graph

(a) Partial colouring of G (d) T coloured Merge Table

Figure 7.6: Sub-graphs and sub-merge-matrices of a power multigraph for a partial
colouring. The dashed and dotted lines denote the coloured substructure in Figure
7.6(b), while solid lines show the uncoloured structure.

Coloured (and uncoloured) vertices may be characterised by a vector, the characteristic
vector, which consist of 1—s in the appropriate positions and zeros elsewhere.

Definition 7.5 (Characteristic vector of coloured rows) The characteristic vec-

ol The dimension of the vector is equal

tor of the coloured rows will be denoted by e
to the number of rows in the relevant Merge Matrix. Indices of coloured rows define

the positions where e’ have ones, the other entries being all zero.

Definition 7.6 (Characteristic vector of uncoloured rows) The characteristic vec-

unc — The dimension of the vector is equal

tor of the uncoloured rows is denoted by e
to the number of rows in the relevant Merge Matrix. The indices of uncoloured rows

define the positions where e“™° have ones, the other entries being all zero.

Figure 7.6 shows a partial colouring where rows {{r3, 5}, r4} are coloured and {ry, rs, rs}
are uncoloured. This partial colouring induces the following characteristic vectors:

— D — D e 2 —

e =(1,1,0,0,1) e =(0,0,1,1,0) (7.18)

Since 75 is merged into 3, position 5 is removed and entry 3 represents the coloured/merged
row. The characteristic vectors of rows can be obtained from each other by a simple
subtraction; namely e"¢ = e — e, where e is the vector of all ones. Sub-merge-
matrices can be defined like so:

Mcol — Diag(ecol) M Mune — Diag(eunc) M (7.19)
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where Diag(.) makes a diagonal matrix where the argument vector is in the main
diagonal, and the off-diagonal entries are all zero. In this case M"" and M!-s
contain zero rows, they are not collapsed. Figure 7.2(b) shows an example of such an
non-collapsed matrix M“".

Similar characteristic vectors can be defined for vertices of the original graph %!
and ef*°, where two {0, 1}" vectors characterise the uncoloured and coloured vertices
and n = |Vg|.

Definition 7.7 (Characteristic vector of coloured vertices) The characteristic vec-

col - The dimension of the vector is the same

tor of coloured vertices is denoted by e
as number of vertices in the original graph G. Indices of coloured vertices define the

positions where €' have ones, while the other entries are all zero.

Definition 7.8 (Characteristic vector of uncoloured vertices) The characteris-
tic vector of uncoloured vertices is denoted by eg*“. The dimension of the vector is
the same as the number of vertices in the original graph G. Indices of uncoloured rows
define the positions where eg*° have ones, while the other entries are all zero.

Regarding Figure 7.6 the {rs,rs5,r4} vertices are coloured and the {ry,ry,rg} ver-
tices are uncoloured. Hence the characteristic vectors are €% = (0,0,1,1,1,0) and
el = (1,1,0,0,0,1). These vectors are also complementer of each other, since e&! =
e —el. The e and ¢“"¢ vectors may be derived from €& and e by simple binary-
OR operatlons (merges) on the relevant indices belonging to merged vertices. In the
traditional colouring, the sub-adjacency-matrices are associated with G and G""¢
which are sub-graphs of G, they differ from the merge interpretation. Here rows and
columns must be removed from the original adjacency matrix, as follows

Acol (eg’)l ® eg)l) oM Aunc — ( unc ® ez(gnc) oM (720)
The (e ®e%') dyadic product 'masks out’ the relevant entries of the adjacency matrix.

First order co-structures are the cells of the representation merge matrices. They
define the neighbourhood relation of the merge vertices for the binary and weighted
relations for the Integer Models.

Secondary order co-structures or, simply co-structures, are the sums of the rows
and columns in the representation matrices, respectively. There are four such vectors.
We can get the sum of the rows and columns of Binary Merge Matrices from their integer
pairs by counting their non-zero elements. Figure 7.7 shows the four co-structures on
the four sides of the sub-merge-matrices in the case of Merge Tables and Merge Squares
as well. The left hand side contains the sums of the rows of the Integer Models, while
the right side contains the sums of the non-zero elements of the rows. This is the same
for the columns, where the top vector is the sum of the rows and the bottom is the
number of non-zeros. In the case of the Binary Models the left and the right/the top
and the bottom co-structures are the same.
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The second order structures will be denoted by i, using ¢, indices as subscripts to
refer to the top, bottom, left and right vector, respectively. Figure 7.7 shows sub-merge-
matrices for coloured vertices, but co-structures may be defined for the uncoloured part
and for the whole Merge Matrix as well. To be consistent, with the previous notations,
une and ! will be denote the location of the co-structure.

/Lb'-_‘ .1

: 3
U] V2 V3 Uy Vs Vg v Vg U3U4 vs g vy Vg {7157713}11 vy vg| |
mo- 11 - - 1 S8l 1121 2 L8l 2 202
el - 1 - - - rg 420 1 -1 -2 ra 20 - 20 e L]
b1l 1 1 {61 1 - 2 - 204 [frsrg}i6)1 1 - 224
RPN P T 1111116 11 1 11]5

Figure 7.7: The original graph, its sub-Integer Merge Table and then its sub-Integer
Merge Square of coloured vertices when colouring is in progress. Here j; gives the sum
of the degree of the vertices in a colour class, u,. gives the number of adjacent vertices
of a colour class, p; gives the number of adjacent coloured vertices, and i, gives the
number of adjacent colour classes.

Third order co-structures sums the secondary order structures. These may be
divided into two parts, like the second order structures, based on the coloured and
uncoloured sub-graphs. These structures will be denoted by (. In this study, they will
be employed in the fitness function of the evolutionary algorithm. The top-left sums
(; of the top vector (or the left vector) and the bottom-right sums (;, of the bottom
vector (or the right vector). These are shown in bold in Figure 7.7. We will also use
the “"¢ or © notation to distinguish between the parts, while co-structures without any
superscript will refer to the whole Merge Matrix.

7.3 Summary

This chapter introduced four different models, called Merge Models, for the graph
colouring problem. The models consist of matrix representations and special matrix
operations, i.e. Merge Operations. The Merge Operations replace the traditional colour
assignments. These models describe graph homomorphisms based on the Quotient and
Power methods of Chapter 6. In order to get a colouring algorithm, the algorithm steps
must be defined; that is, a sequence of the Merge Operations must be defined.

In the next chapter we will create a general framework for the algorithms based on the
Merge Models.






Chapter 8
Merge Frameworks

In Chapter 7 we modelled the graph colouring problem via matrix via matrix repre-
sentations and operations, starting with the adjacency matrix of the graph. The au-
thor introduced general frameworks for graph colouring algorithms supported by Merge
Models in [100; 101]. These are generalisations of the traditional colouring schemes
of Section 4.2.1. Sequential colouring and independent set methods also fit into these
frameworks. This general framework with the new Merge Models supports a common
structural analysis of the existing and novel graph colouring methods, as shown by the
author in [97; 99; 101; 102].

8.1 The UC and CU Merge Frameworks

There are two options in the case of sequential colouring: either we choose an un-
coloured vertex first and then choose a suitable colour for the vertex (UC) or, con-
versely, we can choose a colour first and then find an appropriate uncoloured vertex for
the assignment (CU). These two types may be clearly described by using uncoloured and
coloured merge sub-merge-matrices in the UC and CU Merge Frameworks (see Figure
8.1). These frameworks do not provide any selection strategy. However, a combination
of particular strategies with a Merge Frameworks results in an algorithm. Consequently,
the same strategy with different framework results in different algorithms. The other
option for making an algorithm is when different strategies are combined with the same
framework. Chapter 10 will give examples for each type. Note that Merge Models work
without using colours. Recall that colours serve only to aid understanding; they only
indicate whether a row has already been taken into account in the merge process. For
this purpose one can use coloured and uncoloured characteristic vectors, as described in
Section 7.2.  The choose-unc and choose-col functions/strategies are not defined pre-
cisely here. They can be replaced by different concrete choice strategies which operate
on coloured and uncoloured sub-merge-matrices, respectively. The choose-unc function
selects an uncoloured row/vertex, while choose-col selects a coloured row/'colour class’
or allocates a new empty row in the coloured sub-merge-matrix. The allocation step
introduces a new ’colour’/colour class into the system. In fact, in term of traditional

61
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UC MERGE FRAMEWORK(A adjacency matrix )
1 M—A

2 repeat

3 u «+— arg choose-unc; { M;"} //Choose an uncoloured row index
4 ¢ + arg choose-col;{ Mf°'} //Choose a coloured row index,® where M,,. = 0
5 M «— merge(M, {u,c}) //Merge u and ¢ rows/columns °

6 until M""¢ is empty

7 return M

CU MERGE FRAMEWORK(A adjacency matrix )

1 M—A

2 repeat

3 c « arg choose-col;{ Mf°'} //Choose a coloured row index

4 u «— arg choose-unc; { M} //Choose an uncoloured row index€, where M, =0
5 M — merge(M, {u,c}) //Merge u and c rows/columns

6 until M""¢ is empty

7 return M

IMye = My, = 0 is the merge condition, i.e. there is no edge.
bFor Merge Squares, columns are also affected in a Merge Operation.
M., = M,. = 0 is the merge condition, i.e. there is no edge.

Figure 8.1: The UC and CU Merge Frameworks

colouring, a merge puts the uncoloured vertex chosen into the selected "colour class’.
Note that a merged row characterises colour classes where a merged row encompasses
additional rows of the original adjacency matrix. Substituting colourings by merges,
the sequential merge generalises the sequential colouring, where instead of a colour
assignment a Merge Operation is performed. It is a generalisation of sequential colour-
ing because on the one hand the traditional colouring schemes can be defined within
these frameworks and, on the other hand, traditional schemes can be extended. Sec-
tion 4.2.1 describes the two traditional sequential colouring schemes. The first is the
sequential colour assignment, where vertices get colours in a greedy manner. This may
be defined in the UC Merge Framework (see Figure 8.1). An uncoloured row selection
by choose-unc means selecting an uncoloured vertex. Then the strategy choose-col
can be a greedy coloured row choice. Finally, the colour assignment is equivalent to a
merge. The second is the independent set approach, where subsequent independent
sets are created in a step-by-step fashion, and each of them is filled with uncoloured
vertices until their saturation; that is, no more uncoloured vertices can be encompassed.
It may be expressed in the CU Merge Frameworks. The strategy choose-col can create
an empty row in the coloured sub-merge-matrix, choose-unc selects a row from the
uncoloured sub-merge-matrix, then the rows merged. An independent set represents
a colour class; moreover, these colour classes correspond to the rows in a coloured
sub-merge-matrix. Thus, an empty row refers to an empty colour-set. In addition, the

YA colour class is deemed empty when a new 'colour’, a blank row, is created in the coloured
sub-merge-matrix.
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uncoloured row selected by choose-unc is associated with an uncoloured vertex. Then a
merge itself puts the uncoloured vertex into the empty colour class. Later, choose-unc
keeps selecting the last row created in the coloured sub-merge-matrix, i.e. the last
colour class, until its saturation; that is, no more uncoloured rows can be selected for
a merge. These two traditional approaches both apply greedy colour selection for an
assignment or greedy vertex filling. The UC and CU Merge Frameworks provide ad-
ditional possibilities where the greedy choice strategies may be replaced by any other
sophisticated one. The task of a choice strategy is to generate choice probabilities for
each row of the Merge Matrix. Then, based on the probabilities generated, it selects
a row from the uncoloured sub Merge Matrix and another one from the coloured sub
Merge Matrix. Depending on the sequence of choices, the algorithm will belong to the
UC or the CU Merge Framework. All rows must get a choice probability. Hence, a row
choice probability function must be defined to assign probabilities to the rows.

Definition 8.1 (Row choice probability function) The row choice probability func-
tion assigns choice probabilities to each row of the Merge Matrix. A choice probability
determines how probable the selection of the two rows is for a merge in the next step
of a Merge Algorithm.

An algorithm in the UC and CU Merge Framework defines two row choice strategies.
One is for the rows of the uncoloured sub-merge-matrix, while the other is for the rows
of the coloured sub-merge-matrix. These row choice strategies in turn define two row
choice probability functions which are the basis for the selection. The probabilities of
the row choice probability function may be represented in vector format.

Definition 8.2 (Choice probability vector) A choice probability vector x contains
values of the row choice probability function. The x; element of the vector represents
the choice probability of the i — th row for a merge.

8.2 The CC Merge Frameworks

Notice here that choose-col and choose-unc strategies are compatible in Section 8.1.
Both choose a row from the Merge Matrix, but they operate on different subsets of the
rows of the matrix. If one defines a choose-col coloured row selection function then
one can without any difficulty use it as uncoloured choice strategy choose-unc and vica
versa. Now let us exploit this observation and introduce the CC Merge Framework
(see Figure 8.2). Since the two choose functions are compatible, use a common one
instead of two. Note as well that there is no need to distinguish between coloured and
uncoloured sub-merge-matrices; just take only the set of rows and apply the common
choose function suitable for all of them. Next, take two different, arbitrary rows from
the Merge Matrix which satisfy the merge condition and merge them.

The CC Merge Framework is the most general. Even although it covers the UC and
CU Merge Frameworks, it is worth defining them separately so as to have a possibility
of categorising the algorithms later Moreover, it is useful in the identification of the
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CC MERGE FRAMEWORK(A adjacency matrix )

1 M—A

2 repeat

3 {i,j} < argchoosey; jy{M;, M; : i # j} [[Choose two row indices?, where M;; = 0
4 M — merge(M,{i,j}) //Merge i and j rows/columns

5 until M is not mergeable

6 return M

aM;; = Mj; = 0 is the merge condition, i.e. there is no edge.

Figure 8.2: The CC Merge Frameworks

traditional schemes 2. To understand better the behaviour and reason why the CC
Merge Framework is so-called, one can represent it as a special independent set scheme.
The rows of the Merge Matrix corresponds to colour classes, i.e. independent sets. An
algorithm in a CC Merge Framework selects two colour classes/independent sets and
creates the union of them, this approach being outlined in Section 3.6.2. This is done by
merging two arbitrarily selected rows taken from the whole Merge Matrix. An algorithm
terminates when no further merge is possible. Row identifiers of the final Merge Matrix
are the colour classes that describe the colouring. The selection of two rows for merging
is done by a strategy (Merge Strategy). With Merge Strategy, one may define a choice

probability for each pair of vertices.

Definition 8.3 (Row-pair choice probability function) The row-pair choice prob-
ability function assigns choice probabilities to each pair of rows of the Merge Matrix.
A choice probability determines how probable the selection of two rows is for a merge
in the next step of a Merge Algorithm.

The row-pair choice probability function is finite function, so the values of the function
can be represented in matrix format.

Definition 8.4 (Choice probability matrix) The choice probability matrix X con-
tains values of the row-pair choice probability function. An x;; element of the matrix
determines how probable the selection of row i and j is for a merge in the next step of
a Merge Algorithm.

A Merge Strategy always has an explicit or implicit choice probability matrix for the
current problem. The strategy itself can choose the most probable pair of vertices
for a merge in the next step or it can apply a probabilistic choice using the values of
the choice matrix. The higher the value in a matrix for a vertex pair, the higher the
chance for a merge of the vertices. A Merge Strategy always generates this matrix, but
sometimes it is hidden, just defined implicitly via a description of the strategy. The key
property of a Merge Algorithm is a varying choice probability matrix that converges by
progressive merges, to a zero matrix when no more merge is possible. In fact the main

2Ususally, traditional schemes fits into the CU and UC Merge Frameworks.
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task of the colouring is to find an appropriate choice matrix for each step. Sometimes
it is convenient to represent the choice matrix as an n x n size square matrix like that
of adjacency matrix of the original graph. In order to achieve this, one can keep zero
rows/columns in a Merge Matrix — i.e. non-collapsed Merge Matrix — to have a size of
n x n. An X choice probability matrix contains zeros in the non-zero entry positions of
the relevant non-collapsed Merge Matrix because adjacent vertices cannot be merged.
Moreover, with x;-s the diagonal entries are also zeros. Therefore it is reasonable to
guarantee this property for each step. E.g. in the case of the Binary Merge Square,
the X o A entrywise product gives the desired result, where A is the Binary Merge
Square, i.e the adjacency matrix of the complementer quotient graph. The matrix
A = J —1 — A serves as the appropriate Merge Square, where .J is the matrix with all
one entries and [ is the identity matrix. The UC and CU Merge Frameworks divide the
problem into uncoloured and coloured parts when an algorithm is running. Merges can
be only between two rows which are in different parts; that is, uncoloured and coloured
rows can only be merged. Therefore X can only have non-zero values in the relevant
cross positions.

8.3 Summary

In this chapter we introduced graph colouring frameworks which generalise the tradi-
tional sequential colouring schemes. Each name refers to the applied colouring/merging
scheme. Namely, U means an uncoloured vertex and C means a colour class. Hence
in a UC Merge Framework an uncoloured vertex is chosen first, then a colour class is
associated with it. These frameworks cover and extend the traditional vertex ordering
schemes outlined in Section 4.2.1. The CU Merge Framework selects a colour class
first, then associates a uncoloured vertex with it. This framework includes the tradi-
tional independent set approach of Section 4.2.1 since a colour class is an independent
set. In the third framework the CC does not distinguish between colour and uncoloured
entities, but takes only colour classes/independent sets then combines them. Note that
a single vertex forms an independent sets, hence initially it takes each vertex as one
element independent sets and combines them according to a strategy. All of these
frameworks are defined in a unified manner using the Merge Model scheme. An algo-
rithm in one of these frameworks applies a subsequent selection of rows of the merge
matrices and merges them to achieve a colouring. None of these frameworks has a
concrete strategy for the choice of rows for merging. A framework with a concrete row
choice strategy forms a particular algorithm.






Chapter 9
Merge Strategies

In chapters 7 and 8 Merge Operations and general Merge Frameworks were defined
in order to perform sequential Merge Operations on the original graph and other sub-
sequent merges. A Merge Operation takes two rows/columns of a Merge Matrix and
produces a new Merge Matrix if the merge condition allows it. By repeating Merge
Operations we will end up with a final Merge Matrix where a Merge Operation is no
longer possible. In the case of the Merge Squares, the final Merge Matrix corresponds
to a complete graph, while in the case of Merge Tables the final Merge Matrix corre-
sponds to a power graph which is homomorphic with a complete graph. The sequence
of the Merge Operations is crucial. It determines the quality of the solution, i.e. the
number of colours used in the colouring of the original graph. The number of colours
is the same as the number of rows in a Merge Matrix. Hence the main aim is to reduce
the number of rows in a Merge Matrix. Each Merge Operation decreases the number
of rows by one, until a merge is no longer possible. Therefore the goal is to make as
many merges as possible.

This chapter describes various strategies used to generate merge sequences, as de-
scribed in [94; 96-102] by the author. Binary Merge Squares or Tables are assumed
in the descriptions of the strategies but their integer extensions are also discussed.
These strategies proved useful in the theoretical analysis and experimental study. Chap-
ter 10 outlines various algorithms, where these strategies are combined with different
Merge Frameworks of Chapter 8. These algorithms were studied by Juhos et al. in
[94; 96-102]. The algorithms which apply these strategies outperform several well-
known benchmark algorithms from the literature, which were described in Section 4.2.

In Section 4.2.1 we presented two traditional principles for colouring strategies. The
first was the sequential colour assignment scheme, where an uncoloured vertex is cho-
sen first and then a first available colour is assigned to this vertex. Then the second
was the maximal independent set approach where the next available colour is taken,
then as many vertices as possible are coloured with this colour. The same coloured
vertices form maximal independent sets in this case. In both cases the colour choice
is greedy and the uncoloured vertex choice is based on some strategy. In Chapter 8,
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these approaches were generalised in the UC and CU Merge Frameworks, respectively,
where an additional framework called the CC Merge Framework was also introduced.
A colour can be interpreted as a colour class that is an independent set. An uncoloured
vertex is also an independent set containing a single member. Merge Models asso-
ciate the colour class with the rows of merge matrices. Each row of a Merge Matrix
represents an independent set which can be either a colour class or an uncoloured ver-
tex. The colour assignment operation is implemented as a Merge Operation of the
appropriate rows/columns representing a merge of two corresponding independent sets.
Hence instead of a colour choice or an uncoloured vertex choice, we may just define
a row choice from the set of appropriate Merge Matrix rows. Consequently, the row
choice generalises the traditional choice schemes. A row choice may represent either an
uncoloured vertex choice or a colour choice in the traditional colouring term, depend-
ing on which set of rows of a Merge Matrix forms the basis of the choice. Following
traditional colouring schemes, rows of a Merge Matrix will be partitioned into coloured
and uncoloured row sets. There are two strategies available to choose a row from the
coloured and another from the uncoloured part. The Merge Operation is based on these
selections. In the case of Merge Tables it is rows, but in the case of Merge Squares
the corresponding columns are merged as well. Depending on the order of the choices
from the two row sets, the result will be the UC or the CU Merge Framework. The
row selection in the uncoloured and coloured row sets are defined by two row choice
strategies. In the traditional schemes one of them is usually a greedy strategy, e.g. take
the first row from the coloured row set which is mergeable with a row selected from
the uncoloured row set. If the row set is not partitioned, then an algorithm can choose
two arbitrary rows for a merge. This approach is defined in the CC Merge Framework.
Here, instead of two separated row choices, one row-pair choice is used.

9.1 Row-pair choice strategies

An algorithm in the CC Merge Framework does not make a distinction between the
coloured and uncoloured states of the rows of the Merge Matrix. Each row represents
an independent set/colour class. Merging the two representation rows results in a union
of the independent sets. These algorithms just focus on a sequence of merges of two
selected rows of a Merge Matrix. To find such a sequence, a strategy must be a row-
pair choice strategy that selects row-pairs successively in order to merge them. This
procedure presupposes a row-pair choice probability function (CPF), which assigns a
probability value for each row-pair (M;, M;) of a Merge Matrix M, in proportion to
their chance of being chosen. This is illustrated by a general row-pair CPF:

v M;, M; M;, M; T
! ( J)H 0 z:]\/Mij;«éO

where M; is the i—th row of a Merge Matrix and z;; is the probability of choosing of
i—th and j—th rows for a merge. A choice probability function can be defined by a
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choice probability matrix (see Definition 8.4), where the matrix (i,j) element is the
x;;. To get reasonable probabilities, the function for non-mergeable row-pairs should
be zero, i.e. when i = j and M, ; # 0. Instead of probabilities z;;, sometimes it
is easier to generate Z;; values which do not necessarily lie in the interval [0, 1], but
are correlated with the row-pair CPF. In this case a [0, 1]—normalisation provides the
corresponding row-pair CPF. A simple [0, 1]—normalisation is defined by

xij — mlnm xij

T = — n — 9.2
J maxi,jxij — HllIlZ'J' SCZ']' ( )
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U3 rg - - - 1 1 ry - 1 06 - 0
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o (b) Initial Merge Matrix, the adja- (c) A choice probability matrix
(a) A graph G cency matrix of G

Figure 9.1: A choice probability matrix.

Figure 9.1(c) gives an example for a choice probability matrix (CPMm). The columns and
rows of the cPM of Figure 9.1(c) correspond to the rows of the Merge Matrix of Figure
9.1(b). Based on the values of the cPM, a strategy can choose two rows for a merge,
e.g. the choice probability of the row-pair (74, 73) is 0.6. A choice strategy in a Merge
Algorithm calculates the values of the relevant cPM and carries out a deterministic or
stochastic selection of two rows for a merge.

9.2 Row choice strategies

The CC Merge Framework does not distinguish between coloured and uncoloured rows.
It takes two rows from the Merge Matrix according to a row-pair choice strategy and
merges them, then repeats this on the result Merge Matrix. But an algorithm in both
UC and CU Merge Frameworks separates the coloured and uncoloured parts. Both
choose a row from the uncoloured sub-merge-matrix, i.e. an uncoloured vertex, and
another from the coloured sub-merge-matrix which represents a colour class. After
making these selections, the two rows are merged, which is the colouring step. Only
the sequence of the choices is different. An algorithm in the UC Merge Framework first
selects a row from the uncoloured part, then from the coloured part; while an algorithm
in the CU Merge Framework changes this order and first selects a coloured row then
an uncoloured row. The first selection may have an influence on the second selection.

Note that in traditional colouring schemes (Section 4.2.1) the vertices and colours
or colour classes are different objects. In the Merge Model, both correspond to a row
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of a Merge Matrix. Hence, a row choice strategy is suitable for choosing an uncoloured
vertex or a colour class as well. The only difference is that a row choice strategy must
operate on either the coloured sub-merge-matrix or on the uncoloured one. Hence,
we may define general row choice strategies. A general row choice strategy can serve
as uncoloured or coloured row choice strategy in the UC or CU Merge Frameworks.
Different combinations may result in different algorithms. A Merge Algorithm generates
two row selections. Hence there must be two, not necessarily different, strategies for
these two row choices. To get a row choice strategy, an algorithm must implicitly
or explicitly define a row choice probability function. This is different from the row-
pair choice probability function, which is suitable for the CC Merge Framework. A
row CPF assigns selection probability values to single rows instead of row-pairs. These
probability values can be represented in vector form, in the row choice probability vector.
An algorithm in a UC Merge Framework can create a row choice probability vector in
advance, which corresponds with the traditional vertex ordering scheme. In fact, this
vector is a row of a suitable choice probability matrix, defined by a "hidden’ row-pair
CPF. Usually, a row-pair CPF is implicitly defined through the separated uncoloured
and coloured row CPF-s. However, one can combine two row CPF-s to provide a row-
pair CPF. The combined function must assign zero probability values for those rows
which have the same states, either coloured or uncoloured. The following equation
defines a general row-pair CPF for both the UC and CU Merge Frameworks.

Tij Si#Ss;ANMj;;=0 0<uz; <1

0 ;=8 VM;#0  s;,8; € {col,unc}
(9.3)

Figure 9.2 shows a plot of the choice probability matrix in corresponding with Eq. 9.3,

J

o o -

where only uncoloured and coloured rows can be selected for a merge.

unc col

unc

col

Figure 9.2: The choice probability matrix in UC and CU Merge Frameworks. Only
the black parts can have non-zero entries. Here 'col’ and 'unc’ refer to coloured and
uncoloured row indices, respectively.

Combining two row CPF values results in a value pair. However, a comparison of single
values may be unambiguous, but a comparison of a value pair is sometimes problematic
e.g. take (3,1) and (2,2), where 3 > 2, but 1 < 3. For all ¢, let z; be the choice
probability of row M; generated by a row CPF and construct a flexible choice probability
matrix X of the row-pair CPF. Define z;; entries of X according to Eq. 9.5.
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max{:iij, j]z} - -
0 1=

Eq. 9.4 defines an unnormalised support for the choice. Often only these values form
the basis of the decision of a strategy without normalisation. The x is a normalising
constant to get values between zero and one. The merge condition is (M;; = 0). It
is expressed by the following Kronecker delta function: [A;; = 0]. This function gives
one in the case of equality, otherwise results in zero. It can be substituted by (1 — M;;)
if the x;-s are non-negatives. The term (1 — M,;) is one if rows i and j are mergeable,
otherwise it is non-positive, hence only mergeable rows play a role in the selection
process. The max{Z;;,Z;;} ensures the symmetry of the choice probability matrix.
Furthermore, 0 < v < 1 defines a bias. It favours large values in the combination.
In the case of v = % this strategy favours the selection of rows having large values
but not necessarily the largest. In order to favour those rows having the largest CPF
value, the % bias should be altered. The bias v = 0 (or v = 1) result can be utilised
as a row CPF, where only one value of the pair is considered. As an example, take
two pairs of mergeable rows (ry,ry) and (rs,ry) which have the following row CPF
values (2,2) and (3, 1), appropriately. Let v = % then apart from the normalisation
(v3-v1) < (V/2-/2). The 3V > 2 should be hold to favour the selection of (r, ;)
pair which have the largest row CPF value 3. Indeed, choose v > log; 2 then 3" > 2
and hence the (ry,rs) is selected for a merge. Otherwise, when v < log, 2, then the
other pair (r3, ry) is favoured.

9.3 Update mechanism

The relation between the Merge Matrix rows usually changes after a merge. It requires
a recalculation of the relevant choice functions. In the UC and CU Merge Frameworks,
an uncoloured row is merged into a coloured one. Hence, the affected uncoloured row
must be removed, or set to zero, in the uncoloured sub-merge-matrix. Furthermore,
the coloured sub-merge-matrix also changes in the affected coloured row. Row choice
probability functions have to be updated for the two affected rows. It means that one
entry has to be updated in the coloured and another in the uncoloured choice probability
vector. The CC Merge Framework needs a row-pair choice probability function. When
two rows are merged, the corresponding function values have to be updated. In the
choice probability matrix representation of the function values, the appropriate row and
corresponding columns have to be updated.

9.4 Extension of non-merge based strategies

A non-merge based choice strategy can be extended using a Merge Model. The exten-
sion is based on the transformations of the problem, i.e. merge matrices and associated
graphs, induced by Merge Operations. Consecutive Merge Operations generate a Merge
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Matrix series. A merge reduces the size of the matrix, producing compact relations
where problematic parts may be revealed. Hence these matrices can better characterise
the original problem. Intermediate matrices in the matrix sequence may contain more
and more information proportional to the number of merges, because intermediate ma-
trices asymptotically approach a final Merge Matrix. An intermediate matrix has the
same structure as the initial one in the case of Merge Squares'. Consequently, if a
strategy can operate on the adjacency matrix, the initial Merge Matrix, then the same
strategy can cooperate with the intermediate matrices as well. It introduces a dynamic
reconsideration process where previous decisions of a strategy, i.e. CPF-s can be revised
by exploiting the additional information contained in the intermediate matrices.

9.4.1 Extended Welsh-Powell (co—norm) Strategy

Motivation. In Section 4.2.3 we introduced the Welsh-Powell algorithm, where the
vertices are ordered in decreasing vertex degree and then greedily coloured. It uses at
most max; min{d; + 1,7} colours, where d; is the degree of the i—th position vertex.
The degree of a vertex may be calculated by the sum of the relevant row of the adjacency
matrix. Hence the vector which contains every degree is the following:

d=Age (9.6)

where Ag is the adjacency matrix of the original graph and e is the vector of all
one entries. This strategy selects the most constrained uncoloured vertices by edges
in a graph. It is represented by the maximum row sum, which is looked for among
the rows corresponding to uncoloured vertices. This is the maximum of d“"¢ of Eq.
9.7, where d""¢ = d o e and e{'“ is the characteristic vector of the uncoloured
vertices (see Definition 7.8). After colouring a vertex, the search for the maximum row
sum proceeds with the rest of the vertices. Hence the maximisation process always
just takes the uncoloured degrees (Eq. 9.7), which contains only those rows of the
adjacency matrix which correspond to uncoloured vertices.

A" = Ag e = d o e (9.7)

The original Welsh-Power strategy chooses that uncoloured row which has the maximum
degree in the original graph; that is, the basis of the choice is d“*¢. A generalisation
of this strategy can be defined by the following merge scheme. The general idea is
the same, namely to avoid the possibility that the least constrained vertices collect too
many irrelevant vertices, as the original Welsh-Powell method does. The initial Merge
Matrix is the adjacency matrix in each Merge Model. After a Merge Operation the
Merge Matrix M is transformed into another one, where the number of rows decreases
by one, resulting in a reformulated problem graph where the sums of the rows change?.
Next, we examine the product of M with the vector of all ones e in Eq. 9.8. It provides

1Usually an extension is similar for Merge Tables as well.
2Without loss of generality, we shall assume that there is no isolated vertex (it has no neighbours).
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the relevant sums in a vector. This vector is introduced as a left co-structure of a
Merge Matrix in Section 7.2:
Hy = Me (98)

A row in the Merge Models represents a colour class. The sum of the rows have a
different meaning in different Merge Models. Some of these are illustrated in Figure
7.7. The Welsh-Powell vertex choice strategy can be defined in the Merge Model using
the left co-structure of the Integer or Binary Merge Tables or the Integer Merge Square.
However, three combinations out of the twelve® result in the original Welsh-Powell
algorithm, the others provide extensions of this. Combination of this strategies with
different Merge Models and Merge Frameworks results in different colouring algorithms.
They are the Extended Welsh-Powell strategies, which were introduced by the author
in [97].

Definition 9.1 (Extended Welsh-Powell strategies) Extended Welsh-Powell strate-
gies are those strategies which are defined by a Merge Model in a Merge Framework
using the maximum row sum choice strategy.

The Welsh-Powell strategy can be defined by uncoloured row choices in several Merge
Models. However, an Extended Welsh-Powell strategy can apply the maximum row
sum strategy for coloured rows as well. When uncoloured and coloured rows are chosen
separately, then the suitable Merge Framework for these type of algorithm are the UC
and CU Merge Frameworks. The row choices are always supported by a row choice
probability function. Here it was based on the row sums.

The row choice probability function for the UC and CU Merge Frameworks.
Both UC and CU Merge Frameworks choose a row from the uncoloured sub-merge-
matrix and another from the coloured. Only the sequence of the choices differs. The
row choice probability function for the uncoloured sub-merge-matrix is defined in Eq.
9.9. lts counterpart for the coloured sub-merge-matrix is defined in Eq. 9.10. The
values of the functions as a sequence can be written as vectors, the choice probability

vectors x“"¢ and x°, respectively.
M e
X;an — < ZKJ ? > (99)
M-COl
xot = M, 0) (9.10)
K

where M*™¢ and M are the appropriate uncoloured and coloured row vectors, re-
spectively and e is the vector of all one entries. of The i—the component of the choice

probability vector x% of x¢° describes the chance of a selection of the i—th uncoloured
or coloured row. These choice vectors may be applied separately or they can be com-

bined together with other row choice strategies. The x must be a reasonable constant

3Four types of Merge Models and three variants of the Merge Frameworks.



74 Merge Strategies

to normalise the values to get probabilities, e.g. the maximum of the possible row
sums. These choice probability vector supports the row choices, which can be either
deterministic of stochastic. The deterministic choice strategy for both uncoloured or
coloured rows is defined in Eq. 9.11. The stochastic choices is based on a random
value generation by some probability distribution. The choice will be the index of that
component of the choice probability vector which has the nearest value to generated a
random value 0 < rnd < 1, as stated in Eq. 9.12.

arg max x; s € {col,unc} (9.11)

arg min {|x; — rnd|} s € {col,unc} (9.12)

where 77 is the appropriate uncoloured or coloured part of the vector. The minimisation
problem of Eq. 9.12 results in the index of the closest x{ element to the generated
value of rnd. The maximum row sum strategy may be interpreted via the induced
oo-norm of matrices. The oo-norm provides the maximum row sum:

1Moo = max{(M;", &) } (9.13)

In order to define a row-pair choice probability function for the CC Merge Framework
we will follow the construction of Section 9.2.

The row-pair choice probability function for the CC Merge Framework. Un-
coloured and coloured row choices are needed within the UC an CU Merge Frameworks.
The CC Merge Framework does not make any distinction between coloured and un-
coloured states, but the maximum row sum strategy can be exploited in this framework
as well. In the CC Merge Framework, choose two rows for a merge; if they are merge-
able and they represent the maximum row sum combination. Since 'combination’ is
not an exact term here, make use of Definition 8.4 and introduce a choice probability
matrix where row sums can be 'combined’. An (7, j) entry of the choice probability
matrix represents the chance that the 7 and j rows will be involved for a merge. Hence
it defines the row-pair choice probability function:

Ty = (M;,e)” - (M, e)' ™ [M;; = 0] (9.14)
max{iij, iﬂ} . .

vy = { . 17 (9.15)
0 1=

where x is a normalising constant needed to get values less than one. Moreover, the
x;;-s are all non-negative numbers. The x can be the maximum of the z;; entries or

the sum of the entries |M|. In the case of kK = |M]|, the sum of the entries of the

choice probability matrix will be one. The sum of the entries of the X choice matrix
can be also a good option for normalising constant. The Kronecker delta [A;; = 0]
represents the merge condition when the merge condition is not satisfied, i.e. M;; # 0,
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the function give 0, otherwise 1. In the case of Binary Merge Matrices the Kronecker
delta function can be substituted in Eq. 9.14, thus

Zi; = (Mg, e)” - (M, e)' ™ (1 — M) (9.16)
In the case of Binary Merge Squares, an equivalent choice strategy can be defined by
X = (Ae)(Ae)T 0 A (9.17)

where A is a Binary Merge Square, i.e. the adjacency matrix of an appropriate quotient
graph, which is a simple graph. Here A is the adjacency matrix of the complementer
graph of the quotient graph. It has zeros in the edge positions of A and ones elsewhere,
except along the main diagonal which has zeros too. An entrywise product with A is
a suitable choice because it retains only those array positions where A;; # 0, while
the other array positions will have zero values. Figure 9.3(b) shows a typical choice
probability matrix. The Integer Merge Table of Figure 9.3(a) comes from Figure 7.6
with v = 0.5. The matrix has positive-valued elements only in the possible merge
positions.

U1 V2 Uz Uy Vs Ug ri T2 {T3,75) T4 75 T
r .1 1. 0 - 1 r .. ) 1 . .
9 1 1 0 0 9 - : 08 - 1
{rs,ms} 1 1 - 2 . 2 {rs,rs} - -
T4 o o0 1 - 1 0 T4 1 0.8 . N |
s . . . . . . s . . . .
T 1 0 1 0 1 - T -1 . 1
(a) Integer Merge Table. The 0-s are the pos- (b) Choice probability matrix. A greedy choice
sible merge positions. is given in bold.

Figure 9.3: The co—norm choice probability matrix.

For Merge Squares the induced co—norm is equivalent to the induced 1—norm, but for
the Merge Tables these norms give different results, since the columns and the rows
belongs to different objects. Columns refers to the vertices in the original graph, but the
rows correspond to colour classes. A Binary Merge Table describes the relation between
the vertices and the colour classes. The 1—norm provides the maximum column sum,
while the co—norm provides the maximum row sums. A column sum in the coloured
sub-merge-matrix gives the number of neighbour colours of a vertex as depicted in
Figure 7.7, i.e. the colour saturation degree (Def. 4.3). Therefore the DSatur algorithm
in Section 4.2.5 can be defined by this value as well, while the co—norm belongs to the
number of neighbours; and hence, this value helps the Welsh-Powell algorithm.

Improvement. The Extended Welsh-Powell methods apply merges. The number of
rows decrease by merges. The maxmin{d;,i} is translated into max min{(M,e) ,i},
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where M;e is the sum of the i-th row of the Merge Matrix M and i is the position of
the row by the choice probability vector. That rows are ordered by their sums. Thanks
to the decrease in the number of rows, the i-th position decreases, which can bring
improvement in the bound. Moreover, in the case of Binary Merge Squares the sum of
the rows must be decrease after a certain number of merges; because the number of
columns also decreases after each merge. A final Binary Merge Square of a k—colouring
has k£ number of rows and columns and the common degree is k — 1. We may suppose
that the minimal degree § of the vertices of the original graph satisfies 6 > k—1, thanks
to the low degree reduction technique (see Section 3.4). Therefore, after certain merge

steps the sum of the rows must approach* k — 1, leading to a decrease in the upper
bound.

9.4.2 Extended Hajnal Strategy

Motivation. In Section 4.2.4 we outlined the Hajnal algorithm, which utilises vertex
ordering according to the decreasing values of the components of the principal eigenvec-
tor of the adjacency matrix of the original graph Ag;. Then a greedy colour assignment
to the vertices assures that an upper bound of the number of colours is used. This
bound is the principal (the largest) eigenvalue \,,... This strategy was extended by the
author in the UC Merge Framework, taking advantage of the Binary Merge Squares,
because they are the adjacency matrices of the appropriate quotient graphs. After a
merge, we employ the strategy for the result Merge Square, and continue in the same
fashion as long as a merge is still possible. The Gerschgorin disk theorem [64; 149] and
the bound \,,.. < A give the same upper bound for the principal eigenvalue, which
is the maximum degree in a graph. In this case it is a quotient graph, which is also a
simple graph like the original graph. Hajnal strategies improve the upper bound better
than the Welsh-Powell 4.2.3 strategy does. This bound has been improved still further
by the author in the Merge Models.

Improvement. In the Binary Merge Square model, consecutive merges contract the
original graph G to quotient graphs until the complete graph K. is reached, where
k < |Vg| and no further merges are possible. Kj is a k—regular graph, hence its
principal eigenvalue A, (K%x) = k — 1 (see [46]). Moreover, we may suppose that
the minimal degree satisfies the constraint £ — 1 < 5. Otherwise, apply a low degree
vertex removal® (see 3.4). According to [45], the following holds: d¢ < s (G), from
which we conclude that A\, (Ki) =k — 1 < 0¢ < Mnae(G). The principal eigenvalue
of a final Binary Merge Square must be not greater than the principal eigenvalue of the
original adjacency matrix. Thus

Amax(Kk) S )\max(G) (918)

The difference between the value of the left hand and right hand side of Eq. 9.18 can

*k — 1 is the sum of each row in a final Binary Merge Square.
SA vertex removal does not increase \,,q. [45].
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be large ®. So that the application of the Hajnal strategy with the Binary Merge Square
model can significantly reduce the upper bound of this strategy in an intermediate
quotient graph, which resides between GG and K. The experimental results in Section
11.3 show this improvement in practice.  To illustrate the relationship between the
vertices and the components of an eigenvector, take the eigenvalue-equation AX = A\X.
It is reasonable to denote the eigenvector by 'hat’ (X), because it is the basis of the row
choice probability vector, but it should be normalised by its largest element. Now let
us consider the fourth component X, of an eigenvector X and examine the eigenvalue-
equation; namely A;X = AX4. The A, defines the neighbours of the vy vertices and
AuX sums the eigenvector components related to the neighbours of v, enlarging the
X4 by A. Figure 9.4 shows how the eigenvector components are related to each other
in a graph.

Amaz - 0.282 = 0.548 —x 0.256 23 = 0.548

Figure 9.4: The principal eigenvector components correspond to graph vertices. Here
to the solid thick lines denote the eigenvector components, while the thin lines are the
edges. The arrows graphically represent the relationship \,,..X4 = AsXiner = X3 + X5.

Take the graph G in Figure 9.4 as an example and sort the vertex identifiers of G in
decreasing order, according to the components of the principal eigenvector of G.

U3 (%1 Ve V2 V4 Us

9.19
Kmar = (0548 0475 0.448 0.358 0.282 0.256) (9.19)

The vertex vz gets the highest component value in the sorting, but the only mergeable
vertices are vs and v3, each being marked by a ring in Eq. 9.19. After merging v3 and
vs and again calculating the principal eigenvector for the resulting quotient graph, we
get the following:

{Us, U5} Uy V2 (%3 Uy

9.20
Xmaz = (0582 0.523 0.412 0.217 0.256) ( )

Figure 9.5 shows the resulting graph of the merge {vs,v5}, where the A, value is
reduced from 2.853 to 2.685. Hence, the upper bound is decreased. The {v3,v5}
vertex is adjacent to all the other vertices, hence v; must be selected next. Its only
non-neighbour vertex is v;. So both are designated for the next merge. As it stands
this strategy does not work with Merge Tables. However, there is a way to extend it.

6The difference between the d¢ and dg values may be large and A0z (K1) < 86 < dg < Amaz(G)
(see [45]).
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U1

Figure 9.5: A quotient graph produced by the Extended Hajnal strategy.

Take the principal, the largest singular value 0,,,, (M) of a Merge Matrix M and the
corresponding left singular vector called the principal left singular vector. In the case of
a symmetric matrix (like a Merge Square), singular values are eigenvalues and singular
vectors are eigenvectors, respectively. Merge Tables are not square matrices’, but the
principal left singular vector can be used to determine an order of the rows, much like
that for Merge Squares.

Definition 9.2 (Extended Hajnal strategies) Extended Hajnal strategies are those
strategies which are defined by a Merge Model in a Merge Framework using the first
left singular vector choice strategy. The left singular vector components are associated
with the vertices. A higher value means a higher chance for selection of the row in the
next merge.

Vertex ordering strategies like the Hajnal strategies correspond to either the UC or CU
Merge Framework. There must be two row choice probability functions defined in both
frameworks based on possible row choices.

The row choice probability function for the UC and CU Merge Frameworks.
The choice probability vector for choosing either from the coloured or uncoloured sub-
merge-matrices can be defined by the relevant part of the following choice probability
vector like so R
b

X = , Kk = maz;{X;} (9.21)

K

Similar to the equations 9.11 and 9.12 a deterministic or stochastic choice can be
defined.
arg max x; s € {col,unc} (9.22)

arg min {|x; — rnd} s € {col,unc} (9.23)

The row-pair choice probability function can be defined based on the row choice prob-
ability function described in Section 9.2.

The row-pair choice probability function for the UC and CU Merge Frame-
works. If X is the left principal singular vector, then the components of the choice

TExcept for the zeroth Merge Table, which is the adjacency matrix of the original graph.
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probability matrix x;; are defined for the Extended Hajnal strategy, namely

RV.x17v ) .
i = = (1= My) i#) (9.24)
0 1=7

Note that every X; is non-negative due to the principal eigenvector Perron-Frobenius
property [140].

9.5 Spectral Norm — 2—norm Strategy

Motivation. The Hajnal heuristic (see Section 4.2.4) provide an upper bound for the
number of colours used in a colouring. The bound is equal to the principal eigenvalue,
which defines the spectral norm of the adjacency matrix. Unfortunately, the principal
eigenvalue may be far away from the chromatic number, as mentioned in Section 3.4.
Therefore, the Extended Hajnal strategy (Section 9.4.2) tries to exploit the fact that
merges can bring a decrease in the eigenvalue in the case of Binary Merge Squares. First,
let the Merge Matrix be a Binary Merge Squares. Then applying the Hajnal strategy
after a merge, the upper bound should decrease until the process gets to the final
Merge Matrix. A final Merge Matrix represents a complete graph K} on k—vertices.
The principal eigenvalue is £—1 in this case because K} is (k—1)—regular, as mentioned
in Section 9.4.2. The chromatic number is the smallest among the possible k-s, i.e. K,
is the smallest complete graph which can be produced by a merge sequence. Therefore,
x — 1 is the smallest principal eigenvalue which can be achieved. Exploiting this
observation, the author introduced a steepest descent spectral norm strategy in [101].
The spectral norm strategy selects two rows from the Merge Matrix which can minimise
the spectral norm of the resulting Merge Matrix. Figure 9.14(a) shows how the spectral
norm evolves in the intermediate Merge Matrix cases. There are random colourings and
an optimal colouring of a 20—chromatic graph. Moreover, the figure contains the values
associated with the spectral norm minimisation strategy. Here 24 colours are used in
the colouring process by the strategy, while random colouring uses over 36 colours. To
get a k—colouring, |Vz| — k merge steps are necessary. Therefore, the curves of Figure
9.14(a) never reach |Vi| = 200, but they were extended to get a better insight into
how the final colouring is realised. Here, not just the Binary Merge Squares approach
can benefit from this strategy. The spectral norm is defined by the principal singular
value 0,,,,, hence it can be applied to non-square matrices as well. Thanks to this
fact, the strategy works with Binary Merge Tables as well. Furthermore, the spectral
norm is equivalent to the induced 2—norm [69; 89], thus

[M|l2 = Omaz (M) (9.25)

The row-pair choice probability function for the CC Merge Frameworks.
Using Eq. 9.25, define the row-pair choice probability function of the steepest descent
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spectral norm strategy by || - ||2 like so

Ty = 1035112 (1= My) i#j (9.26)

Here M/;; represents the Merge Matrix, which is derived from the Merge Matrix M by
merging the i—th and j—th rows, while ;; is the (7, j)—th component of the matrix.
The constant k is a normalisation constant that prevents the values from getting too
small. Note that for the Integer Merge Matrices the strategy must be the opposite.
Since they keep all the original edges, the values of the entries increase when the size
of the matrix decreases. Because ﬁHMHOo < ||M]|2 (see [69]), the increasing value
of the spectral norm will define the strategy.

The row choice probability function for the UC and CU Merge Frameworks.
The spectral norm strategy like other row-pair choice strategies can work in the UC and
CU Merge Frameworks as a second row choice strategy. When an arbitrary strategy se-
lects a row from the uncoloured sub-merge-matrix, it designates a row vector from the
choice probability matrix which satisfies Eq. 9.26. The second row selection from the
coloured sub-merge-matrix can be done by the steepest descent spectral norm choice
along the designated row vector of the choice probability matrix.

The strategy must generate trial matrices like M/;; in order to get the appropriate
choice probability values which constitute the choice probability matrix. However, the
strategy needs to make as many calculations as the number of mergeable row-pairs.
After a merge the number of mergeable elements is reduced, hence the generation of
the choice matrix speeds up. Nevertheless, the calculation of the principal eigenvalue
can be done efficiently [69]. In practice, the calculation is problematic with large graphs.
Fortunately, there are suitable techniques available to get a good approximation of the
value for the spectral norm [123]. This approximation helps speed up the calculation
of the choice probability values, because the update technique of Section 9.3 can be
utilised.

9.6 Spectral norm approximation strategies

Motivation. The spectral norm strategy must first make several trial merges. With
the resulting trial merge matrices, the spectral norm strategy makes spectral norm
calculations to create a suitable row-pair choice probability function. Calculating the
spectral norm of the M ;; is computationally expensive, but Merikoski and Kumar once
introduced an efficient spectral norm approximation in [123]. Based on their results,
the author [101] adapted his spectral norm strategy to an approximated spectral norm
strategy, which produced effective calculations of the choice probabilities, where the
approximation can be given by the entries of the Merge Matrix. Let M = A be a
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Binary Merge Square then

. 2
Aij r, €
rMWMz¢ZTWZ/>> (0.7

where [ is the number of rows of the Merge Matrix A/;;. ((4,i;),,e)? is the square of
the 7-th row sum, which may be replaced by ((A/;);, (A/i;)r)? in the case of Binary
Merge Matrices. Since Merge Tables are non-symmetric matrices®, the symmetric
T/ijT/fj must be applied® in Eq. 9.27 instead of T};;. This leads to an approximation
of the square of the spectral norm of M ;;. Note that Eq. 9.27 must be applied for the
Merge Matrices produced by trial merges in order to get choice probability values (see
Eq. 9.26), but a direct calculation of these values is also possible, as described below.

The row-pair choice probability function for the CC Merge Framework. The
spectral norm strategy makes as many trial merges as the number of choice probabilities
required for the decision. The author, improving on earlier results, introduced a choice
probability calculation without applying any trial merges. The choice probabilities are
calculated directly, using just the Merge Matrix entries. Owing to this, this strategy
can exploit the update mechanism of Section 9.3, which is not present in the original
spectral norm strategy (Section 9.5).

In the case of an Integer Merge Matrix M a direct calculation of the z;; choice proba-
bility values for the i-th and j-th rows is performed using the formula

WW%*¢Z%WML@+M4¢H%ﬂP

j (9.28)

where [ is the number of rows of the "trial’ Merge Matrix M/;;. After merging rows
i and j of M, the row sums do not change in the resulting M ;;, except for the i-
th and j-th rows: M; and M;, which will change as follows: (M;;); = M; + M,
and (M;;); = 0. Therefore, the i—th row sum will be (M;,e) + (M;,e), while the
j-th row sum will be zero. With a Binary Merge Matrix M, this situation is a bit
more complicated because the piecewise OR operation results in 1-s for the common 1
values. That is, if (M/;;);; = 1 and (M;;); = 1 then they result in the merged row
(Myij)ir V (M) = 1. Figure 9.6 shows a typical example for the case of a Binary
Merge Table and Square as well. Let Z be an index set, the set of the common one
positions of the rows M; and M;. In this example it is Z = {4,6} (see Figure 9.6).
Let M = A be a Binary Merge Square, the changes in the row sums after the row A;

8Except for the initial Merge Table, which is the adjacency matrix.
9 Actually, this form may be suitable for Merge Squares as well, but causes extra computation effort,
hence in this case it is not recommended.
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is merged into A; can be summarised as follows

i = (Ai,e) + (A4;,e) — (A, Aj)

j, €)= 0

Y= (A,e)—1 rel (9.29)
)= (Are) reTU{ij}

Here A/;; denotes the Merge Matrix after merging the i-th and j-th rows. The i-th row
and j-th row must be added, hence their sums are added, but the sum of the common
row positions (A;, A;) must be subtracted, due to the OR operation. Besides these
changes, based on a merge of the two appropriate column, the row sums are changed
by —1 in the 7 positions. Note that the merge condition A;; = A;; = 0 ensures that
the index set Z will never contain ¢ and j indices.

4. 6 * *
- 11 1 11 1 1 1 1
1 1 - 1 1 - 1 -1
x 1 1 1 11— 1 1 1 - 1= 1 1 1 1
1 1 1 -1 1 0
* 1 1 0o -0 0 0
1 1 1 1 1 1 1 11 0

Figure 9.6: The * rows and columns are assigned for a merges. The left matrix is the
initial Merge Matrix, namely the adjacency matrix. The middle is a Binary Merge Table
after merging * rows. The right is a Binary Merge Square, after merging * columns.
Common ones and their amendments are shown in bold. The common one positions
are 7 = {4,6}.

For a Binary Merge Table T the approximation may be performed using the symmetric
T/ijT/I;j matrices, where the results of the approximations are the squares of the spectral
norm values. Nevertheless, an alternative efficient strategy can be the application of
Eq. 9.27 for T only. Since just the rows are merged in the case of Merge Tables,
the columns remain unaffected (see Figure 9.6). The changes in the row sums after
merging the i-th and j-th rows may be represented by the following

(Tyij)ive) = (Ti,e) + (Ty,e) — (T}, T})
((Tyij)j,e) = 0 (9.30)
(Tyij)ere) = (Tr,e) r¢&{i,j}

In the case of Integer Merge Tables, the component —(7;, T;) must be removed from
the ((T7;;);,e) calculation, because the Merge Operation is the addition operation,
while the others sums remain the same.

Remark. The row choice probability function values are generated in the same way
as that described in Section 9.5. Kumar and Merikoski in [123] offer more sophisticated
approximations for the spectral norm which can be utilised as well. Notice that the
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components of this strategy contain row sums like those in the Welsh-Powell method,
but here all the row sums are taken into account in a row-pair selection. Moreover
these row sums correspond to a Merge Matrix which is derived from the actual Merge
Matrix by a merge. However, there may be rows which remain unchanged. Also notice
that in the binary cases, the dot product of the two rows also have an influence on the
selection. The dot product in the strategy takes the relation of the rows into account
as well as their individual properties, like a row sum. The bigger the dot product value,
the greater the decrease in the row sum. The following strategy focuses on an analysis
of the observed relation between the two rows.

9.7 Dot Product (entrywise norm) Strategy

Motivation. As we saw earlier, the number of rows in a final Merge Matrix defines
the number of colour classes used in the colouring problem. Hence the aim is to reduce
the number of the rows as much as possible in order to have as few colours as possible.
The non-zero elements, the edges can only prevent the further reduction of the rows.
Since merges result in changes in the number of non-zero elements, this strategy keeps
the number of edges as low as possible in the intermediate Merge Matrix stage. To
achieve this goal, two rows must be chosen whose merge reduces the highest number
of non-zero elements in the Merge Matrix. Figure 9.7 shows an example.

11 1 11 1
1 1 1 1
* 1 1 - 1 1 — 1 1 1 1
1 1 - 1 1
* 1 1 0 0
1 1 1 1 1 1

Figure 9.7: A merge of the * rows causes the greatest reduction in the number of
non-zero elements. The figure shows this reduction in a Binary Merge Table.

It leads to the recognition that those rows which have the maximal number of common
non-zero elements should be chosen for a merge. In the adjacency matrix, common
non-zero entries in two rows mean common neighbours of the corresponding vertices.
This strategy was introduced in [97] by the author. The strategy with various Merge
Frameworks was analysed by Juhos et al. in [98-101]. The results of the analysis will
be presented in Chapter 10.

The row-pair choice probability function for the CC Merge Framework. A
description of this choice strategy by merge matrices will help keep the definition simple.
First let M be a Binary Merge Table or Merge Square. The common non-zeros of the
row pairs are provided by the Gram Matrix of M, i.e. MM?, which consists of the dot
products of the rows. Although the Gram Matrix contains essential information, further
processing is required to get the mergeable positions because not all positions refer to
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mergeable rows. The choice probability matrix is derived from the Gram Matrix, with

elements A LS M 0
xij=< i j)FE ij = 0] (9.31)

A (M;, M;) dot product gives the number of common ones in the two row vectors M;
and M;. The normalisation constant x may be the square of the maximal row sum,
because every dot product is non-negative and it must not be bigger than this sum. A
better choice may be the maximal (M;, M;), however. In the case of Binary Merge
Squares the choice probability matrix can be defined by a matrix notation, based on
Eq. 9.32. The only difference between the latter an Eq. 9.31 is that the [M;; = 0]
restriction is expressed by a Kronecker product. The non-edge positions are 'masked
out’ by the entrywise product with the adjacency matrix of the complementer quotient
graph A. Using an entrywise product of matrices, this A is a suitable choice because
it retains only those positions where M;; = A;; # 0, while the others will have a zero

X = (A (%I) AT) oA (9.32)

The choice strategy in the CC Merge Framework is defined by

value.

arg max ;; (9.33)

7/7]

The row choice probability function for the UC and CU Merge Frameworks.
The UC and CU Merge Frameworks can apply this strategy as well, but the necessary
coloured and uncoloured row sets must be kept and the choice probability matrix must
contain additional zero elements to prevent merges between the rows having the same
states, coloured or uncoloured, as seen in Figure 9.2. In the UC Merge Framework
an uncoloured row is chosen by an arbitrary strategy, and based on the maximum dot
product values a suitable coloured row is selected for the chosen uncoloured row.

Connection with the entrywise matrix norms. With a Binary Merge Square or
Table this strategy can be expressed in terms of entrywise norms. A binary merge is the
piecewise OR operation of the rows. Hence the number of ones decreases by the value
of the dot product of two mergeable rows (see Eq. 9.34). In the case of Binary Merge
Squares this decrease is twice this amount because the columns are also merged. The
dot product maximisation strategy introduces a minimisation in the entrywise 1—norm.
To see this, let M be a Binary Merge Table and M/, be the resulting Merge Table
when the maximum dot product strategy is applied, where r and s are the row indices
of the rows M, and M, selected by this strategy (Eq. 9.33). Eq. 9.35 helps explain
why the norm decreases.

}M/?“S} = Zi;ﬁr,#s Zj Mi; + (Zj M,; + Zj M; — (M, MS>> (9.34)

(Zi;ér,z‘yés Zj Mij + Zj Mrj + Zj MSj) - <Mr> M8> = |M| - <Mr> M8>
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The dot product maximisation introduces a minimisation in Eq. 9.34. This minimises
the entrywise 1—norm in the resulting Merge Matrix, as shown in Eq. 9.35. Hence the
strategy can be turned into a norm minimisation where two vertices are chosen for a
merge which minimises the norm, similar to that in Section 9.5.

arg <|M| — max (M,, MS>) = argmin (|M| — (M,, M,)) = argmin | M,,| (9.35)

Since the resulting Merge Matrix is also a {0, 1}—matrix an entrywise 1—norm min-
imisation means a minimisation in every entrywise norm. Thus the entrywise 2—norm
(the Frobenius norm) is also minimised. The Frobenius norm may be calculated by the
formula

min{l1,l2}

> o? (9.36)

where, [, and [, stand for the dimension of M. This lets us see the strategy from

M| =

another aspect. There are different forms of the Frobenius norm (Eq. 9.36). However,
they encode the same value, but their analysis better explains the principle behind the
strategy. The first form gives the sum of the ones in the matrix; that is, the entrywise
1—norm. The second is the sums of the row sums. This contains the maximum row
sum employed separately in the Welsh-Powell strategy, but here it is only a component
of the summation. The last expression represents the summation of the square of the o;
singular values, where the principal singular value is just a component. Recall that the
spectral norm minimisation strategy considers the principal singular value only. Both
the spectral norm and the dot product strategies try to exploit a norm minimisation of
the Binary Merge Matrices. The reason is that a final Merge Matrix, which corresponds
to an optimal solution, has the minimal norm among the possible merge matrices which
may come from the adjacency matrix, the initial Merge Matrix.

Remark. For a Binary Merge Square the third coefficient —cy of the characteristic
polynomial (Eq. 3.13) of a quotient graph also gives the number of edges [9]; that is,
the number of ones in the corresponding Merge Table (see Section 3.5). Reducing the
number of non-zero elements can be a good heuristic to prevent the growth of non-zero
elements which forbid possible merges. However, one can consider the zero elements
of the Merge Matrix as well, since they supports the possible merges. Consequently
we should deal with the ratio of the number of zero and non-zero elements which can
characterise better our goal.

9.8 Cosine Strategy

Motivation. The cosine strategy was introduced by the author in [97], who demon-
strated the efficiency of the strategy in several experiments [98; 100; 101]. Following
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the dot product strategy, it is mainly intended for Binary Merge Models. The dot
product strategy focuses on the evolution of the number of non-zero elements during
successive merges and attempts to keep them as low as possible. To achieve this goal,
the dot product strategy selects those two vertices for a merge which have the max-
imum dot product value. The goal of every Merge Algorithm is to make as many
merges as possible because the number of merges is proportional to the quality of the
solution as outlined in Section 9.7. Though the non-zero elements in a Merge Matrix
frustrate the merges, the number of zeros assist them. Hence the cosine strategy takes
the number of non-zero elements into account, but also considers the number of zeros
present. It employs the maximum dot product strategy to determine the number of
non-zero elements in the resulting Merge Matrix after a merge. In order to include the
zero elements as well, the cosine strategy concentrates on the ratio of the zero and
non-zero elements in the resulting Merge Matrix. Therefore in the row-pair choice this
strategy combines the dot product of the two rows with the number of zero elements in
the rows. Two rows are favoured in the selection if they have large dot product values
and a large number of zero elements.

The row-pair choice probability function for the CC Merge Framework. A
row has a large number of zero elements if it has few non-zeros. That is, the number of
non-zero elements and the number of zero elements are inversely proportional. There-
fore, to measure the number of zero elements in a row our strategy takes the reciprocal
of the sum of a row. The sum of a row is provided by the vector entrywise 1—norm.
The reciprocal values are multiplied so as to have a common measure for the number

of zeros of the two rows. . .

20110 (537)
Eq. 9.37 shows one of the components of our strategy, while Eq. 9.31 shows the
other component, the dot product. The product of these components form the cosine
strategy, which takes the non-zeros and zeros into account as well in the row-pair
selection. In order to get suitable row-pairs, the product must be maximised. Hence,
the row-pair selection of the cosine strategy is

<Mi> Mj>

arg max —————-
i | M| [ M

(9.38)
Since Binary Merge Matrices are {0, 1}-matrices, the sum of the row elements is equal
to the sum of the squares of the elements. Moreover, the square root of the sums does
not change the selection in Eq. 9.38, hence

(M, M;) (M, M;)

arg mMax = = arg max - —-
i || M| M) i | M| [ M)

(9.39)
Where |M;| provides the sum of the row. Note that the square root of the sum of square
of the elements gives the length of the vector. Based on this observation the row-pair
choice probability function will be defined by the maximum cosine of two mergeable
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rows, like the following
(Mia Mj>

py = o ) (9.40)
T IM M)

Due to the cosine definition, the x;; values always lie in the interval [0, 1].

The row choice probability function for the UC and CU Merge Framework.
The cosine strategy for the UC and CU Merge Frameworks may be defined in a similar
way to the dot product strategy. In both cases this strategy is appropriate for the
second choice. The condition is that the first row selection must be performed by
another strategy, e.g. a greedy one. With the UC Merge Framework, the first row is
selected from the uncoloured sub-merge-matrix, then the other row is selected from the
coloured sub-merge-matrix using the maximum cosine strategy.

Remark. If a vertex is dominated by another vertex, i.e. when the neighbour set of
one of them is a subset of the neighbour set of the other, then they can be coloured
with the same colour in each optimal colouring. In our terminology they can be merged
together before starting a colouring algorithm. The most obvious case is when they
have the same common neighbours. Then their cosine value is one. If their neighbour
sets are slightly different, then their cosine value will be high. Therefore our cosine
formula appears to be meaningful in a merge process. A final Binary Merge Square
is the adjacency matrix of a complete graph. Each row has k& — 1 ones, and the dot
product of each pairis (k—2). Thus the cosine is value is (k’i;zl)Q This value is maximal
if k& is minimal. Hence the cosine strategy forces us to make & as low as possible; that
is, it forces us to use as few colours as possible, which is the goal of minimal colouring.
In Section 3.1.3 the zero blocks (i.e. independent sets) in the adjacency matrix are
discussed, which form a solution (see Figure 9.8). Notice that the rows, which belongs
to a zero block, are almost parallel. The next strategy is based on an optimisation
which changes the zero entries in such a way as to get an almost parallel state of the

appropriate rows.

V4
Vg Vg Vg V1 Us Ug
Vs U3 v 0O 0 0 1 - 1
vw 0 0 0 1 1 1
vy 0 0 O 1 1
Ve (%) vy 1 1 o - 1
Vs 1 1 . 0O O
v 1 1 1 1 0 0
U1

Figure 9.8: Zero blocks of the independent sets.
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9.9 Zykov-tree and Lovasz-theta strategy
(enhanced cosine)

Motivation. This strategy was introduced for Binary Merge Squares only (for quo-
tient graphs) by the author in [94; 102] based on the results of the authors of [51; 103;
110; 124; 161; 162]. Merge/colouring algorithms generate choice probability matrices
for each step of the algorithm run. The matrix values represent probability values based
on the algorithm strategy for how probable the merge of two rows is. A colouring ma-
trix corresponds to a particular colouring. It describes whether two vertices are coloured
with the same or different colours. Figure 9.9 shows all the optimal colouring matrices
of a graph of Figure 2.1. All of them provide an exact merge probability matrix, where
vertices in the same colour class have a probability value of one and differently coloured
vertices have a value of zero. Unfortunately, none of them is available, because they
form the solution of the minimal colouring problem. Although they are unavailable,
their average can be approximated by a semi-definite program of Karger et al. [103].
The optimum of the semi-definite program is the so-called vector colouring number,
the Lovasz-theta [110] (see Section 3.4), but the optimum point is a matrix'® X, which
approximates the average of the colouring matrices of optimal solutions. It is reason-
able to call this matrix X because this will the basis of the choice probability matrix
of the strategy, but the diagonal elements must be set to zero, otherwise they bias the
selection.

The average of the optimal colouring matrices. The sum of the optimal colour-
ing matrices contains very important information about the colouring (see Figure 9.9).
An element of the sum matrix refers to the number of optimal colourings where two
vertices got the same colour. Normalising the values by the number of optimal matri-
ces results can result in a choice probability matrix. The normalisation turns the sum
matrix into the average matrix of the optimal colouring matrices. In fact, the values of
a choice probability matrix express the likelihood of the same colouring of two vertices.
This can be characterised through the sum matrix. The values of the sum matrix are
proportional to the relevant choice probabilities. Now let us consider the sum matrix
of Figure 9.10. The zeros are still represented by dots, except for the {vy, v5} position,
there being a 0 instead of a dot. The dot positions are edges in the original graph, i.e.
there are 1-s in the adjacency matrix. Although v, and v5 are not connected, they are
never coloured with the same colour in optimal colourings. Indeed, it is not hard to
verify that choosing the same colour for them always leads to a non-optimal solution,
a 4-colouring. But v, and vg are highly likely to get the same colour, because they
share the same colour in all optimal solutions, as described by Xs4 = 3.  Exploiting
this observation, the author designed a Zykov-tree approach [161; 162]. Recall Section
4.3.1, where we introduced the Zykov-tree. Here there are two Zykov-steps, namely
connection or contraction of two vertices. That is, a 1 addition to an appropriate
Merge Square or performing a merge of two rows of the Merge Square. This strategy

10Rows of the matrix form the so-called vector colouring of the corresponding vertices of the graph.
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Figure 9.9: The optimal colouring matrices of colourings. Here the rows and columns
have been reordered for the sake of better clarity.
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Figure 9.10: The sum of the optimal colouring matrices of Figure 9.9
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Figure 9.11: The Zykov-tree and Lovész-theta approach

combines the solution of a semi-definite optimisation of the Lovasz-theta [103] with
the Zykov-tree approach [162]. The optimisation produces an approximation matrix X
for the average of the optimal colouring matrices. This X matrix may be a suitable
basis for making a row-choice probability matrix, where two rows of a Binary Merge
Square are merged if their row-pair choice probability in X is the largest. Furthermore,
they are connected by an edge if their row-pair choice probability in X is the smallest
and they are mergeable. An example of this can be found in Figure 9.11, where two
Zykov steps are performed by the sum matrix of Figure 9.10. To define the strategy
more precisely, we need to examine the approximation method of Karger et al. [103].

An approximation of the average of the optimal colouring matrices. Take
an optimal colouring matrix example X,,,; from Figure 9.9. This example is also shown
in Figure 9.12(a). A colouring matrix X is symmetric (X = X7) and positive semi-
definite (X > 0), as shown in Section 3.1.4. In addition, Z. = 0 Ve € F; that is,
a colouring matrix must have 0—s in the edge positions where the adjacency matrix
has 1—s. Now decompose the example colouring matrix as follows: X,,; = LLT, e.g.
applying an Incomplete Cholesky Decomposition [69]. This is possible thanks to the
symmetric and semi-definite properties of the colouring matrices. If X, is ann x n
matrix, then the rows of L describe n sets of unit length vectors. However, some of
these vectors may be the same (Figure 9.12(b)). Here, X, contains the dot products
of the unit length vectors, i.e. the cosines of the angles of these vectors. Notice that
the vectors in the decompositions define the colour assignments (¢;, v;), where ¢; is the
1—th colour and v; is the :—th vector. Finding an optimal colouring matrix is equivalent
to finding an optimal colour assignment that minimises the number of colours k used
in a proper colouring. One approach is to search the space of colouring matrices, where
the number of 1—blocks is to be minimised among all possible arrangements. Karger et
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Figure 9.12: An optimal colouring matrix example X,,; and its decomposition L into
unit length vectors, where X, = LLT.

al. turned the problem into an integer optimisation problem (see Eq. 9.41), where the
number of colours k can be handled explicitly by retaining the positive semi-definiteness
property of the transformed matrix [103]. That is

X = mkln{k kX — J = 0, X : colouring matrix} (9.41)

Here J is the matrix with all one elements and the minimisation is performed among
all X colouring matrices, and k is integer-valued. For the example colouring matrix
Xopt (Figure 9.12(a)), the reformulated problem is shown in Figure 9.13 along with the

normalisation factor 1.
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Figure 9.13: Reformulations of the optimal colouring matrix X,,;.

A decomposition of Figure 9.13(b) describes 3 sets of unit length vectors. The cosine
values of their pairwise angles are k_——ll The smaller the k, the larger the angle. The
minimum is k = x. That is, for a 3—chromatic graph (where xy = 3) the angle is 120°.
This suggests an angle maximisation problem here. Eq. 9.41 just leads to an equivalent
optimisation problem of the original minimal colouring problem. It attempts to find the
colour assignment in an integer {0, 1} vector space in accordance with Figure 9.12(b).
Hence finding a solution requires as much effort as finding a solution when the problem
is stated in the original form. Karger et al. following the observation of an angle
maximisation, formulated a relaxed version of Eq. 9.41. This results in an efficient way
to approximate the average of the optimal colouring matrices. In the relaxed problem
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the {0, 1} integer-valued feature of the X is not required. However with the constraints,
the edges must be contained in the relaxed model as well, and a decomposition of the
matrix no longer describes unit vectors in an n—dimensional space. Nevertheless, it is
reasonable to retain their unit length. Karger et al. also provided a relaxed problem in
[103]. Their semi-definite optimisation program formulation is encapsulated by

@zmtin{t:tX—Jto,jii: 1,Z, =0 Ve € E} (9.42)

where T;; = 0 guarantees the unit length of the vectors in the decomposition, 7, = 0
makes the appropriate edge constraints conform to the adjacency matrix 1—s and ¢ is
a real-valued number. Solving the optimisation problem of Eq. 9.42 here makes use
of the Lovasz-theta number @ introduced by Lovasz in [110]. Section 3.4 describes an
important property of the  number, namely w < § < x. That is, the value is always
a lower bound for the chromatic number, but an upper bound for the clique number.
The optimum point, a semi-definite matrix, is the average of the optimal colouring
matrices. A semi-definite optimisation solver can arbitrarily approach the optimum of
Eq. 9.42, [103] providing an approximation for the average of the optimal colouring
matrices. The standard semi-definite problem for Eq. 9.42 can be written down by
introducing the matrix Z = tX — J:

ézmtin{t:ZEO,zM:t—l,ze:—l Ve € E} (9.43)

Let us denote the result of the optimum point of this Eq. 9.43 by Z,,,.. Notice that
Zyp,t Matrix must contain —1-s in the edge positions, where the adjacency matrix has
1-s and the optimal colouring matrices have 0-s.

The row-pair probability function for CC Merge Frameworks. Take Z,,,+1 to
get zeros in the edge positions and set the main diagonal to zero, to get an appropriate
basis for the choice probability matrix, i.e. Z = (Z, + 1) o (1 — I), where (1 — 1)
entries are all ones except along the main diagonal, where it has zeros. The author in
[94; 102] applied the values of the normalised Z matrix as a row-pair probability choice
matrix in the CC Merge Framework. The normalisation which conforms to Eq. 9.2 is

7 —min Z
X — _mme (9.44)
max Z — min /2

The values of the Z matrix measure the colour similarity of the vertices and the matrix
must contain 0-s in the edge positions; that is, the 0-s express dissimilarities. In addition,
there can be negative values, therefore it is reasonable to apply a Zykov connection
step for the appropriate vertices which correspond to the smallest negative value or
the negative values leading to two sub-types of the strategy. Hence, the author added
edges to each successive Binary Merge Square that is generated by a merge step in the
following way. Take those (i,7) row-pairs for which Z;; < 0 is minimal (or Z;; < 0)
and connect them by an edge. That is, place a 1 in the relevant position of the
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adjacency matrix. Moreover, merge those two rows for which X;; and hence Z;; is
maximal. These operations are repeated for each intermediate Merge Square; that is,
the adjacency matrix for each successive quotient graph. However, since Eq. 9.44 is a
suitable choice probability matrix, Z contains some more information to speed up the
running time. Z; approximates 0 at the end of the optimisation. Learning something
useful from the sum matrix structure of Figure 9.10, it is reasonable to merge not only
the largest, but other rows as well which have large choice probability values. It means
that one optimisation of Eq. 9.43 can result in more than one merge. That is, during
a merge sequence, fewer semi-definite optimisations are required. Based on preliminary
results, the author applied Zl-j > 0.50 in [94; 102].

Parallel rows. In an optimal colouring matrix, those vertices which have parallel
rows in the colouring matrix must be get the same colour. A row of a colouring matrix
describes an exact colour similarity of the relevant vertex with the other vertices. A row
of the average colouring matrix, and hence the choice probability matrix of Eq. 9.44,
describes only an approximated colour similarity with the other vertices. If two rows of
the choice probability matrix are parallel, then the two relevant vertices have the same
relation to the others and they should be in the same colour class. Therefore cosine
maximisation is a reasonable strategy for merging two rows. Moreover, the —Z,,
matrix has 1-s in the same positions as the adjacency matrix, hence this observation is
in agreement with the Cosine strategy of Section 9.8.

Improvement. Karger et al. [103] showed that in general, the average of the optimal
colouring matrices is not a suitable way to get an optimal colouring. However, they
were able to design a clustering algorithm which produces a semi-colouring where at
most the quarter of the edges are coloured improperly. Based on the semi-colouring
algorithm design in Lemma 3.1.1, they obtained the best known worst case including
the first non-trivial bound. They were able to colour k—colourable graphs with at most
min{O(n! =¥ *+D) O(A=2/%)} colours, where n = |V| and A is the largest degree.
During the merges n decreases and, in accordance with Section 9.4.1, A may decrease
as well. Therefore it is reasonable to apply the average of the optimal colouring matrices
with the merge approach.

9.10 Merge Paths

Certain graph properties are evaluated during the selection of two rows for a Merge
Operation, implicitly or explicitly. E.g. an explicit dot product maximisation strategy
means an implicit norm minimisation. The author defined a general Merge Strategy
using these properties (see Juhos et al. [101]). Here, an analysis of a supposed merge
effect is performed. First, gather those graph properties into a vector which form the
basis of the decision (e.g. spectral norm, i.e. the largest eigenvalue). One can take
other eigenvalues as well to examine their evolution in the intermediate merge matrices
during a merge sequence. Denote this vector by £. Determine which values are known
in advance for the final merged graph. It is important to know these values because
they will be the goal of this reformulated problem. Next, compute &, and &, im-x,
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where M%) = Ay and MI""* = Ay | the adjacency matrix of G and K, respectively,
in the case of Binary Merge Squares. Now the “only” task left is to find an appropriate
merge sequence which corresponds to a path, a Merge Path from &, to &y s in
the vector space induced by &1, where M is an intermediate Merge Matrix in the
t-th step. A Merge Path may be characterised by the sequence

fM[O]a §M[1]7 fM[% ) §M[”*’C] (9-45)

Figure 9.14(b) below shows an example of how the three largest eigenvalues (A} > A\ >
A3) of M form different paths of 20- and 37-colourings in a three dimensional vector
space. The start of the path is (A1, A2, A3) 0. The path ends at (Ai, Ao, A3) s,
which are known values in the case of Binary Merge Squares. The first value is trivial,
because M1 = Ag is given and the last is (k—1, —1, —1), since the final merged graph
G" % is a K}, complete graph on k vertices, where k is the number of colours used in the
colouring®. Hence the goal is to get (y — 1, —1, —1), which corresponds to a solution.
An analysis of the paths helps us in the colouring process because we can identify and
follow the optimal path. Now let us consider a simplified example in one dimensional
space. Take the Binary Merge Square representation Al and let &, = A (AlY), ie.
the spectral norm of Al If we examine the initial Merge Square, we can see that
M (Ag) is greater or equal than A\ (A" X) = x — 1 (see [153]). Due to this fact the
value of A\;(A") always decreases with each step, as shown in Figure 9.14(a).
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Figure 9.14: Evolution of the eigenvalues along a merge sequence. The graph is a
20—chromatic, equi-partite graph having 200 vertices with a 0.64 edge density from
the peak of the phase transition. The spectral norm value of the final Binary Merge
Square is x — 1 = 19 in the optimal case, otherwise it is bigger.

This path is responsible for determining the colouring and the end of the path & — 1
defines the quality of the colouring. Unfortunately, the ideal path (between \;(A[")
and x — 1) is of course unknown; the task of colouring is to find this path. A colouring
path takes n—k colouring steps, that is n—k merges. An optimal colouring needs n—
steps,resulting in the longest step-series, while non-optimal colourings have shorter ones
as they get stuck when no more merge are possible, i.e., k& > x. If we consider the

1 The minimum & is x.
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ideal path, which has the lowest bound and requires the most steps, then it should be
below every possible non-optimal colouring path after a certain point. We can define
a path in advance that has this property. A trivial path between the initial point and
the end is a linear path, where \ (A1) is derived from A (AY). The difference
A (A — X (A should approximate MADMAT) - Nonfinear paths can be

n—

defined by an analysis of more complicated graph properties and their behaviour. This
approach can be applied to the row-pair choice probability values as well where a Merge
Path may be defined by the maximal values of several choice probability functions. In
this case it is not necessary to know the end of the path; the only requirement might
be the component-wise increase of the path constituents. Since each merge brings a
Merge Matrix closer to a candidate solution, the choice probability values must provide
more confident choices.

9.11 Learning and clustering Merge Paths

The Merge Path approach allows the application of artificial intelligence methods in
graph colouring, such as instance-based learning or clustering. Using a training set
of graphs a learning algorithm (see Juhos et al. [95]) can learn certain Merge Paths
that are associated with colouring steps (see Figure 9.14(b) or 9.14(a)). Actually, it
is an approximation task, a curve fitting. First take a large set of generated graphs
as training graphs with similar properties, e.g. 3—chromatic equipartite graphs with a
constant size (see Section 4.1). The approximation'? of their optimal Merge Paths, i.e.
that corresponds to an optimal merge sequence, may provide some useful information.
Then this information can be used in the algorithm design. Take an unknown graph
from the same category, e.g. a 3—chromatic and equipartite graph with similar a
size. The merges can be driven by the approximated learnt curve, where we generate
that merge sequence which produces the closest path to the learnt Merge Path curve.
Another possibility might be when an arbitrary merge sequence is performed and the
distance is measured between the learnt Merge Path and the Merge Paths generated
by the merge sequence. If a distance becomes critical, backtracking may be required.
When the graph is derived from an unknown source, we do not know its category. A
categorisation can be supported by clustering. Here, several training graph sets must
be used as the basis for clustering. An arbitrary merge sequence of the unknown graph
may have a characteristic shape. Hence, categorise this Merge Path derived from
one or more arbitrary merge sequences using the training graph sets and a clustering
algorithm. Based on the results of the clustering, the graph can be characterised e.g.
by its chromatic number. Then like the above-mentioned learning task a colouring of
the graph may be performed.

9.12 Evolutionary strategies

This section details uncoloured row-choice strategies for Merge Tables based on the

evolutionary algorithm described in Section 4.2.7
12E g. their average.
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9.12.1 Finegrained fitness — the ( fitness

An intuitive way of assessing the quality of a permutation of the vertices 7 as an
uncoloured row choice strategy is by counting the number of rows remaining in the
final Merge Table M. This is the same as the number of colours kj; used in the
colouring of the graph which needs to be minimised. If we know that the optimal
colouring is x then we may normalise this fitness function such that g(7) = k() — x
or we can use a lower bound value of x. This function gives a rather low diversity
in the fitnesses of permutations because it cannot distinguish between two individuals
that use the same number of colours. The author in [96] addressed this problem by
introducing a new multiplier. This multiplier is based on the heuristic that we want
to eliminate highly constrained rows in order to have a better chance of successful
merges later on. This involves the merging of rows where many 1—s are merged. Let
Cu(x) denote the number of non-zeros in a final Merge Table, then the fitness function
becomes f(7) = (kar(x) — X)Cni(x), Where M () is the final Merge Table corresponding
to the 7 permutation and a greedy merge/colouring scheme (see Section 10.1.1). This
approach follows the entrywise norm optimisation of a Merge Table defined in Section
9.7.

9.12.2 Difficulty guided mutation

The evolutionary algorithm of Section 4.2.7 applies swap mutation as one of its varia-
tional operations. The author in [96] introduced a modified swap mutation. It always
chooses the last merged row, which has few zero elements, and forces it to have an
earlier position in the permutation in order to get a colour earlier. To accomplish this,
it chooses at random a previous row identifier for a swap. The idea behind it is that
these last merged rows are the most difficult to merge. The last rows are usually sparse
ones, which have few non-zero elements. Though this strategy is simple, it actually
proved quite useful in our experimental analysis in Section 10.2.2.

9.13 Summary

In this chapter we introduced several Merge Strategies which may be combined with a
Merge Framework based on a Merge Model (see chapters 8 and 7). These strategies
define the merging/colouring steps in an algorithm. Their motivation and analysis are
provided, and a connection between them was also discussed. Due to the matrix-based
Merge Models the strategies which apply them can be interpreted via different matrix
properties such as matrix norms. Taking various matrix properties into account, we
provided a new approach for the algorithm design, namely the Merge Path approach.
We also showed that this approach allows one to apply machine learning and clustering
methods for graph colouring.

Merge Strategies with different Merge Models and Merge Frameworks may result in
different colouring algorithms. The next section describes possible combinations with
experimental studies.



Chapter 10

Merge Algorithms

This chapter combines Merge Frameworks of Chapter 8 with the Merge Strategies of
Chapter 9 to form a Merge Algorithm. The 'SUITABLE MODELS' section will describe
which Merge Model supports the implementation of the algorithm in question. M will
stand for a suitable Merge Model in the description, where M“"¢ is the uncoloured part
of the Merge Matrix consisting the uncoloured rows, while A/¢°" contains the coloured
rows, as outlined in Section 7.2.

Existing algorithms can be expressed in a Merge Framework using one of the Merge
Models. Benchmark algorithms of Section 4.2 as well as novel algorithms based on
the strategies defined in Chapter 9 will be also described in this chapter. Description
in a common way supports a structural analysis, and a fair performance comparison.
Section 4.1 defines various benchmark graphs which form the basis of the comparison
of the novel algorithms of the author [94; 96-102] with the benchmark versions. Since
the choices in the detailed algorithms are deterministic, just the unnormalised values of
the choice probability functions will be considered.

The following tokens will be used as abbreviations: BMT, IMT, BMS and 1Ms, where
the B means 'binary’, the T means 'integer’; the M is associated with 'merge’, T and s
stand for 'table’ and 'square’, respectively. Thus BMT means the 'Binary Merge Table’
model. If a Merge Model should be emphasised in the notation of a framework, then

the appropriate token appears on the top of the UC, CU or CC framework identifiers,
bmt
e.g. UC. Similar to Section 4.2, the [.] operation makes a vector from the elements of a

set, taking a natural order. Recall the sub and co-structures introduced in Section 7.2,
which are the appropriate sums of the rows or columns of the relevant merge matrices
denoted by p. In the UC and CU Merge Frameworks the uncoloured and coloured parts
of u should be distinguished by the uncoloured and coloured sub-merge matrices: p*"¢
and p. Without “*¢ or ¢ indices, it belongs the whole Merge Matrix. There are
four p—s for each submatrix: left, right, top and bottom. Right p, and bottom g
co-structures count the non-zero elements of a row or column, respectively. Top y; and
bottom y; are similar, but they contain the sum of each row and column, respectively.
The sum of pu; (or ;) co-structures is denoted by (; and the sum of the bottom (or
f) co-structures are denoted by (j. (; is the sum of the entries of the relevant Merge
Matrix, while ¢, counts the non-zero elements of the Merge Matrix.

97
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10.1 Benchmark algorithms in Merge Frameworks

This section describes the embedding of well-known benchmark algorithms of Section
4.2 into a suitable Merge Framework using an appropriate Merge Model by the author.
A description of the algorithms in the common way supports their structural analysis.

10.1.1 Algorithms in the UC Merge Framework

The following benchmark methods can be described in the UC Merge Framework, where
an uncoloured row is chosen followed by a coloured one for a merge. Hence it needs
two choice functions: choose —unc for the uncoloured row choice and choose — col for

the coloured row choice. In order to denote an algorithm in the UC Merge Framework

Cchoosefcol

e o+ Where the choose — unc denotes

let us introduce the following notation: U
the uncoloured row choice strategy, while the choose — col denotes the coloured one.

Greedy merge scheme

SUITABLE MODELS: BMT, IMT, IMS, BMS

The greedy colouring scheme of Section 4.2.2 fits nicely into the UC Merge Framework.
Where the choice probability vector x is provided in advance by a strategy, then the
first available colour ¢ is assigned to the vertex chosen by the maximum value of x.
For tie breaking, when the choice is not exact, take the first vertex via a natural order
of the vertices.

yclert: strategy) (A adjacency matrix ,x })

greedy
1 M~ A

2 repeat

3 u « [arg max;{ x; }]1 // Choose by the maximum of choice prob. vector x
4 c « argmin;{i : M = 0} // Choose a coloured row greedily

5 M «— merge(M,{u,c})

6 remove — component(x,u) //Remove the x,, component

7 until M€ is empty

8 return M

The greedy colouring scheme does not require any additional information during the
colouring process. It performs the colouring using a predetermined order of the vertices
by x, which is provided by an external strategy. Therefore each Merge Model is suitable
for making a colouring. One benefit of the application of the Merge Model is the
decreased computational effort, which will be described later in Section 11.4.

Welsh-Powell

SUITABLE MODELS: BMT, IMT, IMS, (BMS)

We saw in Section 9.4.1 that the Integer Merge Models and the Binary Merge Table
support this heuristic if it is defined in a dynamically varying merge environment. How-
ever, Welsh-Powell does not need to consider the varying conditions. The row-choice
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probability function can be determined in advance. It is just defined by the degrees of
the vertices. This can serve as an external strategy of the greedy merge scheme (see
Section 10.1.1). Hence in this case any Merge Model can be applied. For demonstra-
tion purposes, we shall provide a Merge Algorithm which is defined like that in Section
9.4.1. This determines the relevant degrees during the colouring process.

UCWelsh=Powell A 3djacency matrix )

greedy

1 M—A

2 repeat

3 u «— [arg max;{ p; }]1 // Choose by maximum row sum

4 c « argmin;{i : M = 0} // Choose a coloured row greedily
5 M «— merge(M,{u,c})

6 until M""¢ is empty

7 return M

Where f4; is the i—th element of 1} = M""“ e, which gives the uncoloured row sum;
that is, the degree of the relevant vertex in the original graph; while min;{i : M = 0}
chooses the first available coloured row where the merge condition M = 0 holds.
[.]1 decides the tie breaking cases if more than one maximal elements is found. It
invariably chooses the first element in a natural order. This selection corresponds
to the appropriate colour class represented by the coloured row. An uncoloured row
merging into a coloured one means putting the uncoloured vertex into the appropriate
colour class in the traditional sense.

Hajnal

SUITABLE MODELS: BMT, BMS, IMT, IMS

The Hajnal heuristic takes the vertices in reverse order by the principal eigenvector of the
adjacency matrix and then performs a greedy colouring. As mentioned in Section 10.1.1,
any Merge Model can be used as a basis for these algorithms, which does not take into
account the varying environment during the colouring process. The Hajnal heuristic
relies on a predefined choice probability vector, determined by the principal eigenvector
% (see Section 9.4.2) ! it does not change the strategy during the colouring. It requires
a preliminary computation of the principal eigenvector as in the original definition in
Section 4.2.4. The [.]; also decides the tie breaking cases here as it did (see Section
10.1.1), always choosing the first element. Similar to the greedy scheme in Section
10.1.1, it can be used with any of the Merge Models. It serves as an external strategy

of the greedy merge scheme defined in Section 10.1.1 hence it is denoted by UCQHTZZg;l.

DSatur of Brélaz

SUITABLE MODELS: IMT, IMS, (BMT, BMS)

DSatur uses the maximum saturation degree to choose an uncoloured vertex. The
saturation degree is equal to the number of neighbour colours. For tie breaking it
uses the degree of the vertices. After an uncoloured vertex is chosen, a greedy colour
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assignment is applied (see Section 4.2.5). This heuristic takes into account varying
state of the uncoloured vertices during the colouring process. Hence it can happily
exploit the benefits of the Merge Models.

ims

UCdsatur( A adjacency matrix )

greedy
1 M« A /] Let M be an Integer Merge Square
2 repeat
3 u « argmax;{ (u° o €“"¢); } // Choose by the max. uncol. top co-structure .

4 u «— [argmax;{ (s o eyu); }]1 // Choose by the max. top co-structure.
5 ¢+ argmin;{i : M = 0} // Choose a coloured row greedily

6 M «— merge(M, {u,c})

7 until M"%"¢ is empty

8 return M

Here u contains the vector of the chosen uncoloured row indices according to the bottom
co-structure of the coloured sub Merge Matrix 1§, which defines the saturation degree
of the vertices. It gives the number of neighbouring colours for each vertex since only
the uncoloured rows/vertices are considered in the choice. The irrelevant part of the
vector pf°! must be set to zero by uf” o €™ because u may contain more than one
component, i.e. references for uncoloured rows. DSatur applies a tie breaking by the
vertex degrees. A column sum of the whole Integer Merge Table or Square M gives
the relevant degree of an uncoloured vertex. Each column sum is placed in the top co-
structure y;. Only the tie breaking positions of this vector are interesting; that is, the
chosen uncoloured row indices u. Therefore the irrelevant values of 1, are set to zero
by using the e, characteristic vector, where e, contains ones in the u positions, and
zeros otherwise. Hence the entrywise product y; o e, provides the necessary decision
vector. Since the choice by this decision vector may still result in multiple uncoloured
rows, the final tie breaking chooses the first element [.];. Keeping just the last tie
breaking, the algorithm can use the Binary Merge Models as well. In the case of Binary
Merge Tables or Squares, the bottom and top co-structures are the same (u” = 1)
and can be calculated in the following way 1 = (M<")T e which is the sum of the
columns of the coloured sub Merge Matrix M. In order to restrict the calculation
just for the uncoloured vertices, the co-structure must be multiplied® by e, which

col unc

consists of ones only in the uncoloured vertex positions; that is, p;® o €. In the case

of a Binary Merge Square it can be expressed by the equation
,ugol o it — (Mcol)T eune

Furthermore, the top co-structure (the sum of the whole Integer Merge Matrix) gives
the degree of the vertex in the original graph: 1, = M7e. It should be also restricted to
uncoloured vertices so as to get a suitable choice probability vector?® for the tie breaking
cases; that is, 1, 0 €. For an Integer Merge Square it will be y, o e¥™¢ = M7Teune,

2Using elementwise product.
3Not normalised choice probability vector.
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Evolutionary algorithm — standard fitness

SUITABLE MODELS: BMT, BMS, IMT, IMS

The evolutionary algorithms of Section 4.2.7 can serve as an external uncoloured row
choice strategy for the greedy algorithm scheme defined in the UC Merge Framework in
Section 10.1.1. Then kj; counts the number of rows of the final Merge Matrix M got
in the greedy colouring process. This metaheuristics approach maintains a set of vertex
permutations IT (population) via its swap mutation and order based crossover operators
modifying the candidate solutions of II or creating new ones. The selection operator
is a 2—tournament selection, which keeps the population in a steady-state; that is,
the number of elements remains constant while the algorithm is running. In order
to measure the goodness of a candidate solution (i.e. a permutation), it performs a
simple measurement; it counts the number of colours used in the greedy colouring. The
number of colours is equal to the number of rows that remain in the final Merge Matrix
of the UC,ceqy scheme described in Section 10.1.1. Furthermore, x is a normalisation
constant, which is a lower bound of the chromatic number. In an experimental study
X may be the y, and hence the zero value of a fitness f can terminate the running
algorithm, when an optimal solution is found. Otherwise, the stop condition depends
on a certain time limit, which can be determined in various ways, e.g. by counting the
number of fitness evaluations.

UCf;fedy(A adjacency matrix )
1 1II <« random permutations(population size)
2 while termination condition
3 do
4 for m € II  // Evaluate each permutation
5 do
6 M — UCyreedy(A,m) [/ M is a final Merge Matrix
7 f(m) —ky —x /] Fitness ?
8 =1 U swap(Il, pput) U 0x2(IL, prover)
9 IT = tours (11, f)
10 7 « best(II, f)
11 return UC g eeqy(A, )

ay is a lower bound of .

Since this evolutionary algorithm uses the UC),ccq, for colour assignment and it does
not exploit any additional feature of the Merge Models, all Merge Models will be suitable
for the implementation.

Evolutionary algorithm — Stepwise adaptation of weights (SAW)

SUITABLE MODELS: EXTENSIONS OF THE IMT OR IMS
Here it applies an improper colouring scheme, so Merge Models cannot describe this
scheme. The models may be extended to handle improper colourings as well by allowing



102 Merge Algorithms

the merges for the rows where the merge condition is not satisfied. The SAW algorithm
requires the number of violated constraints at the end of a colouring. Integer Merge
Models do not lose any edges.

10.1.2 Algorithms in the CU Merge Framework

This Merge Framework supports the so-called independent set approach, described in
Section 4.2.1. Only the Erd8s heuristic apply this approach among the benchmark
algorithms. In the CU Merge Framework, a coloured row is chosen followed by an
uncoloured one for a merge. It requires the same two choice functions as the UC
Merge Framework: choose — col for the coloured row choice and choose — unc for the
uncoloured row choice. However, here they are applied in reverse order. In order to
define an algorithm in the CU Merge Framework let us introduce the following notation:
Cuchoose=col “\yhere the choose — col denotes the coloured row choice strategy, while

choose—unc’
the choose — unc denotes the uncoloured one.

Erdds

SUITABLE MODELS: IMT, IMS (BMT, BMS)

The Erdés heuristic takes the first colour and assigns it to the vertex v that has the
minimum degree. Vertex v and its neighbours are then removed from the graph. We
apply the algorithm in the remaining sub-graph in the same fashion until the sub-graph
becomes empty, then take the next colour and use the algorithm for the non-coloured
vertices and so on until each vertex is assigned a colour.

ims
CUZW(A adjacency matrix )

1 M~ A

2w« []// Empty choice of an uncoloured row index

3 repeat

4 c « argmin;{i : M = 0} // Choose the earliest available coloured row

5 u « [arg min;{ (ui"¢ o e®™¢); : M = 0 }]; //Choose by min. uncol. degree
6 M «— merge(M, {u,c})

7 until M€ is empty

8 return M

Where 1 contains the uncoloured degrees. Similar to the Section 10.1.1, ;™ can be
defined by p¢ = (M“"“)Te. Moreover, if we choose just the values for the uncoloured
vertices further processing is required:

,ugnc o et — (Munc)Teunc

In the case of Merge Tables e must be used, the characteristic vector of the un-
coloured vertices in the original graph, which contain ones only in the uncoloured po-
sitions and zeros elsewhere. Here min;{i : M = 0} always chooses the last coloured



10.2 Novel Merge Algorithms 103

row index. When ¢ = [ |, (i.e. there can be no more mergeable uncoloured row with
this coloured row), the merge is a simple marking of the chosen uncoloured row M, in
the coloured rows; that is, it places it into the coloured sub Merge Matrix.

10.2 Novel Merge Algorithms

This section describes algorithms which arise from a combination of a Merge Framework
of Chapter 8 and a Merge Strategy of Chapter 9. They were introduced by the author
in [94; 96-102]. Since the benchmark algorithms are defined in a Merge Framework in
Section 10.1, their structural analysis and comparison with these novel methods can be
performed in the same way. Structural analysis will be described in Chapter 11, while an
experimental comparison will be provided in this section. The experimental comparisons
are based on well-known benchmark graphs and generated random equipartite graphs
on 200 vertices according to Section 4.1 in the phase transition region (see Section 3.8)
where the problems become hard.

10.2.1 Algorithm in the UC Merge Framework — uncoloured

row choice strategies

This section describes two novel algorithms introduced by the author in [96]. These are
evolutionary algorithms based on the strategies defined in sections 9.12.1 and 9.12.2.
The algorithms are combined with the greedy merge scheme of Section 10.1.1. They
attempt to find a suitable permutation of the rows to achieve a minimal colouring by
the greedy merge scheme. The permutations define the appropriate row choice vector
that will be given to the greedy Merge Algorithm. An experimental comparison will be
provided with two well-known benchmark algorithms which were described in Section
4.2.

Evolutionary algorithm — the ( fitness

SUITABLE MERGE MODELS: BMT, IMT

This algorithm is based on a standard evolutionary algorithm (see Section 4.2.7) that
introduces a new fitness calculation, namely the ( fitness, based on a Merge Table
Model as described in Section 9.12.1. In order to achieve this goal a Merge Algorithm
is necessary to provide a final Merge Table; it is a simple greedy merge based on
Section 10.1.1. The evolutionary algorithm applies a swap mutation and 2—point
order based crossover to change the permutations. A 2—tournament selection is then
applied to keep the number of permutations contant. Similar to the Section 10.1.1,
the evolutionary algorithms serve as an external uncoloured row choice strategy in a
UC Merge Framework.
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UCﬁf;dy(A adjacency matrix )
1 II « random permutations(population size)

2 while termination condition

3 do

4 for m € II  // Evaluate each permutation

5 do

6 M — UCyreedy(A,m) [/ M is a final Merge Matrix

7 f(m) — (kar — X)Cmr /] Fitness 2

8 II=1I U swap(Il, pyut) U 0x2(IL, prover)

9 IT = toury(I1, f)

10 7 « best(I, f)

11 return UCyceay(A, )

ay is a lower bound of .

Evolutionary algorithm — difficulty guided mutation

SUITABLE MERGE MODELS: BMT, IMT
Here, a modification of the evolutionary algorithm of Section 10.2.1 is provided by
altering the swap mutation to the difficulty guided mutation of Section 9.12.2.

UCﬁf;’lzgs (A adjacency matrix )
1 II « random permutations(population size)

2 while termination condition

3 do

4 for m € II  // Evaluate each permutation

5 do

6 M — UCyreedy(A,m) [/ M is a final Merge Matrix

7 f(m) — (kar — X)Cmr /] Fitness 2

8  M=TI U dgs(IL, pmue; M) U 022(TL, prover)

9 IT = toury (11, f)

10 7 « best(I, f)

11 return UCyceay(A, )

ay is a lower bound of .

10.2.2 Experiments

This section details the experimental results obtained from running two Merge Algo-
rithms which apply uncoloured row choice strategies introduced by the author in [96].
Row choice vectors are encoded in permutations of the vertices. These permutations
are changed by applying following evolutionary algorithms.
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Algorithms introduced by the author in [96]

UCﬁ,ﬁecdy — ( fitness: the algorithm is based on the Binary Merge Table Model that
utilises the greedy merge scheme UC),cc.qy. For a fitness calculation of a =
permutation it uses the ( fitness f(m) = (ky — x)Cu, as described in Section

9.12.1. It applies a Binary Merge Table Model.

UCEA" - ¢ fitness and difficulty guided mutation. This variant applies OX2 with
a probability of 0.3 and then always applies a heuristic mutation operator that
is similar to the simple swap mutation; but it always chooses a vertex related to
the last merged row and forces it take earlier position in the permutation. To
accomplish this, it chooses at random a previous row identifier for a swap. The

idea is that these last merged rows are the most difficult to merge. It then applies
a Binary Merge Table Model.

Benchmark algorithms

The following algorithms served as a reference in our experimental comparison.

UC;’f;fj;t“’": the DSatur heuristic embedded into the UC Merge Framework, as de-
scribed in Section 10.1.1 using, a backtracking for exhaustive search of the per-
mutation space (see Section 4.3 and 3.6). It utilises an Integer Merge Table

Model.

EA,..,: an evolutionary algorithm that applies a stepwise adaptation of weights heuris-
tic defined in Section 4.2.8. It does not use any Merge Model.

An evolutionary algorithm with standard fitness (see Section 4.2.7) was not included in
the benchmark set of the algorithms, because experiments by Juhos et al. in [99] showed
that an evolutionary algorithm with the  fitness clearly outperforms this one, which has
a standard fitness. Furthermore, for a fair comparison we used that variant of DSatur
which is embedded into the UC Merge Framework, otherwise its results are much worse
as described in Section 11.4. FEA,,, uses improper colouring so the current Merge
Models are unsuitable for them, but their participation in the test is useful because
the F'A,,., method proved very efficient on random 3—chromatic equipartite graphs in
[52; 145].

Means of Comparisons

The performance of an algorithm can be characterised by its effectiveness and efficiency
in solving a problem instance. The first is measured using the success ratio, which is the
amount of runs where an algorithm has found the optimum divided by the total number
of runs. The second is measured by keeping track of how many constraint checks are
being performed on average for a successful run. This measure is independent of hard-
ware and programming language as it counts the number of times an algorithm requests
information about the problem instance, e.g. it checks whether an edge exists between
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two vertices in the graph. This check, or rather the number of times it is performed,
comprises the largest amount of time spent by these constraint solvers [52; 145]. A
constraint check is defined, for an algorithm, as a check of whether the colouring of two
vertices is allowed (satisfied) or not allowed (violated). The evolutionary algorithms are
all stochastic algorithms. Therefore we performed 10 independent runs with different

random seeds for each problem instance. The number of constraint checks were then

Cbt—dsatur

oreody | needs just

averaged over these 10 runs. The exhaustive search method, U
one run.

Algorithm settings

The stop condition for an algorithm is that either an optimum has been found or that
the 1500 000 limit of constraint checks has been reached. The latter means that the run
was unsuccessful, i.e. an optimal colouring was not found. For evolutionary algorithms
it means that a permutation 7 exists with f(7) = 0 fitness.  Furthermore, for the
evolutionary algorithms the population size is set to 100 for graphs having at least
150 vertices, otherwise it is set to 20. The evolutionary algorithms performs the 0x2
1-point order based crossover with a p, ..., = 0.6 probability and with a probability of
Pmut = 0.3 for the simple swap mutation. These probability values were determined by
preliminary tests on random graphs.

Benchmark graphs

There are two sets: the standard benchmark set of the DIMACS Challenge was intro-
duced in Section 4.1 and the class of random 3—chromatic equipartite graphs on 200
vertices Geyn=2000.02<p.<0.06 k=3 generated by using Culberson’s generator [44] in the
phase transition region (see Section 3.8). It consists of 9 groups of graphs with different
edge probabilities p,., where each group has 25 instances. The edge probability p. is
changed from 0.020 to 0.060 in steps of 0.005, resulting in 9 groups. Further details
about these graphs and about the phase transition can be found in sections 3.8, 4.1
and 3.7.

Results

Analysing Table 10.1, for large graphs the novel algorithms, the UC’frfffdy and the

UCEA " are much faster than the benchmark algorithms. Note that the Merge Models
reduce the number of constraint checks quite considerably (see Section 11.4) for the
miles and queens graphs, where the difficulty guided mutation outperforms the simple
swap mutation. Moreover, the latter is not always able to find a solution for two of the

queen graphs as the success ratio of this algorithm is less than one.  In Figure 10.1 we

Cbt—dsatur

oeedy 1S the best algorithm here as it always finds a solution

can clearly see that U
and it uses almost the minimum number of constraint checks to achieve it. The results
for the four algorithms in Figure 10.1(b) are significantly different and allow us to give

a clear ranking on the efficiency for the three algorithms. All evolutionary algorithms
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Table 10.1: Average number of constraint checks required for solving various problem
instances. Entries with “~" refer to where the algorithm never found the chromatic
number, while in every other case the success ratio is one. The last three entries are
used to highlight the differences between the two mutation operators for the swap and
the difficulty guided (dgs) mutations.

Graph V] |B] x UCH Bew  pA,,  UCEX, UCEAW
mulsol.i.1 197 3925 49 811595 6 265 5964 8525
mulsol.i.2 188 3885 31 485 644 21707 4110 5667
mulsol.i.3 184 3916 31 461953 51042 4874 5619
mulsol.i.4 185 3946 31 467 398 128 130 4084 5606
mulsol.i5 186 3973 31 472872 11120 4141 5536
zeroin.i.1 211 4100 49 1056 595 13165 6670 8040
zeroin.i.2 211 3541 30 641 583 65053 11870 4942
zeroin.i.3 206 3540 30 603 978 52493 22 556 11197
anna 138 493 11 105811 15579 2903 1242
david 7 406 11 40772 56 872 9957 2493
huck 74 301 11 27122 1210 788 1015
jean 80 254 10 29101 11390 746 949
miles500 128 1170 20 147922 9724 950 191011 20398
miles750 128 2113 31 204871 7922930 946 683 103 376
miles1000 128 3216 42 244886 15476000 1551235 164 312
miles1500 128 5198 73 329 361 886 155 167 487 67721
myciel6 95 755 7 27 807 5920 708 955
myciel7 191 2360 8 134 956 52997 4074 3245
gamesl120 120 638 9 60777 3227 1492 1926
queenb5 5 25 160 5% 1665 8835 4630 2000
queen6 6 36 290 7 320063 - 740550 139711
queen? 7 49 476 7 1176441 3195320 6326912! 744273
queen8 8 64 728 9 150000150 — 304127792 9558255

LA success ratio of 0.9
2 A success ratio of 0.4
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Figure 10.1: Results for 225 random equipartite graph 3—chromatic problems of size
200, where for each problem instance 10 independent runs are performed.

show a sharp dip in the success ratio in the phase transition (see Figure 10.1(a)), which

. : . , ¢.dgs,
is accompanied by a rise in the average number of constraint checks. UCEA®"*

greedy ~ Starts

out over 34 times faster than the F'A,,, benchmark algorithm. When the number of
edges increases this difference decreases to 7 times as fast. UC;’f,;jj;t“’"
the least problems with this problem set. It performs well on 3—chromatic graphs, but

seems to have

its performance degrades if the chromatic number of the graph instances increase as
shown in Section 10.2.9 later on.

10.2.3 Conclusions

We verified the efficiency of the two new colouring algorithms of the author [96] by
performing an empirical comparison on two test suites. The results from the DIMACS
test suite show a performance in speed and accuracy that is quite favourable, especially
on large real-world problem instances with 400 vertices. For larger problem instances
it is much faster than E'A,,, and UC;’ﬁ;gj;t“T. However in the second test, where we
looked at equipartite graphs during the phase transition, the success ratio shows the
typical dip we often observe for stochastic algorithms, but the new algorithms yielded
better results. For difficult equipartite graphs, i.e. those that lie near the peak of the

phase transition, it is less effective than UC;’ﬁ;gj;t“T, but it is faster than FA,,,.

10.2.4 Experiments done in the UC Merge Framework —

coloured row choice strategies

In Section 10.2.2 two novel efficient Merge Algorithms were given. These algorithms
applied the greedy merge scheme to perform colouring. In this section we will present
non-greedy colour assignments. In the UC Merge Framework it corresponds to changing
of the greedy coloured row choice scheme to another one. Two novel coloured row
choice strategies of the author [97] will be examined here and compared with the
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greedy row choice scheme.

Dot Product and Cosine strategies in the UC Merge Framework

Sections 9.7 and 9.8 described two novel strategies called the Dot Product and Cosine
strategies. These strategies support row-pair choices; that is, algorithms in the CC
Merge Framework. However they can be work as a second row choice strategies, if one
is selected by another row choice strategy. In the UC Merge Framework the first choice
is the uncoloured row choice and the second is the coloured one. Hence, they will
choose coloured rows. The uncoloured row choice will be tackled by an evolutionary
algorithm with ( fitness (see Section 10.2.1).

ygert. strat-(A adjacency matrix ,x })

dotprod
1 M—A
2 repeat
3 u «— [arg max;{ x; }]1 // Choose by the maximum of x

¢ « argmax;{(M;, M,) : M =0} //Choose a col. row by max. dot prod.
M «— merge(M, {u,c})
remove — component(x,u) //Remove the x,, component

until M“"¢ is empty

o N O o1 B

return M

UQert. strat-( A adjacency matrix ,x })

1 M—A
2 repeat
3 u « [arg max;{ x; }]1 // Choose by the maximum of x

<Mi7Mu>
1M [l Mu]]

M — merge(M, {u,c})

remove — component(x,u) //Remove the x,, component

¢« arg max; { P MY = 0} //Choose a coloured row by max. cos.

until M€ is empty

o N O o1 B

return M

An external strategy provides x as a choice probability vector, which may be unnor-
malised too. The uncoloured row is chosen by this taking the position of its maximum
value. Then either the Dot Product strategy or the Cosine strategy selects a coloured
row to merge with this uncoloured row. In the coloured row choice calculation the
|| M, || in the denominator is a constant, hence it can be removed and the following can

be applied instead: ¢ « arg min; { %3\24”0 }

10.2.5 Experiments

Firstly, the novel coloured row choice strategies are compared with the greedy coloured
row choice strategy. Here the evolutionary algorithm of Section 10.2.1 selects the
uncoloured rows. The experimental setup is the same as that outlined in Section 10.2.2.
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Then an extended experiment will be provided, where other benchmark algorithms are
also included in the comparison. In addition, it contains other graph types and other
test run results of the algorithms. The evolutionary algorithms all correspond to that
described in Section 10.2.1. They use the ( fitness function based on a Binary Merge
Table.

Algorithms introduced by the author in [97]

UCﬁgfmd: the evolutionary algorithm of Section 10.2.1, provides the external strategy

for UC, =79%. It applies a Binary Merge Table Model.

UCEA® the evolutionary algorithm of Section 10.2.1, provides the external strategy

cos

for UC,,,. It applies a Binary Merge Table Model.

Benchmark algorithms

UC’ﬁ,ﬁe{dy: the evolutionary algorithm provides the external strategy for UC¢r!: 2ot

(see Section 10.2.1). It applies a Binary Merge Table Model.

The basis of the comparison made here, is the same 3—chromatic benchmark graph
set as that given in the Section 10.2.1. The algorithm settings and the mean of the
comparison are also similar to those stated in Section 10.2.1.

Results

The two novel strategies that utilise details about the colouring of the graph made so
far are shown in Figure 10.2 together with the simple greedy strategy. Here we no-
tice a clear improvement in both the efficiency and effectiveness relative to the simple
greedy strategy. In particular, the search effort needed for denser graphs is less. Fur-
thermore, the confidence intervals for this range are small and non-overlapping. These
two approaches furnish a much more robust algorithm for solving graph k-colouring
problems.

10.2.6 Extended experiments

Juhos et al. in [100; 101] carried out other investigations of these strategies. They com-

Cbt—dsatur

pared the methods with the backtracking version of the DSatur algorithm UC 57",

in accordance with Section 10.2.2, using various random equipartite graphs. The algo-
rithms settings were the same as those in the experiments described in Section 10.2.2.

Benchmark graphs

The test set consists of k—colourable equipartite graphs with 200 vertices, where &
is set to 3,5,10 and 20 (Geg,n=200,0.02<p.<0.98,kc{3,5,10,204) using Culberson’s generator
[44]. For k = 20, ten vertices will form a colour set, hence we will not use any larger
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Figure 10.2: Results for 225 random equipartite graph 3—colouring problems of size
200, where for each problem instance 10 independent runs were performed.

number. The edge probability of the graphs is varied in a region called the phase
transition. Using this test set we can ensure a fair comparison of the algorithms, since
this set contains problems ranging from the easy to the most difficult. Moreover,
we would like to avoid any comparison on some chosen real-life problems where the
selection method can determine the outcome of the comparison of the performance
(see [41]). The set consists of groups where each group is a k—chromatic with 20
unique instances.

Means of Comparisons

On each instance we performed ten independent runs and calculated averages of the
number of colours used. These averages were further averaged over each graph in-
stances which had the same edge probability, i.e. over the edge probability groups.
Confidence intervals were also calculated, but they just confirmed our anticipated re-
sults, hence they were not plotted in the figures here for the sake of clarity.

Results

Figure 10.3 shows that the CoOs heuristic performs well, especially for larger k, while
the Dot Product is a close second. DSatur is the strongest algorithm on 3-colourable
graphs, where it always finds the optimum number of colours. However, backtracking
can help on very sparse graphs, DSatur quickly gets the last position as the chromatic
number and hence the edge density grows.

10.2.7 Conclusions

By comparing the different strategies on several hard-to-solve problems, we showed
how employing coloured-row choice strategies can improve the convergence speed of
the evolutionary algorithm. Furthermore, the two novel strategies, i.e. the Dot Product
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Figure 10.3: Results of the average number of colours used through the phase transition.

and Cosine showed more promise than the two strategies that restricted to just using
knowledge about the current vertex. In order to get a strong comparison, we compared
all the strategies on a suite of generated problem instances that encompass the phase
transition. This way we ensure a comparison on very hard-to-solve problems. DSatur
is a clear winner of the 3—colourable competition on 200 vertex graphs. However,
in sections 10.2.9 and 10.2.12, it will turn out that this is just due to backtracking,
because DSatur's performance is similar on these instances to the novel strategies.
Note that backtracking can cause a problem when the problem size scales up, but the
evolutionary algorithms may maintain their performance. The results confirmed that
on the benchmarks, the two novel strategies are more effective, i.e. they had a higher
success ratio, and fewer number of colours were used in the phase transition and its
right hand side when y > 5. Also, they were far more efficient, and more consistent in
their efficiency; that is, they had smaller deviation of the results.

10.2.8 Algorithms in the CU Merge Framework

This section provides two novel algorithms introduced by the author in [100]. These
algorithms how the novel Dot Product and Cosine strategies (see Section 9.7 and 9.8)
in the CU Merge Framework can be applied. In sections 10.2.2 and 10.2.5, the Binary
Merge Table implementations and their performance were analysed. In this section we
present an application of the usage of Binary Merge Square Models. However the other
Merge Models can be also utilised in accordance with Chapter ?7.
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Similar to the Erd8s heuristic (see Section 10.1.2) which is also a CU type algorithm,
the colour choice is greedy and the Dot Prod and Cosine row-pair choice strategies
are applied as a second row choice strategies. Here they choose uncoloured row for
a greedily selected coloured row, i.e. always on the last coloured row. This scheme
is the so-called independent set approach in accordance with it traditional name (see
Section 4.2.1), where the colour selection is greedy. However not just a greedy coloured
row choice can be applied. Hence a clearer characterisation is given by the CU Merge
Framework, where not only a greedy coloured row/colour class choice can be applied.
An experimental comparison is provided below with well-known benchmark algorithms,
which are described in Section 4.2.

CUY“W (A adjacency matrix )

dotprod
1 M—A
2w+« []// Empty choice of an uncoloured row index
3 repeat
4 ¢+ argmin;{i : M = 0} // Choose the first available coloured row
5 if c=1]
6 thenr =1
7 else r=M.,
8 u — [argmax; { (r, M;) : M =0 }], //Choose by max. dot prod.
9 M «— merge(M, {u,c})

10 until M""¢ is empty
11 return M

CUSEY (A adjacency matrix )

1 M~ A
2 w<«[]// Empty choice of an uncoloured row index
3 repeat
4 c + argmin;{i : M = 0} // Choose the earliest available coloured row
5 if c=1]
6 thenr =e
7 else r =M,
8 U — [argmaxi{ ”iH”M)” Mt =0 }]1 //Choose col. row by max. cosine
9 M «— merge(M,{u,c})
10 until M“"¢ is empty
11 return M
It always chooses the last coloured row index c¢. When it is empty, i.e. ¢ =[], then

instead of the row r = M. the e vector (the vector with all one entries) are selected.
Hence the maximisation process in the uncoloured row search can be performed. Hence
the Dot Product strategy takes the maximum row sum and provides the 'maximal degree
vertex'. Similar to the ErdGs algorithm (see Section 10.1.2), when ¢ = [ ], the merge
is a simple record of the chosen uncoloured row M, in the coloured row; that is, it
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puts it into the coloured sub Merge Matrix. When u # [ ], the coloured row choice is
performed by either the maximal Dot Product strategy or Cosine strategy (see sections
9.7 and 9.8). The r is a constant in the cosine maximisation, so it can be left out from

the expression; hence only the %%T‘) is considered, i.e. the length of the orthogonal

projection of r onto M;.

10.2.9 Experiments

Here we describe the experimental results of two Merge Algorithms which apply coloured
row choice strategies introduced by the author in [100].

Algorithms introduced by the author in [100]

These algorithms were presented in Section 10.2.8.

The C’Uggtfiyd algorithm takes the last available coloured row and merges as many
uncoloured rows with it as possible, using a maximum Dot Product strategy. It

applies the Binary Merge Square (see Section 9.7).

The CUIe°% algorithm uses the same principle as C’Ug;e;iyd, but the coloured row

choice is based on the Cosine strategy (see Section 9.8).

Benchmark algorithms

Benchmark algorithms were implemented in a suitable Merge Framework, so as to
have a common basis for a comparison. Hence their running times differ slightly. The
experiments focuses on their effectiveness; that is, how many colours they used in their
colouring.

C’Ug;ediiy: It is based on the Integer Merge Square Model in the CU Merge Framework.
It takes the last available coloured row and merges as many uncoloured rows with
it as possible, using a minimum uncoloured degree strategy detailed in Section
10.1.2.

UCé’;";fjf: A non-backtrack version of the DSatur algorithm, it performs only one
colour assignment applying the saturation degree heuristic based on the Integer

Merge Table Model and UC Merge Framework (see Section 10.1.1).

Benchmark graphs

The benchmark graph set is the same k—chromatic (k € {3,5,10,20}) equipartite
graph set in the phase transition as that in the experiments described in Section 10.2.6.
But here 20 unique instances were generated per probability group, except for k = 30,
where 30 instances were examined to get a better confidence limit here because the
two algorithms had a similar performance.
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Means of Comparisons

The compared algorithms perform only one colour assignment without any backtracking
or other space exploration. Hence, the experiments just compared their efficiency
considering single colour assignments. Therefore only one run was necessary. On each
instance we performed one run. The number of colours obtained in the runs were
averaged over the edge probability groups, i.e. graphs having the same same edge
probabilities. The confidence intervals were also calculated, but they just confirmed
our anticipated results, hence they were not plotted here.

Results

Figure 10.4 shows the results for each algorithms. The Cosine strategy performed
clearly better than the others except for the 3—colouring where DSatur performed
equally well. The Dot Product strategy was ranked second, while DSatur performs well
on sparse graphs having small chromatic number, the Erdés heuristic performs well on
graphs that require more colours, especially on dense graphs, i.e. that have a high
average number of edges (high edge density). What is interesting is the location of the
region of the phase transitions. Figure 10.4 shows that it depends not just on the edge
density of the graphs but also on the applied algorithm, especially the graph density
where DSatur exhibits its worst performance when it moves away from the others with
increasing k. DSatur and Erd8s heuristics apply just second order information, as
opposed to the other two algorithms, where first order information is used (see first
and second co-structures in Section 7.2). The Erd6s heuristic uses the secondary order
structures in the opposite way to that of DSatur and our results show how this affects
the performance, since their effectiveness are opposite as well.

10.2.10 Conclusions

In the UC experiments in Section 10.2.5, where Dot Product and Cosine strategies were
applied for coloured row choices, here these strategies performs well too as uncoloured
row choice strategies. The connection between the performance and the structure of
the DSatur and the Erd6s heuristic were characterised well in the Merge Frameworks.
They use the same merge co-structure but in opposite way, hence their performance
goes in the opposite direction when the chromatic number of the graphs in question
change.

10.2.11 Algorithms in the CC Merge Framework

In the CC Merge Framework, coloured and uncoloured rows are not distinguished. A
strategy always takes every row into account. Only one, a row-pair choice strategy must
be defined to perform a merge sequence until a final Merge Matrix is obtained. In order
to represent an algorithm in the CC Merge Framework let us introduce the following
notation: C'C' — CHOOSE, where CHOOSE stands for the only row-pair choice strategy.
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Figure 10.4: Results of the average number of colours used through the phase transition.

The general CC Merge Framework is defined as follows with a general CHOOSE row-pair

choice strategy:

CC - CHOOSE(A adjacency matrix )

1 M~ A

2 repeat

3 {i,7} « argchoosey; j3{ M;, M; : i # j, M = 0} //Choose two row indices?
4 M «— merge(M,{i,j}) //Merge i and j rows/columns

5 until M is not mergeable

6 return M

aM;; = Mj; = 0 is the merge condition, i.e. there is no edge.

Four different novel algorithms will be defined which are introduced by the author in
[94; 97; 101; 102] and apply the four strategies of Section 9.7, 9.8, 9.6 and 9.9. Each
of them is based on the Binary Merge Square Model. However the other Merge Models

can be also utilised in accordance with Chapter ?7. The strategies are described below.

Here just the {4, j} = argchoosey; j1{M;, M; : i # j} general choice strategy is defined

as a replaceable part of the general CC Merge Framework.



10.2 Novel Merge Algorithms 117

Dot Product (CC — dotprod)

{i,5} = argma§<{<Mu M;)(1— M) =i # j}

7/7]

Two rows are chosen for a merge if they have maximal dot products among the possible
row pairs. The M;; = 0 merge condition can be given by using the (1 — M;;) term in
the case of Binary Merge Squares.

Cosine (CC — cos)

. (M, M;) .,
{i,7} = argmax{i i #£ g, My =0
tdy UM ’

Two rows are chosen for a merge if they have a maximal cosine among the possible
row pairs.

Approximated spectral norm (CC — &)

l
{i,j} = argr{lzqijr}} Z«M/ij)ra (Myij)r)? vi# j, Mij =0

r=1

Two rows are chosen for a merge if they have a minimal approximated spectral norm
among the possible row pairs. M/;; is the Merge Square after merging i and j rows,
where (M/;;), is the 7-th row of the merged matrix and [ is the number of rows/columns
in the merged matrix. This definition follows from Eq. 9.27, where ((M;;),, (M;)r) =
((M/ij)r,€) is the r-th row sum, due to the Binary Merge Matrix representation, and
the constant term [ is left out of the denominator. This strategy can be defined without
M ;; trial merges by an efficient direct calculation and an update technique (see sections
9.6 and 9.6 for details).

Zykov-tree+-Lovasz-theta (CC—Zykouvy)

mtin{t:Zt(),zii:t—l,ze:—l Ve € E}

Let the approximated solution of this semi-definite optimisation problem be Z,, in
accordance with Eq. 9.43. Two solvers were applied for this optimisation. In order
to get a faster execution the combination of a boundary point method [134] and an
interior point method [142] is applied. Later it was applied for very dense graphs
(edge density>0.89) #, when the candidate solution approached, the final Merge Ma-
trix. Otherwise the calculation was done by a boundary point method. The row-pair
choice strategy for a merge was defined by the and Z = (Z,,;+1)o(1—1I) (see Section
9.9) as follows:

{1.5} = argr{r;%;{ZAij(l — M) i # j}
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In order to further improve the speed and the decision accuracy, an (i, j) edge addition
was introduced for each step using the following

{i,7} = argr&;ijg {Z—j(l — M) : ZAij < 0}

Further details can be found in Section 9.9. CC — Zykm;g will stand for the variant
when not only one edge, but all edges are added which satisfy the following condition®

{Zz<1 — Mzg) : Zij < 0}

10.2.12 Experiments

The experimental setup was the same as that outlined in Section 10.2.9.

Results

Figure 10.5 shows the results of every combination for different values of x. Hence the
spectral norm approximation performs the best except for very sparse graphs, when the
Dot Product strategy and DSatur with local decisions perform better. The reason for
the worse performance of C'C' — & on sparse graphs is the small number of changes
in the norm in the selection of candidate vertices pairs for a merge. Because of the
approximation used, several different values become the same, hence too many can-
didates are selected for tie breaking. The combination of the CC framework with the
Cosine does not always perform well, especially for smaller chromatic numbers; how-
ever, it can outperform baseline methods for dense graphs. As the chromatic number
and the edge density increase Cosine strategy increases its performance and it can beat
every other. Dot Product’s performance lies between that of Cos and the CC — &
algorithms; its strength lies with smaller chromatic numbers and sparse graphs.  Fig-
ure 10.6 gives the best and the benchmark results of Figure 10.5. Furthermore, Figure
10.6 shows the (CC — Zykovg) and (CC — Zykovy) results as well. Both the novel
(CC — Zykovy) strategy and the (CC — Zyk:ovg) strategy perform very well especially
for denser graphs. The phase transition is shifted for these algorithms, where other
algorithms can outperform their impressive results. Where more edges are added in
the (CC — Zyk:ovg) strategy it has slight influence on the results of the 3—chromatic
experiments, but its performance worsen in the higher chromatic region.

10.2.13 Conclusions

All the novel strategies presented here perform well in the CC Merge Frameworks,
and most cases they outperform the benchmark algorithms. Though there is no clear
winner, the (CC — Zykouvy) algorithms achieve quite impressive results, but the other
algorithms can outperform their results in their phase transition region. Furthermore,

5Not only that edge, which corresponds to the minimum value.
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Figure 10.5: Results of the average number of colours used through the phase transition.
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the (CC' — &) has also good results especially for graphs which have a higher chromatic
number. Nevertheless, (CC' — Zykovg) colours efficiently these graphs and they use
much more computational effort than the others. They have to perform several semi-
definite optimisations to achieve these good results. These optimisations make them
slower than the others, which use only a couple of elementary operations for their
strategies, hence they are suitable for solving larger graph instances.

10.3 Summary

In this chapter we demonstrated the efficiency of the strategies described in Chapter 9
when embedded into one of the Merge Frameworks. Our experiments showed that they
perform well when applied as uncoloured or coloured row choice strategies, or row-pair
choice strategies. Benchmark algorithms were defined in a suitable Merge Framework,
and these definitions allowed us to make a structural comparison. In addition, our
experimental results and the structural analysis revealed a correlation in the case of
DSatur and Erdés heuristics.

In the next section we will look at the Merge Models and Algorithms in more detail.



Chapter 11
Analysis

11.1 Introduction

In chapters 7, 8 and 9 a new general colouring approach was constructed based on
a special graph homomorphism. Chapter 10 showed the practical benefits of these
approaches by an experimental investigation. This chapter shows the result of a theo-
retical analysis of the approaches and discusses software and hardware implementation
aspects, as described by the author in [94; 96-102].

11.2 Which Merge Model is better?

This section briefly discusses the benefits and drawbacks of the Merge Models intro-
duced in Chapter 7.

Integer or Binary Merge Matrices Integer Merge Matrices supports backtracking
because they retain all the edges of the original graph, and hence a merge is reversible.
Instead of row addition, a row subtraction can provide an unmerge operation, supporting
backtracking. In Chapter 10 we presented algorithms which exploit the co-structure
properties of these models, such as the Erdés and DSatur heuristic use them for tie
breaking. Furthermore, they support the extension of the Merge Models for improper
colouring schemes, as outlined in Section 10.1.1. However, retaining all the edges
can support some strategies, but there may be drawbacks as well. The edge retaining
introduces redundancies hence the final Integer Merge Matrix is not predictable. The
final Merge Matrix is defined exactly for the Binary Merge Squares it is the adjacency
matrix of the K}, complete graph. This is useful in algorithm design (see Section 9.10).
Since a Merge Square is an adjacency matrix, strategies can always be repeated in
these merged matrices, but several strategies can work with the other merge matrices
as well. Unfortunately, it does not support backtracking, as it loses some of the original
edges. An implementation of a Binary Merge Matrix can be effective because the binary
operations and structures are supported by the computer hardware and software.

Merge Squares or Merge Tables The implementation of the Merge Tables can be
done more efficiently, since the merges affects only the rows, while in the case of Merge
Square the two dimensional changing, i.e. the number of rows and columns, requires

121
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more computation and cause implementation problems. Nevertheless, the Merge Square
structure better supports an analysis, hence their structure and the dimensions are
similar to the original problem and are described by similar graphs. But a Merge Table
always makes available the original graph structures, as their columns represents the
vertices of the original graphs.

11.3 Enhanced algorithms

In sections 9.4.1 and 9.4.2 two novel algorithms of the author were introduced based
on two current non-merge based algorithms, namely the Welsh-Powell heuristic and the
Hajnal heuristic (see Section 4.2.3 and 4.2.4). The extended version of these in the UC
Merge Framework brings an improvement in the performance of the original algorithms
(see Juhos et al. [97]). Sections 9.4.1 and 9.4.2 detailed the improvements in a
theoretical point of view and here several experimental results demonstrate our findings
in a standard benchmark set of graphs (see Section 4.1). Table 11.1 clearly shows
the difference in performance between the original version and the extended version of
the algorithms. The bias was set to v = 0.9 in each experiment performed (see Eq.
9.4).  The novel extended version of the algorithms clearly outperforms the original

Graph V] Bl x UCyla, UCHi" |UCH s, UChe,
queenl0 10 100 2940 7 17 15 16 14
queenll 11 121 3960 7 17 15 20 15
queenl?2 12 144 5192 7 19 17 22 17
queenl3 13 169 6656 13 23 18 23 18
DSJC125.1 125 1472 7 7 6 9 7
DSJC125.5 125 7782 7 23 22 26 22
DSJC125.9 125 13922 7 53 52 62 54
DSJC250.1 250 6436 7 11 10 14 11
DSJC250.9 250 31366 7 93 88 97 89
DSJC500.1 500 24916 7 18 16 22 16
DSJC500.5 500 125249 7 71 66 76 67
DSJC500.9 500 125249 7 169 165 185 166
flat300 20 0O 300 21375 20 44 42 46 43
flat300 26 0 300 21633 26 47 44 50 43
flat300 28 0 300 21695 28 44 43 48 44
latin_square_10 900 307350 7 213 148 148 145
le4d50 5c¢ 450 9803 5 12 8 19 10
le450 5d 450 9757 5 14 9 19 11
le450 15a 450 8168 15 18 17 26 18
le450 15c 450 16680 15 26 25 36 25
le4d50 25a 450 8260 25 26 25 34 25

Table 11.1: Results of extended algorithms. The number of colours used by the Welsh-
Powell (WP) and the Hajnal (H) algorithms and their extensions. The extended algo-
rithms are denoted by 'ext-" prefixes.
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two algorithms. These experiments are based on the graphs of the DIMACS benchmark
repository (see Section 4.1). The experiments were performed on the same graph set as
those applied in the experiments described in Section 10.2.2. The extended algorithms
produced much the same results, outperforming the original ones. Here some other
difficult-to-solve instances are presented in order to demonstrate the efficiency of the
novel algorithms.

11.4 Reduced computational cost

In [52; 145], Eiben and van Hemert et al. pointed out that the number of constraint
checks is the key factor in the computational cost in colouring algorithms. However,
there can be other factors which affect the running time; constraint checks characterise
well the computational efforts several times. Merge Models provide considerable de-
crease in running time for those algorithms which performance strongly correlated with
the constraint checking (see Juhos et al. [99]). This section introduce the results of the
author. Our benchmark algorithms in Section 4.2 are typical examples for such graph
colouring solvers. When solving a graph colouring problem as a sequential colouring
while using the original graph representation to check for violations, approximately n?
(= |V'|?) constraint checks are required to get to a valid colouring. In contrast, a Merge
Model (MM) supported scheme uses at most n - k number of checks ( |V| > k >2 ).
This is possible because each vertex will be compared with at most the existing colour
classes, of which there are no more than k or y if a solution exists. Hence, their
quotient determines the improvement of a Merge Model supported colouring, which
is proportional to the n/k ratio. We verify this claim theoretically and empirically as
well. In traditional schemes, adjacency matrix representation plays the key role in the
GCP 1. We have two choices when colouring a vertex for constraint checking; either
along the already coloured vertices (\A.,), or along all the neighbours of the vertex
considered (A,ign). In the following, we show how to considerably reduce the number
of constraint checks by applying our proposed Merge Models (A,.,). Let 7 is the

. N
sequence of the vertices occur in the colouring process. Define ¢ (x) as the coloured-
degree of the vertex = being currently coloured, which refers backwards to the already

N
coloured vertices and ( (z) of the uncoloured-degree refers forwards to the uncoloured
vertex. Furthermore, denote k,(,) the number of colours used before x would have
been coloured according to m. Notation ) is always )" in this section.

Corollary 11.1 ([99]) Given a random graph G,,,, with fixed p edge probability and
given a colouring algorithm A, then the following performance is expected on average
based on counting constraint checks #(.):

1. checking the coloured vertices: #(Aco)) = O(n?)
2. checking the neighbours: #(Aneigh) = O(n?)

3. checking the merged-vertices/colour classes: #(Amm) < O (1:;71)
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Proof
1. Checking the already coloured vertices requires as many neighbour checks as the
number of the edges, because we have to check the ¢ number of coloured vertices
if the t + 1. vertex comes to colour, that is,

B Ae) =i = %n(n _1) = 0m?) (11.1)

2. When the neighbours of the vertex currently being coloured are checked for con-
straint violation, the number of performed constraint checks are equal to the sum
of the degrees, i.e., twice the number of edges

#(Aneigh) = Y _di = 2|E| & pn(n — 1) = O(n?) (11.2)

3. Using a Merge Model representation, Merge Operations provide merged-vertices,
which represent colour classes, thus checking along them, requires at most as
many checks as the number of colours used at that moment. The worst case is
when the colouring is tight, meaning vertex x is in position 7(x) coloured by at
least the colour ky(y).

#(Amm) D ki = n ocnry o< g (11.3)
= O(n?/logn)
m rp n(n=1) _ _pn(n—1)
n210gn x 2_Zlog(n—l) - logl“)(n—l)Qp/v" (11.4)

where 7 is constant® and y &~ 52— according® to [13]. For further details see
ogn

Section 3.7 and 4.2.2. O

As the theorem above tells us the asymptotic behaviour of the algorithms, we can
check the worst case behaviour of the A using these different approaches. It is clear
that the application of the Ay for dense graphs are better against the #(Apejgn), and
conversely, Ay has worse properties in sparse graphs compared to #(Apeign). The
following theorem states that using our Merge Model approach, #(Am,m) will always
outperform the other techniques mentioned previously.

Corollary 11.2 ([99]) Let G be an arbitrary graph, then the following relations hold

1. #(Amm) S #(Acol>
2. #(Amm) < #(Aneigh)

Proof
1. The number of colours is less than the number of coloured vertices, i.e.

#(Amm(2)) < k) < (), and #(Apm) < Dk < Do

2 This is true in the context of the naturally defined greedy algorithms r ~ 2 [44; 71; 117], but
other algorithms have been designed to perform better.
3Note that the logarithmic base here is ﬁ.
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2. If q () refers to distinctly coloured vertices then #(Amm(z)) = d (x). Oth-
erwise, if d () refers to the same coloured vertices as well as distinct ones

)
then #(Anm(z)) = d (z), since merged-vertices encompass the same coloured
vertices. Consequently,

L(Amm(z)) < d(z) due to d(z) = d () + d (z), and
<

HAmm) < X4 (1) < S d(a), 0

One consequence of Corollary 11.2 tells us more. Namely, an MM based algorithm could
perform better than that which could just check the coloured neighbours. However, to
implement such an algorithm, which just checks the coloured neighbours, we have to
use additional computation efforts. Thus an MM algorithm performs even better.

In Figure 11.1(a), we show how much the speed of DSatur and the evolutionary algo-
rithm (see Section 10.1.1) increases when measured as the ratio of constraint checks
used to solve the problem when without using Merge Models and when using Merge
Models on a standard test benchmark set of graphs (see DIMACS problems in Section
4.1). For DSatur, the lowest speed increase is 4.56, while the largest speed-up is 36.1.
For the evolutionary algorithm, the lowest speed increase is 1.81, and the largest speed-
up is 41.4. Depicted in Figure 11.1(b) is the correlation of the speed-up ratios of the
two algorithms with the ratio n/y, i.e., the number of vertices divided by the chromatic
number. DSatur has a constant of proportionality of 0.948 and an asymptotic error
of 10.0%, while the evolutionary algorithm has a constant of proportionality of 0.695,
and an asymptotic error of 9.8%. We predicted this speed-up in Section 11.4, and our
theory agrees well with the observed correlation, especially for DSatur.
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Figure 11.1: Speed increase of DSatur and the evolutionary algorithm (EA) for the
DIMACS problems after embedding them into a Merge Model (MM). "Pure’ corresponds
with the algorithms without using a Merge Model.
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11.5 Implementations

In a k-colouring, we need just |V| — k contraction steps to get a solution instead of
the n required by the traditional colouring methods, e.g. in a colour assignment. A
lot of hardware nowadays provides CPUs with vector operations, which opens up the
possibility of performing the atomic Merge Operations in one CPU operation, thereby
raising the overall efficiency. Since nowadays computer processing units (CPUs) support
parallel operations, e.g. vector addition operations (VADD) or vector OR. operations
(VOR). Hence, a Merge Operation may be only one instruction instead of n = |V or
d(x;) instructions. In this case at most n — k number of VADD or VOR operations
are needed for a valid colouring. The order of real-life graphs can vary from a hundred
vertices to thousands of vertices.  Using special hardware instructions available on
modern computers, Merge Operations can be reduced to one computer instruction.
For example, a Merge Operation can be performed as one VADD or VOR operation on
a vector machine, such as the Xbox game station [32]. The IBM PowerPC CPU used
in an Xbox [32] has 49152 (3 - 128 - 128) bits for this operation. Thus we can use
one binary Merge Operation for graphs having at most 49 152 or one integer Merge
Operation for graphs having at most 4000 number of vertices. The latter is due to
the fact, a cell value of an Integer Merge Matrix is always being less than n. Hence
in the Integer case the n is calculated by n [log,n] = 49 152, because [log, n] bits
are required for each of the n integer-valued cell of a row. Note that in the case of
Merge Squares the dimension of the rows decreases, hence after a certain number of
merges the further Merge Operations will require only one VADD or VOR operation.
Nevertheless, having a smaller VADD of VOR size, say [, the necessary VADD or VOR
operations are [n/l] (n — k), which can still significantly reduce the computational
efforts for a merge. In particular, if [ > n, then we get back the n — k& as mentioned
previously. Examples that show how such hardware can speed up computation can
be found in surveys in [34; 141]. In recent years, we have witnessed a surge in
low-cost hardware that is capable of efficiently performing specific operations. An
important reason behind this surge is the extensive use of Graphics Processing Units
(GPU) in computer games and recently, in computer consoles. This in turn has led
to general-purpose computation on GPUs, which can provide a number of advantages
over traditional high-performance computing facilities. Specifically, in the context of
General-Purpose computation on Graphics Processing Units (GPGPU), the advantage is
that accelerated graphics cards are now cheap, and most desktop and laptop machines
contain one with a large number of GPUs. Their energy consumption is considerably
lower than that of Central Processing Units (CPUs). By making use of them in a
computational sense, we bring parallel computing hardware as close to the end-user as
we wish. We can compute on their desktop or provide remote access to GPUs installed
elsewhere. Also, recent advancements in speed seem to be in favour of the GPU, not
the CPU [38]. Besides hardware implementations, parallelism can be achieved via a
software implementation as well [3]. Parallel computing on one machine or distributed
computing on several machines may be also options for a software implementation.
In analogy to the hardware implementations, a Merge Operation can be distributed
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using an appropriate software package which can support either parallel or distributed
computation. However, software packages may have computational overheads but for
extremely large graphs their usage can be worthwhile.

11.6 Summary

In this chapter we analysed the application of the Merge Models from various aspects.
We demonstrated improvements in the performance of an algorithm after embedding it
into a suitable Merge Model. Without any change in the algorithm steps, the represen-
tation of the problem in a Merge Model provides a decrease in the computational effort.
However, the embedding permits a natural enhancement of the algorithm as well. It
may bring significant improvements in the performance of an existing algorithm. After,
practical implementations issues were discused, which can further improve the efficiency
of a concrete implementation of a Merge Model on a particular hardware or software
platform.






Appendix

11.7 Symmetry in the colour assignment

Uy (o0 Uy
Us U3 Us U3 Us U3

Vg U2 Vg (%] (] (%)

U1 U1 U1

Figure 11.2: Different optimal colourings for the graph shown in Figure 3.1
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Table 11.2: The all optimal colourings for the graph shown in Figure 3.1. Including
equivalent colourings, which cause symmetric solutions. A serial number shows the
appropriate colouring. Numbers below the header v;—s are the colour assignments e.g.
No.1: c¢(v1) =1, c(va) = 2, c(vs) = 3, c(vg) = 1, ¢(vs) = 3, c(vg) = 2 where ¢(v)
is the colour identifier assigned to the vertex v. Some solutions generate the same
solutions. E.g. No.1 colouring is equivalent with No.4.
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11.8 Characteristic and chromatic polynomials
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Where p(3) = 18 (see Table 11.2).

Figure 11.3: The plots of different polynomials of Figure 3.1



Summary

This thesis summarises the results obtained by the author over the past few years. The
author developed a general framework for graph colouring methods, where the tradi-
tional colouring scheme is defined via special graph homomorphisms motivated by the
Zykov theorem [161; 162]. These special homomorphisms proved useful in the design
of algorithms by the author ([94; 96-102]). This summary is structured in a similar
way to the thesis itself. The results can be separated into different groups according to
the parts of the graph colouring framework. The author defined the problem via cer-
tain graph homomorphisms using quotient and power graphs. The author called these
Quotient and Power methods. Then he described these graphs and homomorphisms by
matrix representations with suitable operations, resulting in his Merge Models with his
nomenclature. Merge Models provide a novel description of the colouring problem. The
operations (i.e. the Merge Operations) subsequently change the state of the model
and direct it to a possible solution of the original graph colouring problem. The author
developed strategies in the model called Merge Strategies which define possible direc-
tions to a solution. Furthermore, the author constructed general frameworks (Merge
Frameworks) in which strategies can be embedded. These frameworks in conjunction
with the strategies form colouring algorithms (Merge Algorithms). Such algorithms
generate a sequence of model operations according to the strategy. The end of the
sequence is a candidate solution for the original problem.

Quotient and Power Methods

The author defined graph colouring processes as a series of homomorphisms using
quotient or power graphs and multigraphs, where the vertices which get the same
colour will be "glued” or 'grouped’ together to form new vertex sets (see Juhos et
al. [96; 100]). The author called the new colouring methods which are based on
these principles Quotient and Power methods. The goal of a Quotient and Power
method is to find a homomorphism which maps the original graph into a complete
graph or homomorphic with a complete graph. The homomorphism obtained defines a
colouring of the original graph. In order to support the design of sequential colouring
algorithms such a homomorphism is created as a composition of series of intermediate
homomorphisms. These homomorphisms produce helpful intermediate graph structures
which can be exploited for an efficient colouring and also help provide a deeper insight
into the colouring procedure. Moreover, they allow us to design efficient new or redesign
existing graph colouring algorithms in a framework supported by quotient or power
graphs (see Juhos et al. [96-102]).
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Merge Models

The relation between the original graph * and a quotient or power graph/multigraph
is defined by a graph homomorphism. The author introduced four kinds of matrix
operations, called Merge Operations (or 'merges’ for short) to map the adjacency matrix
of the original graph to its four different homomorphic images: called Binary/Integer
Merge Square/Table Matrices or put briefly Merge Matrices), respectively, and then
subsequent Merge Operations will produce vertex colouring [96; 100]. The author
showed that Merge Operations produce appropriate homomorphic images of the original
problem, modelling the original graph colouring problem. Each row of a Merge Matrix
corresponds with an independent set in the original graph. Note that colour classes
are independent sets, and each vertex constitutes a one-element independent set in the
original graph. All the models have their own strong points, and they can assist each
other indifferent ways. The author obtained significant improvements both theoretically
and via experiments when an algorithm applied one of these models [99]. Exploiting
their good performance, the author designed powerful graph colouring algorithms in
[94; 97-99; 101; 102).

Merge Frameworks

Merge Models provide a model for the graph colouring problem via matrix representa-
tions and operations. The author introduced three general frameworks for graph colour-
ing algorithms supported by Merge Models in [100; 101]. These are generalisations of
the traditional sequential colouring schemes. Merge Models replace the colour assign-
ment operation with a Merge Operation, and this eliminates the difference between the
colour selection and the vertex selection strategies. Merge Models define these different
selection strategies in a common way as a common row selection strategy. Therefore,
a general row selection strategy can operate as a coloured or uncoloured row selection
when we would like to model the traditional selection strategies. Here the colours only
indicate whether a row has already been taken into account in the merge process. De-
pending on the order of the selection of the different state (coloured/uncoloured) rows
two general framework can be defined: either we choose an uncoloured row first and
then choose a suitable coloured one (UC Merge Framework) or, conversely, we can
choose a coloured first and then find an appropriate uncoloured row for the merge (CU
Merge Framework) [100]. The UC and the CU frameworks provide a generalisation of
the sequential colouring schemes. In fact there is no need to distinguish between the
coloured or uncoloured states of the rows; just take the set of rows and apply a common
choose strategy suitable for all of them. After, select an arbitrary row-pair from the
Merge Matrix by a strategy and merge them. This approach is formulated in the CC
Merge Framework [96]. The rows of the Merge Matrix correspond to colour classes,
i.e. independent sets. An algorithm in a CC Merge Framework selects two colour
classes/independent sets and creates the union of them in the traditional sense. These

*Or an equivalent reformulation of the original graph.
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general frameworks with the new Merge Models support a common structural analysis
of the existing and novel graph colouring methods, as shown in [97; 99; 101; 102]. All
of these frameworks are defined in a unified manner using the Merge Model scheme.
An algorithm in one of these frameworks applies a subsequent selection of rows of the
merge matrices and merges them to achieve a colouring. None of these frameworks has
a concrete strategy for the choice of rows for merging. A framework with a concrete
choice strategy, i.e. Merge Strategy, forms a particular algorithm.

Merge Strategies

In order to get a colouring algorithm, the algorithm steps must be defined; that is, a
sequence of the Merge Operations. A Merge Operation takes two rows/columns of a
Merge Matrix and produces a new Merge Matrix if the merge condition allows it. By
repeating Merge Operations we will end up with a final Merge Matrix where a Merge
Operation is no longer possible. The sequence of the Merge Operations is crucial. It
determines the quality of the solution, i.e. the number of colours used in the colouring of
the original graph. The author described various Merge Strategies in order to generate
efficient merge sequences, as described in [94; 96-102]. These strategies proved useful
in the theoretical and experimental parts of our analysis. The novel description of the
colouring process provides new aspects which can be exploited in the design and analysis
of Merge Strategies, as described in the following. This strategies assume Binary Merge
Models, but their integer extensions are also available. The importance of the Integer
Models are discussed separately. They support the algorithm design, e.g. backtracking
or tie breaking, as shown in [99].

The longest merge sequence. Since the Merge Matrix rows correspond to colour
classes, the main aim is to reduce the number of rows by consecutive merges. The
longest merge sequence produces the fewest rows. The author in [97] introduced two
novel strategies to generate the longest merge sequence. The Dot Product Strategy
focuses on the evolution of the number of non-zero elements during successive merges
and attempts to keep them as low as possible. Though the non-zero elements in a
Merge Matrix frustrate the merges, the number of zeros assist them. Hence the Cosine
Strategy takes the number of non-zero elements into account, but also considers the
number of zeros present.

Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matrices.
It is reasonable because the rows of the adjacency matrix which correspond to the same
coloured vertices in an optimal solution are almost parallel. Their parallel behaviour
becomes clearer with each successive merge. In the case of Merge Square Model, there
is a certain modification of the Merge Matrices based on a semi-definite optimisation
by Karger et al. [103], which further supports the Cosine strategy. Exploiting this fact,
the author in [94; 102] defined the Zykov-tree and Lovasz-theta strategy.

Colour similarities In fact a Zykov-tree and Lovasz-theta strategy is based on the
estimation of the colour similarities of the vertices of the quotient graphs. The ad-
jacency matrix describes an exact colour dissimilarity relation, where the vertices in
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(edge-)relation cannot get the same colour. The opposite approach is the colour sim-
ilarity relation. A particular colouring can be defined via a colour similarity relation
between the vertices, where only the same coloured vertices are included in the rela-
tion. This relation can be represented by a {0, 1}-matrix, namely a colouring matrix.
It describes whether two vertices are coloured with the same or different colours. Al-
though the optimal solutions can be represented in this form, they are unknown because
they are the solutions of the problem. Despite this, their average can be approximated
by a solution of a semi-definite program (see Karger et al. [103]), which provides the
Lovasz-theta. Hence, a non-exact, an approximated colour similarity relation becomes
available between the vertices. This can be described by a real-valued matrix, where
the largest and the smallest values contain valuable information. Using this information
and Zykov's work in [161; 162], the author created the Zykov-tree and Lovasz-theta
strategy in [94; 102], where quotient graph vertices are connected or merged according
to their approximated similarities. The approximation becomes more exact with each
successive merge supporting more confident decisions of this strategy.

Norm minimisation in the resulting state. The Dot Product Strategy selects two
rows which produce the maximum dot product, then merges them. This introduces a
minimisation in the entrywise norms in the resulting Merge Matrix. A final Merge Ma-
trix which corresponds to an optimal solution has the smallest entrywise norm among
the possible merge matrices (homomorphic images). Hence, the entrywise norm min-
imisation approach is reasonable. In addition such a Merge Matrix has minimal induced
norms as well. This observation led us to apply the steepest descent norm minimi-
sation strategy, in particular the steepest descent Spectral Norm Strategy, which was
introduced by the author in [101] and was found to be an efficient strategy.

The Spectral Norm Strategy must first make several trial merges. With the resulting
trial merge matrices, this strategy makes spectral norm calculations to create a selection
of a row-pair for merging. Calculating the spectral norm is computationally expensive,
but Merikoski and Kumar once introduced an efficient spectral norm approximation in
[123]. Based on their results, the author adapted his Spectral Norm Strategy to an
approximated spectral norm strategy [101]. Owing to this, this strategy can exploit an
update mechanism where an investigation of the resulting Merge Matrices is no longer
needed as it is just based on the current Merge Matrix. In addition this reformulation
revealed a connection with the Dot Product strategy.

Matrix properties — Merge Paths The author introduced the notion of Merge Paths
[101]. Certain graph properties like matrix norms may be evaluated during the selection
of two rows for a Merge Operation. Gathering these graph properties into a vector
(e.g. eigenvalues) they form the basis of the decision. The changes of the property
vector during the merge process describe a path called the Merge Path. This path is
responsible for determining the colouring and the end of the path defines the quality of
the colouring.

Unfortunately, the ideal path (which results in an optimal solution) is of course
unknown; the task of colouring is to find this path. The author introduced a general
strategy which approximates an optimal Merge Path [101]. The start and the end
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points of the path are usually known and the curve of the path may be estimated by
using preliminary knowledge. In order to build the knowledge base the Merge Path
approach can be combined with artificial intelligence methods, such as the instance
based learning or clustering in accordance with the results described in [95].

Enhanced heuristics and meta-heuristics A non-merge based colour strategy can
be extended and enhanced by reformulating the strategy in a Merge Model. A Binary
Merge Square ° is the adjacency matrix of a quotient graph. Consequently, if a strategy
can operate on the adjacency matrix of the original graph, then the same strategy can
cooperate with an merged adjacency matrix with an intermediate Merge Square as well.
It introduces a dynamic reconsideration process where previous decisions of a strategy
can be revised after each Merge Operation by exploiting the additional information
contained in the intermediate matrices. The author in [97] showed the efficiency of
such an extension.

The author in [96] applied the structural properties of the Merge Table Models in the
meta-heuristics design. The author introduced a better granular fitness function than
the traditional one for the evolutionary solvers of the colouring problem. This resulted
in a smoother landscape of the objective function, which increased the efficiency of the
optimisation process. Moreover the author defined a mutation which forces the difficult
vertices by a Merge Table Model (for which the colouring is problematic) in advance
in the merge/colour assignment.

Merge Algorithms

The author in [94; 96-102] combined various novel Merge Strategies with different
Merge Frameworks and analysed their performance. The algorithms were compared
with standard benchmark algorithms on various benchmark graphs. The experimental
analysis showed that the novel Merge Algorithms perform well in the comparison. They
generally outperformed the benchmark algorithms especially in the phase transition
region where the problems become hard.

Conclusions

The new colouring approach presented in this thesis demonstrates that graph colouring
can be effectively modelled by quotient or power graphs. It provides a potential reduc-
tion in computational cost, as well as a uniform and compact way in which algorithms
can be defined. Embedding algorithms in the framework supports both their structural
and performance comparison in a common way, which can be anyway problematic.
The framework itself generalises a formal colouring approach. Due to this generalisa-
tion such an embedding an algorithm can be enhanced, resulting in new algorithms.
The novel problem description results in novel information that can help us to extract
and support a new scheme of the colouring process.

5Usually this extension can be applied on the other Merge Models as well.



Osszefoglalas

Jelen értekezés osszefoglalja a szerzé elmilt évekbeli munkassagat a graf szinezés te-
riletén. A szerz§ kifejlesztett egy altalanos keretrendszert graf szinezési algoritmusok
szamara, ahol a hagyomanyos szinezés specialis graf homomorfizmusokon keresztiil ke-
riilt definialasra, Zykov munkassaga nyoman [161; 162]. Ezen homomorfizmusok hasz-
nosnak bizonyultak az algoritmus tervezésben (lasd Juhos et al. ([94; 96-102]). Ezen
osszefoglalé az értekezés struktarajat koveti.

Kvéciens és Hatvany Mddszer

A szerz6 a grafszinezési folyamatot kvéciens és hatvanygrafok segitségével, graf homo-
morfizmusokon sorozataval definialta (lasd Juhos et al. [96; 100]). A homomorfizmusok
az azonos szinii csiicsok kovetkezetes 6sszehizasabdl vagy csoportba foglalasabél szar-
maznak. A szerzd Kvéciens és Hatvany Mdédszernek nevezte el az ezen elven alapulé
szinezési médszereit. Ezeknek célja egy olyan homomorfizmus megtalalasa amely az
eredeti grafot egy megfelel§ teljes grafba vagy azzal homomorf grafba képezi. Az igy
kapott homomorfizmus meghataroz egy szinezést az eredeti grafra. A szekvencialis szi-
nezési eljarasok tdmogatasa végett a tekintett homomorfizmus tovabbi homomorfizmu-
sok egymasutanjaként, kompoziciéjaként keriil elallitasra, megadva egy an. kdzbensd
homomorfizmus sorozatot. Ezen homomorfizmusok hasznos kdzbenss graf struktarakat
hoznak létre, amelyek vizsgalata hatékony szinezési eljarasokat eredményeztek valamint
a szinezési folyamatba egy alternativ betekintést nydjtanak (lasd Juhos et al. [96-102]).

Merge Modellek

Graf homomorfizmusok definialjak a kapcsolatot az eredeti és a kvociens vagy hatvany
graf /multigraf kozott. A szerzd definialt négy matrix miveletet, amelyeket Merge Mii-
veleteknek, vagy réviden Merge-nek nevezett el (lasd Juhos et al. [96; 100]). Egy
Merge Miivelet az eredeti graf szomszédsagi matrixat képezi le egy matrixba amely egy
kvéciens graf/multigrafot vagy hatvany graf/multigrafot hataroz meg, ezeket a szerzg
Binaris/Integer Merge Square-nek és Binaris/Integer Merge Table-nek, vagy 6sszefog-
lalé neviikon Merge Matrixoknak nevezte el. Egymast kovets Merge Miiveletek sorozata
hoz létre egy hagyomanyos értelemben vett szinezést. A Merge Matrixok sorai fiiggetlen
csiics halmazokat hataroznak meg. A szinosztalyok, valamint a csiicsok dnmagukban
is fliggetlen csiicshalmazokat alkotnak. A Merge Miiveletek hagyomanyos értelemben
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ezek unidjat jelentik. Ezen modelljét a szinezésnek a szerz6 Merge Modellnek nevezte
el. A modell tdmogatja a parhuzamos szoftver és hardver implementaciét. Egy szek-
vencialis szinezési algoritmus amely ezen modellre épiil jelentSs teljesitménybeli javulast
konyvelhet el. A szerz6 ezen javulast elméletileg és tapasztalatilag is alatamasztotta
(lasd Juhos et al. [99]) valamint hatékony aj szinezési eljarasokat dolgozott ki ezen
modellek segitségével [94; 97-99; 101; 102].

Merge Keretrendszer

A Merge Modellek a grafszinezést matrix reprezentacié és specialis miiveletek atjan
definialjak. A szerzé kidolgozott harom altalanos keretrendszert amelyek absztrakt szi-
nezési algoritmusokat hataroznak meg (lasd Juhos et al. [100; 101]). Ezen absztrakcick
az altalanositasai a tradicionalis szinezési séemaknak. A Merge Miiveletek helyettesitik
a hagyomanyos értelemben vett szinezést. A Merge Modellekben eltiinik a kiildnbség a
szin és a csics kivalasztasi stratégiak kozott. Elegendd egy altalanos sorvalasztasi stra-
tégiat meghatarozni, amely alkalmas szinezett vagy szinezetlent sorok kivalasztasara is,
ha a tradiciondlis szinezési sémakat akarjuk kdvetni. Azonban itt a szinek csak jelzés
értékiiek, jelzik, hogy egy sor érintett volt-e mar a Merge Miiveletben. Attél fliggéen,
hogy milyen sorrendben valasztjuk ki a kiilonb6z6 allapotd (szinezett/szinezetlen) soro-
kat kaphatunk két eltérg keretrendszert: vagy el8szor egy szinezetlen (Uncoloured) sort
valasztunk, majd egy szinezettet (Coloured) a Merge Miivelethez (UC Merge Keretrend-
szer) vagy forditva (CU Merge Keretrendszer). Ezen keretrendszerek altalanositasai a
hagyomanyos szinezési sémanak (lasd Juhos et al. [100]). Valéjaban nem sziikséges
megkiilonboztetni a szinezett és szinezetlen statuszokat, egy kivalasztasi stratégia va-
laszthatna tetsz6leges két sort egy Merge Matrixbdl, hogy végrehajtsa rajtuk a Merge
Miveletet. Ez a megkozelités a CC Merge Keretrendszerben lett definialva (lasd Juhos
et al. [96]). Egy sor a Merge Matrixban egy szinosztalyt azonosit, azaz fiiggetlen csiics-
halmazt. Hagyomanyos értelemben a CC Merge Keretrendszerben egy algoritmus két
szinosztalyt/fliggetlen csticshalmazt valaszt majd ezek uni6jat képezi. Ezen keretrend-
szerek az (j szinezési modellel timogatjak az egységes algoritmus analizist (lasd Juhos
et al. [97; 99; 101; 102]). Mindharom keretrendszer egy egységes szerkezetet tiikroz.
Az algoritmusok ezen keretrendszerekben Merge Matrix sorok sorozatos kivalasztasat
végzik, majd végrehajtanak rajtuk egy Merge Miiveletet, mely eredményeképpen el&all
egy szinezés. Egyik altalanos keretrendszernek sincs konkrét sorkivalasztasi stratégiaja.
A keretrendszerek konkrét kivalasztasi stratégiakkal alkotnak algoritmusokat.

Merge Stratégiak

A Merge Algoritmusok minden lépésben egy Merge Miiveleteket hajtanak végre a Merge
Matrix két kivalasztott soran. A sorok kivalasztasahoz valamilyen kivalasztasi straté-
giara (stratégiakra) van szitkség. A sorozatos Merge Miiveletek végén az zar6 Merge
Matrix all amelyen tovabbi Merge Miivelet nem végezhet&. A sorok kivalasztasa a miive-
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let végrehajtasok soran fontos ez hatarozza meg a szinezés min8ségét, azaz, hogy hany
szint hasznaltunk fel az elért szinezésben. A szerz§ kiilonboz8 sorkivalasztasi stratégi-
akat, Merge Stratégidkat hatarozott meg, amelyek segitik a hatékony sorkivalasztast,
melyeket elméletileg és tapasztalati aton is elemzett (lasd Juhos et al. [94; 96-102]).
A felsorolt stratégiak Binaris Merge Modelleket feltételeznek, bar Integer Modellbeli
parjuk is megadhaté. Az Integer Modellek az algoritmus tervezésben nyajtanak szamos
tamogatast, mint példaul a visszalépés vagy a masodlagos dontéshozatal (lasd Juhos
et al. [99]).

A leghosszabb Merge sorozat. Mivel a Merge Matrix sorok szinosztalyokat azono-
sitanak. Ennélfogva a cél a sorok szamanak csokkentése. Ezt a leghosszabb Merge
sorozattal |étrehozasaval érhetjiik el. Ennek érdekében a szerzd bevezetett két stra-
tégiat (lasd Juhos et al. [97]). A Dot Product Stratégia nem-zéré elemek alakulasat
kdveti nyomon a Merge-k soran. Megkisérli azok szamat minimalisan tartani. A Bar a
nem-zéré elemek meggatolhatjak a Merge Miiveleteket, a zéré elemek segitenek tamo-
gatjak azokat. Igy a Cosine Stratégia figyelembe veszi mindketts alakulasat a Merge-k
soran és annak megfelel8en alakitja a sor kivalasztasokat.

Parhuzamos sorok. A Cosine Stratégia elényben részesiti a parhuzamos sorokat a
Merge Matrixokban. Ez ésszerii valasztas azért is mert a szomszédsagi matrix sorai
amelyek azonos szinosztalyhoz tartoznak egy optimalis szinezésben majdnem parhuza-
mosak. A Merge-k soran a keletkezé kvéciens grafokhoz tartoz6 Merge Square Matri-
xokban ez a parhuzamos tulajdonsag egyre karakteresebbé valik. A Merge Square-ek
ésszer(i médositasai Karger et al. [103] munkassaga nyoman tovabbi tamogatast nyajt
a Cosine stratégia szamara. Felhasznalva ezt az szerzé definialta a Zykov-fa és Lovasz-
theta stratégiat (lasd Juhos et. al. [94; 102])

Szin hasonlésdg Valéjaban a Zykov-fa és Lovasz-theta stratégia a csiicsok szin ha-
sonlésaganak becslésén alapszik. A szomszédsagi matrix egy szin kiilénbdz8ségi relaciot
hataroz meg, mivel a csticsok amelyek (él-)relaciéban vannak nem szinezhet6k azono-
san. Ennek ellenkezgje a szinezési relacié. Egy szinezés megadhaté egy szin hasonlésagi
relacié6 meghatarozasaval, itt csak az azonos csiicsok allnak relaciéban. A relacié egy
{0, 1} —matrixszal kifejezhet, ez a szinezési matrix. Ez megadja, hogy két csiics azo-
nos szinii vagy kiilonb6z8. Bar az optimalis szinezések matrixa is megadhaté eképpen,
ezek alkotjak a feladat megoldasat, tehat ezekre nem tamaszkodhatunk. Noha ezek
nem ismertek, az atlaguk kozelithets egy szemi-definit program megoldasaval amely a
Lovész-theta-t is szolgaltatja eredményiil. igy egy kozelitett szin hasonlésagi relaciot
kapunk. Amely egy valds érték(i matrixszal irhaté le, melyben a legnagyobb és legki-
sebb elemek fontos informaciét hordoznak. A szerzé ezen informéacidkat valamint Zykov
munkassagat felhasznalva (lasd [161; 162]) elkészitette Zykov-fa és Lovasz-theta stra-
tégiat. Ahol egy kvéciens graf csiicsai 6sszekdtendsk vagy Merge-lend6k a kicsi illetve
nagy kozelitett hasonlésagi értékeknek megfelelen. Az Gsszekotési (él hozzaadasi) és
Merge Miiveletek soran a hasonl6sag egyre karakterisztikusabba valik, tamogatva ezzel
az egyre értékesebb sor kivalasztasokat.

Norma minimalizalds az eredményben. A Dot Product Stratégia azt a két sort va-
lasztja ki Merge-elésre, amelyeknek maximalis a skalaris szorzatuk. Ez az eredmény
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Merge Matrixban az elemenkénti normak minimalizalasat eredményezi. A zaré Merge
Matrix, ami egy optimalis megoldashoz tartozik, rendelkezik a legkisebb elemenkénti
matrixnormaval az Osszes lehetséges zaré matrix koziil. Emiatt az elemenkénti norma
minimalizalasa ésszer(i stratégia. Tovabba egy optimalis zarématrixnal a szarmaztatott
matrixnormak is minimalisak. Ez a megfigyelés vezetett a szerz6 legnagyobb norma
csokkentés stratégiajahoz (lasd Juhos et al. [101]). Specialis esetben ez a spektral-
norma minimalizalasi stratégidhoz vezet, amely a legkisebb a szarmaztatott normak
kozott és ennélfogva j6 karakterizaciéja egy matrixnak. A szerzd a spektralnorma mi-
nimalizalasi stratégiat elemezte, amely hatékonynak bizonyult az elemzések soran. A
spektralnorma préba Merge-ket kell, hogy végezzen. Az eredmény matrix normaja ha-
tarozza meg a kivalasztasi stratégiat. Ez szamitasigényes feladat. Merikoski és Kumar
megadott tobb hatékony spektralnorma kozelitési formulat. (lasd [123]). Felhasznalva
ezen formuldkat a szerz& adaptalta a Spektralnorma stratégiat és kozelitett spektral-
norma stratégiakat vezetett be (lasd Juhos et al. [101]). A kozelitéssel lehetSség nyilik
a valasztasi stratégia kdzvetlen meghatarozasara az aktualis Merge Matrixbdl proba
Merge-ek nélkiil. Tovabba a kdzelits formula ramutat a Dot Product Stratégiaval valé
hasonlésagra.

Matrix tulajdonsagok — Merge Utvonal A Merge sorozatok nyoman a matrixok
tulajdonsagai kovethetsk. A kivant matrix tulajdonsagokbél alkossunk egy tulajdon-
sagvektort. Ezek a vektorok alkothatjak az alapjat a kivalasztasi stratégiaknak. Az
egymast kovetd tulajdonsagvektorok egy atvonalat, a Merge atvonalat, hataroznak
meg (lasd Juhos et al. [101]). Ez az atvonal elemei Gsszefiiggésben vannak a szinezés
lépéseivel az atvonal vége pedig a szinezés josagaval. Az idealis atvonal amely opti-
malis szinezéshez vezethet nem ismert, mert a feladat egy ilyen atvonal megtalalasa.
Az optimalis Gtvonal kezd6 és a végpontjai altalaban ismertek, a szerz6 bevezetett egy
altalanos stratégiat amely az optimalis Merge Utvonal kdzelitésén alapszik (lasd Juhos
et al. [101]) felhasznalva egy el6zetes tudast. Az elézetes tudas megszerzése a szerz6 a
Merge Utvonal koncepciét intelligens tanulasi és klaszterezési eljarasokkal 6tvozte (lasd
Juhos et al. [95]).

Kiterjesztett heurisztikak és meta-heurisztikik A szerz6 a nem Merge alapi szinezési
stratégiak egy Merge kiterjesztését hatarozta meg, az illetd stratégiak egy megfelel
Merge Modellbe val6 beagyazasaval (lasd Juhos et al. [97]). A kiterjesztet straté-
giak teljesitményének elméleti és tapasztalati vizsgalata javulast mutatott az eredetihez
képest. A kiterjesztés egyik a Binaris Merge Square-ek példajan egyszeriien nyomon
kovethets, habar altalaban a kiterjesztés a tobbi Merge Modellre is érvényes. A szom-
szédsagi matrixa egy kvéciens grafnak. Igy egy stratégia amely az eredeti graf szom-
szédsagi matrixan mikodik, az egy Merge Square Modellel képes egyiittmiikddni. Ez
lehet8séget biztosit egy dinamikus feliilvizsgalati eljarasra amely soran minden Merge
Miivelet utan, a stratégia képes el6z8 dontéseit megvaltoztatni, azon (] informéaciok
alapjan amely a keletkez6 Merge Matrixban elérheté.

A Merge Modellek strukturalis jellemz&i tdmogatast nyajtanak meta-heurisztikak
tervezéséhez is (lasd Juhos et al. [96]). A szerz§ grafszinezési evoluciés algoritmusok
szamara definialt a Merge Table modellek segitségével egy finomitott fitnesz fliggvényt
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a hagyomanyosan alkalmazott fitnesz javitasaként. Melynek eredményeként egy simabb
optimalizalasi feliiletet kapunk, amely noveli az optimalizalas hatékonysagat. Tovabba
egy mutacié operatort definialt amely a szinezésben a Merge Modellek alapjan nehezen
szinezhet® csiicsokat el6reveszi a szinezési folyamatban.

Merge Algoritmusok

A szerz& kombinalta a Merge Stratégiait a kiilonbdzé Merge Keretrendszereivel vala-
mint elemezte ezek teljesitményét (lasd Juhos et al. [94; 96-102]). Az igy keletke-
zett algoritmusok Gsszehasonlitasra keriiltek standard 'benchmark’ eljarasokkal szamos
'benchmark’ grafon. A kisérleti eredmények igazoltak a szerzé algoritmusainak haté-
konysagat, melyek altalaban feliilmaltak a 'benchmark’ eljarasokat kiilondsképpen az
an. 'phase transition’ teriileten ahol az igazan nehéz problémak talalhatok.

Konklazidé

A szerz§ () szinezési megkozelitése a grafszinezés hatékony modelljének bizonyult. Je-
lent&s csokkentést hozhat az algoritmusok szamitasi komplexitdsdban. Tovabba egy-
séges és tomor leirasat biztositja a szinezési eljarasoknak, biztositva ezzel az egységes
szerkezetben vett strukturdlis elemzését. Az algoritmusok implementalasa ezen kdzds
médon lehetséget biztosit az egységes teljesitmény mérésre. Az (j szinezési keretrend-
szer altalanositja az eddig szinezési sémakat. Ezen &ltalanositas kovetkezményeként
egy algoritmus bedgyazasa a modellbe annak kib&vitése mellett teljesitmény javulassal
is jarhat. Ezen ) megkdzelités aj informacié kinyerési technikakat is timogat amely az
algoritmus tervezésben segithet valamint j irdnyokat adhat a probléma elemzéséhez.



Bibliography

[1] Aardal Kl, van Hoesel SPM, Koster AMCA, Mannino C, Sassano A: Models

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

and solution techniques for frequency assignment problems. Annals of

Operations Research 2007, 153:79-129.

Alon N: Graph Powers, in: Contemporary Combinatorics. Bolyai Society
Mathematical Studies 2002, 4:11-28.

Andrews GR: Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley 2000.

Appel K, Haken W: Solution of the Four Color Map Problem. Scientific
America 1977, 237:108-121.

Avanthay C, Hertz A, Zufferey N: A variable neighborhood search for graph
coloring. European Journal of Operational Research 2003, 151:379-388.

Back T: Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York 1996.

Back T, Fogel DB, Michalewicz Z (Eds): Handbook of Evolutionary Computa-
tion. Bristol, UK, UK: IOP Publishing Ltd. 1997.

Beck A, Bleicher MN, Crowe DW: Excursions into Mathematics: The Millennium
Edition. A K Peters, Ltd. 2000.

Biggs N: Algebraic graph theory. Cambridge University Press 1994,

Blochliger |, Zufferey N: A graph coloring heuristic using partial solu-
tions and a reactive tabu scheme. Computers & Operations Research 2008,
35:960-975.

Bollobas B, Borgs C, Chayes J, Kim J, Wilson D: The scaling window of the
2-SAT transition. Random Structures and Algorithms 2001, 18(3):201-256.

Bollobas B, Erdés P: Cliques in random graphs. Mathematical Proceedings
of the Cambridge Philosophical Society 1976, 80:419-427.

Bollobas B: The chromatic number of random graphs. Combinatorica 1988,
8:49-55.

141



142

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Bollobas B: Modern Graph Theory. Springer 1998.

Bollobas B, Catlin PA, Erdés P: Hadwiger's conjecture is true for almost
every graph. European Journal on Combinatorics 1980, 1:195-199.

Bondy JA, Murty USR: Graph Theory with Applications. North-Holland 1976.

Brélaz D: New methods to color the vertices of a graph. Communications
of the ACM 1979, 22:251-256.

Briggs P, Cooper K, Kennedy K, Torczon L: Coloring heuristics for register
allocation. In ASCM Conference on Program Language Design and Implemen-
tation 1989, :275-284.

Briggs P, Cooper K, Torczon L: Improvements to graph coloring register
allocation. ACM Transactions on Programming Languages and Systems 1994,
16(3):428-455.

Brooks RL: On colouring the nodes of a network. Proceedings of the Cam-
bridge Philosophical Society, Math. Phys. Sci. 1941, 37:194-197.

Bui TN, Patel CM: An ant system algorithm for coloring graphs. In Pro-
ceedings of the Computational Symposium on Graph Coloring and its General-
izations 2002:83-91.

Campelo M, Correa R, Frota Y: Cliques, holes and the vertex coloring
polytope. Information Processing Letters 2004, 89:159-164.

Caramia M, Dell'Olmo P: Bounding vertex coloring by truncated multi-
stage branch and bound. Networks 2004, 44:231-242.

Caramia M, Dell'Olmo P: Coloring graphs by iterated local search travers-
ing feasible and infeasible solutions. Discrete Applied Mathematics 2008,
156:201-217.

Chaitin G: Register allocation and spilling via graph coloring. SIGPLAN
Not. 2004, 39:66-74.

Chaitin G: Register allocation and spilling via graph coloring. In ACM
SIGPLAN 82 Symposium on Compiler Construction, ACM Press 1982:98-105.

Chaitin G, Auslander M, Chandra A, Cocke J, Hopkins M, Markstein P: Register
allocation via coloring. Computer Languages 1981, 6:47-57.

Chams M, Hertz A, de Werra D: Some experiments with simulated an-
nealing for coloring graphs. European Journal of Operational Research 1987,
32:260-266.



Bibliography 143

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Cheeseman P, Kanefsky B, Taylor WM: Where the Really Hard Problems
Are. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, IJCAI-91, Sidney, Australia 1991:331-337.

Chiarandini M, Dumitrescu |, Stiitzle T: Very large-scale neighborhood
search: Overview and case studies on coloring problems. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, IJCAI-91,
Sidney, Australia 2008.

Chow FC, Hennessy JL: The priority-based coloring approach to register
allocation. ACM Transactions on Programming Languages and Systems 1990,
12:501-536.

CNET: Xbox specs revealed 2005, [http://cnet.com/Xbox+specs+revealed/
2100-1043 3-5705372.html]. [Accessed: Nov. 10, 2005].

Coll P, Marenco J, Méndez Diaz I, P Z: Facets of the graph coloring poly-
tope. Annals of Operations Research 2002, 116:79-90.

Comba J, Dietrich C, Pagot C, Scheidegger C: Computation on GPUs: from
a programmable pipeline to an efficient stream processor. Revista de
Informatica Teorica e Aplicada 2003, 10:41-70.

Cook SA: The Complexity of Theorem-Proving Procedures. ACM Press
1971:151-158.

Cooper KD, Dasgupta A: Tailoring Graph-coloring Register Allocation For
Runtime Compilation. In 2006 International Symposium on Code Generation
and Optimization (CGO'06) 2006.

Corneil DG, Graham D: An algorithm for the chromatic number of a
graph. SIAM Journal of Computing 1973, 2:311-318.

Corporation N: NVIDIA tesla: GPU computing technical brief, version
1.0.0. http://www.nvidia.co.uk/content/PDF/Tesla product literature/tesla
technical brief.pdf 2007.

Costa D, Hertz A: Ants Can Colour Graphs. Journal of the Operations Re-
search Society 1997, 48:295-305.

Costa D, Hertz A, Dubuis C: Embedding a sequential procedure within
an evolutionary algorithm for coloring problems in graphs. Journal of
Heuristics 1995, 1:105-128.

Coudert O: Exact coloring of real-life graphs is easy. In DAC '97: Proceed-
ings of the 34th annual conference on Design automation, New York, NY, USA:
ACM 1997:121-126.



144

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]

Craenen B, Eiben A, van Hemert J: Comparing Evolutionary Algorithms on
Binary Constraint Satisfaction Problems. |EEE Transactions on Evolution-
ary Computation 2003, 7(5):424—-444.

Culberson J, Gent I: Frozen development in graph coloring. Theor. Comput.
Sci. 2001, 265(1-2):227-264.

Culberson J: Iterated Greedy Graph Coloring and the Difficulty Land-
scape. Tech. Rep. TR 92-07 1992.

Cvetkovi¢ D, Rowlinson P: The largest eigenvalue of a graph - a survey.
Linear and Multilinear Algebra 1990, 28:3-33.

Cvetkovi¢ DM, Doob M, Sachs H: Spectra of Graphs: Theory and Applications.
Academic Press 1980.

de Werra D: An introduction to timetabling. European Journal of Operations
Research 1985, 19:151-162.

de Werra D: Heuristics for Graph Coloring. Computational Graph Theory
1990, Comput. Suppl. 7:191-208.

Diestel R: Graph theory. Springer 2000.

Dukanovic |, Rendl F: Semidefinite programming relaxations for graph
coloring and maximal clique problems. Mathematical Programming, Serie
B 2007, 109:345-365.

Dukanovic |, Rendl F: A semidefinite programming-based heuristic for
graph coloring. Discrete Applied Mathematics 2008, 156(2):180-189.

Eiben AE, van Der Hauw JK, van Hemert JI: Graph Coloring with Adaptive
Evolutionary Algorithms. Journal of Heuristics 1998, 4:25-46.

Eiben A, Smith J: Introduction to Evolutionary Computing. Springer 2007.
Erdés P: On cliques in graphs. Israel Journal of Mathematics 1966, 4:233-234.
Falkenauer E: Genetic Algorithms and Grouping Problems. John Wiley 1998.

Feige U, Langberg M, Schechtman G: Graphs with Tiny Vector Chromatic
Numbers and Huge Chromatic Numbers. In Proceedings of the 43rd Sym-
posium on Foundations of Computer Science, IEEE Computer Society 2002:283—
292.

Figueiredo R, Barbosa V, Maculan N, de Souza C: New 0 — 1 integer formu-
lations of the graph coloring problem. In Proceedings of XI CLAIO 2002.



Bibliography 145

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Frieze AM, Krivelevich M, Smyth CD: On the Chromatic Number of Ran-
dom Graphs with a Fixed Degree Sequence. Combinatorics, Probability &
Computing 2007, 16(5):733-746.

Galinier P, Hao JK: Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization 1999, 3:379-397.

Galinier P, Hertz A: A survey of local search methods for graph coloring.
Computers & Operations Research 2006, 33:2547-2562.

Gamst A: Some lower bounds for a class of frequency assignment prob-
lems. |EEE Transactions of Vehicular Echnology 1986, 35:8-14.

Garey MR, Johnson DS: Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York: W.H. Freeman & Company 1979.

George L, Appel A: Iterated register coalescing. ACM Transactions on Pro-
gramming Languages and Systems 1996, 18(3):300-324.

Gerschgorin S: Uber die Abgrenzung der Eigenwerte einer Matrix. Akad.
Nauk. USSR Otd. Fiz.-Mat. Nauk. 1931, 7:749-754.

Gethner E, Springer: How False Is Kempe’'s Proof of the Four-Color The-
orem? Congr. Numer. 2003, 164:159-175.

Gibbons LE, Hearn DW, Pardalos PM, Ramana MV: Continuous Characteri-
zations of the Maximum Clique Problem. Mathematics of Operations Re-
search 1996, 22:754-768.

Gintaras P: On the Graph Coloring Polytope. Information technology and
control 2008, 37:7-11.

Glass CA, Priigel-Bennett A: Genetic algorithms for graph colouring: Ex-
ploration of Galinier and Hao's algorithm. Journal of Combinatorial Opti-
mization 2003, 7:229-236.

Golub GH, van Loan CF: Matrix Computations. Hopkins Fulfillment Service 1996.

Graham R, Grétschel M, Lovasz L (Eds): Handbook of Combinatorics. North-
Holland 2005.

Grimmet G, McDiarmid C: On colouring random graphs. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 1975, 77:313-324.

Grotschel M, Lovasz L, Schrijver A: Geometric Algorithms and Combinatorial
Optimization. Springer 1988.

Guruswami V, Khanna S: On the hardness of 4-coloring a 3-colorable
graph. In Proceedings of the 15th Annual IEEE Conference on Computational
Complexity 2000:188-197.



146

Bibliography

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Hadwiger H: Uber eine Klassifikation der Streckenkomplexe. Vierteljschr.
Naturforsch. ges. Ziirich 1943, 88:133-143.

Hajnal P: Eigenvalues of graphs: Graph colouring and the Perron-
Frobenius eigenvector. Péter Hajnal’'s Combinatorics seminars. University of
Szeged. 2004.

Hajos G: Uber eine Konstruktion nicht n-firbbarer Graphen.
Wiss.Z Martin-Luther-Univ.Halle-Wittenberg ~ Math.-Naturw.  Reihe 1961,
10:116-117.

Halldérsson MM: A Still Better Performance Guarantee for Approximate
Graph Coloring. Inf. Process. Lett. 1993, 45:19-23.

Halmos PR: Finite-Dimensional Vector Spaces. Springer 1974.

Hamiez JP, Hao JK: Scatter search for graph coloring. In Artificial Evolution,
Volume 2310 2001:168-179.

Harary F: Graph Theory. Reading, MA: Addison-Wesley 1994.

Harmanani H, Abas H: A method for the minimum coloring problem us-
ing genetic algorithms. In MS'06: Proceedings of the 17th IASTED interna-
tional conference on Modelling and simulation, Anaheim, CA, USA: ACTA Press
2006:487-492.

Hastad J: Clique is hard to approximate within n(!~9. Acta Mathematica
1999, 182:105-142.

Heawood P: Map-colour theorem. Quarterly Journal of Mathematics 1890,
24:332-338.

Heawood P: On the four-colour map theorem. Quarterly Journal of Mathe-
matics 1898, 29:270-285.

Hell P, Nesetil J: On the complexity of H-coloring. Journal of Combinatorial
Theory 1990, 48:92-110.

Hell P, Nesetril J: Graphs and Homomorphisms. Oxford Lecture Series in Math-
ematics and Its Applications, Oxford University Press 2004.

Hertz A, de Werra D: Using tabu search techniques for graph coloring.
Computing 1987, 39:345-351.

Hoffman AJ: On eigenvalues and colorings of graphs. In Graph Theory and
its Applications. Edited by Harris B, Academic Press 1970:79-91.

Horn RA, Johnson CR: Norms for Vectors and Matrices. Cambridge University
Press 1990.



Bibliography 147

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Jensen TR, Toft B: Graph coloring problems. Wiley-Interscience 1995.

Johnson DS, Mehrotra A, Trick MA: Special issue on computational meth-
ods for graph coloring and its generalizations. Discrete Applied Mathe-
matics 2008, 156:145-146.

Johnson D, Aragon C, McGeoch L, Schevon C: Optimization by simulated
annealing: an experimental evaluation; part Il, graph coloring and
number partitioning. Operations Research 1991, 39:378-406.

Johnson D, Trick M: Cliques, Coloring, and Satistiability. American Mathematical
Society, DIMACS 1996.

Juhos I: Graph Colouring through Clustering. Seminar. University of Edin-
burgh. 2009.

Juhos |, Szarvas G: Intelligent Forecast with Dimension Reduction. In
Applied Soft Computing Technologies: The Challenge of Complexity, Volume 34
of Advances in Soft Computing. Edited by Abraham A, de Baets B, Képpen M,
Nickolay B, Springer 2006:279-292.

Juhos I, Té6th A, van Hemert J: Binary Merge Model Representation of
the Graph Colouring Problem. In Evolutionary Computation in Combinatorial
Optimization, Volume 3004 of Lecture Notes in Computer Science. Edited by
Gottlieb J, Raidl, Raidl GR, Springer 2004:124-134.

Juhos |, Téth A, van Hemert J: Heuristic Colour Assignment Strategies for
Merge Models in Graph Colouring. In Evolutionary Computation in Com-
binatorial Optimization, Volume 3448 of Lecture Notes in Computer Science.
Edited by Gottlieb J, Raidl, Raidl GR, Springer 2005:132-143.

Juhos I, van Hemert J: Improving graph colouring algorithms and heuris-
tics using a novel representation. In Evolutionary Computation in Combina-
torial Optimization, Volume 3906 of Lecture Notes in Computer Science. Edited
by Gottlieb J, Raidl, Raidl GR, Springer 2006:123-134.

Juhos |, van Hemert J: Increasing the efficiency of graph colouring al-
gorithms with a representation based on vector operations. Journal of
Software 2006, 1(2):24-33.

Juhos |, van Hemert J: Contraction-based heuristics to improve the efficiency of
algorithms solving the graph colouring problem, Springer, Volume 153 of Studies
in Computational Intelligence 2008 chap. 1, :175-192.

Juhos |, van Hemert J: Graph Colouring Heuristics Guided by Higher
Order Graph Properties. In Evolutionary Computation in Combinatorial Op-
timization, Volume 4972 of Lecture Notes in Computer Science. Edited by van
Hemert J, Cotta C, Springer 2008:97-1009.



148

Bibliography

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Juhos I, van Hemert JI: Graph colouring through clustering by Zykov-tree
and Lovasz-theta. Submitted 20009.

Karger D, Motwani R, Sudan M: Approximate graph coloring by semidefi-
nite programming. Journal of the ACM 1998, 45(2):246-265.

Karp RM: Complexity of Computer Computations: Reducibility Among Combi-
natorial Problems, New York: Plenum 1972 :85-103.

Knuth DE: The Sandwich Theorem. Electronic J. Combinatorics 1994, 1:1.
Kubale M: Graph Colorings. American Mathematical Society 2004.

Larsen M, Propp J, Ullman D: The Fractional Chromatic Number Of My-
cielski's Graphs. J. Graph Theory 1995, 19:411-416.

Leighton F: A graph coloring algorithm for large scheduling problems.
Journal of Reasearch of the National Bureau of Standards 1979, 84:489-506.

Lovasz L: Normal hypergraphs and the weak perfect graph conjencture.
Discrete Mathematics 1972, 2:253-267.

Lovasz L: On the Shannon capacity of a graph. /EEE Transaction Informa-
tion Theory 1979, 25:1-7.

Lovasz L: Perfect graphs. In More Selected Topics in Graph Theory. Edited by
L W Beineke RLW, Academic Press 1983:55-57.

Lovasz L: Combinatorial Problems and Exercises, North Holland 1993 :69-69.

Lueh GY, Gross T, Adl-Tabatabai AR: Global Register Allocation Based on
Graph Fusion. In Languages and Compilers for Parallel Computing 1996:246—
265.

Malaguti E, Toth P: A survey on vertex coloring problems. International
Transactions in Operational Research 2009, :1-34.

Marino A, Damper R: Breaking the Symmetry of the Graph Colouring
Problem with Genetic Algorithms. In Late Breaking Papers at the 2000 Ge-
netic and Evolutionary Computation Conference. Edited by Whitley D 2000:240-
245,

Matula D, Marble G, J I: Graph coloring algorithms, Academic Press 1972 :109-
122.

McDiarmid C: Coloring random graphs badly. Reso Notes Mathematical
1979, (34):76-86.

Mehrotra A, Trick MA: A column generation approach for graph coloring.
INFORMS Journal on Computing 1996, 8:344-354.



Bibliography 149

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Mehta DP, Sahni S: Handbook Of Data Structures And Applications (Chapman
& Hall/Crc Computer and Information Science Series.), Chapman & Hall/CRC
2004 chap. 59.4.2.

Méndez-Diaz |, Zabala P: A polyhedral approach for graph coloring. Elec-
tronic Notes in Discrete Mathematics 2001, 7:178-181.

Méndez-Diaz IP Zabala: A cutting plane algorithm for graph coloring.
Discrete Applied Mathematics 2008, 156:159-179.

Méndez-Diaz |, Zabala P: A branch-and-cut algorithm for graph coloring.
Discrete Appl. Math. 2006, 154(5):826-847.

Merikoski JK, Kumar R: Lower Bounds for the Spectral Norm. Journal of
Inequalities in Pure and Applied Mathematics 2005, 6(3).

Meurdesoif P: Strengthening the Lovasz Theta(G) bound for graph col-
oring. Math. Program. 2005, 102(3):577-588.

Mohar B, Thomassen C: Graphs on Surfaces. The Johns Hopkins University Press,
Baltimore and London 2001.

Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L: Determining
computational complexity from characteristic phase transitions. Nature
1999, 400:133-137.

Motzkin TS, Straus EG: Maxima for graphs and a new proof of a theorem
of Turan. Canadian Journal of Mathematics 1965, 17:533-540.

Mycielski J: Sur le coloriage des graphes (for colouring graphs). Colloquim
Mathematiques 1955, 3(161):161-162.

Ogawa H: Labeled point pattern matching by Delaunay triangulation
and maximal cliques. Pattern Recognition 1986, 19:35-40.

Opsut R, Roberts FS: On the fleet maintenance, mobile radio frequency,
task assignment and traffic phasing problems. In The Theory and Appli-
cations of Graph. Edited by Chartrand G, Alavi Y, Goldsmith D, Lesniak-Foster
L, Lick D, John Wiley & Sons. 1981:479-492.

Palubeckis G: On the recursive largest first algorithm for graph colouring.
Int. J. Comput. Math. 2008, 85(2):191-200.

Park J, Moon SM: Optimistic register coalescing. ACM Transactions on
Programming Languages and Systems 2004, 26(4):735-765.

Porumbel D, Hao JK, Kuntz P: Diversity control and multi-parent recombi-
nation for evolutionary graph coloring algorithms. In LNCS 5482, Springer
2009.



150 Bibliography

[134] Povh J, Rendl F, A W: A boundary point method to solve semidefinite
programs. Computing 2006, 78:277-286.

[135] Schaerf A: A Survey of Automated Timetabling. Artificial Intelligence Re-
view 2004, 13:87-127.

[136] Schindl D: Graph coloring and linear programming. In Artificial Intelligence
Review, Presentation at First Joint Operations Research Days, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Available on line 2003.

[137] Sewell E: An improved algorithm for exact graph coloring. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 2006, 26:359-373.

[138] Skiena S: Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley 1990.

[139] Skiena SS: The Algorithm Design Manual., Springer-Verlag 1997 chap. 6.2.3 and
8.5.1, :144 and 312-314.

[140] Strang G: Linear Algebra and its Applications. San Diego 1988.

[141] Thompson CJ, Hahn S, Oskin M: Using modern graphics architectures for
general-purpose computing: a framework and analysis. In in MICRO 35:
Proceedings of the 35th annual ACM/IEEE international symposium on Microar-
chitecture, Los Alamitos, CA, USA: IEEE: Computer Society Press 2002:306-317.

[142] Toh KC: Solving large scale semidefinite programs via an iterative solver
on the augmented systems. SIAM Journal on Optimization 2004, 14:670—
698.

[143] Trick M: Computational Series: Graph Coloring and its Generalizations
2003. [Http://mat.gsia.cmu.edu/COLORINGO3].

[144] University SK, Khanna S, Linial N: On the Hardness of Approximating the
Chromatic Number 1993.

[145] van Hemert J: Application of Evolutionary Computation to Constraint
Satisfaction and Data Mining. PhD thesis, Leiden University 2002,

[146] Vassilakis C: An Optimisation Scheme for Coalesce/Valid Time Selection
Operator Sequences. SIGMOD Record 2000, 29:38-43.

[147] Vegdahl SR: Using node merging to enhance graph coloring. In PLDI '99:
Proceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, New York, NY, USA: ACM Press 1999:150-154.

[148] Vincze A: Star chromatic number. Journal of Graph Theory 1998, 12:551—
559.

[149] Viragh J: Numerikus matematika. JATE Press 1997.



Bibliography 151

[150] Weisstein EW: CRC Concise Encyclopedia of Mathematics. Chapman &
Hall/CRC, 2nd edition 2002.

[151] Welsh DJA, Powell MB: An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal
1967, 10:85-86.

[152] Wigderson A: Improving the performance for approximate graph coloring.
Journal of the ACM 1983, 30:729-735.

[153] Wilf HS: The eigenvalues of a graph and its chromatic number. Journal
of London Math. Soc. 1967, :330-332.

[154] Wilf HS: Spectral bounds for the clique and independence numbers of
graphs. Journal of Combinatorial Theory 1986, 40:113-117.

[155] Willard S: General Topology. Addison-Wesley 1970.

[156] Wilson RM, van Lint JH: A Course in Combinatorics. Cambridge University Press
2001.

[157] Wilson R: Four Colors Suffice: How the Map Problem Was Solved. Princeton
University Press 2004.

[158] Woeginger G: Exact Algorithms for NP-Hard Problems: A Survey. In
Four Colors Suffice: How the Map Problem Was Solved 2003:185-207.

[159] Zhu X: Circular chromatic number. Discrete Mathematics 2001, 229:371-
410.

[160] Zuckerman D: Linear degree extractors and the inapproximability of Max
Clique and Chromatic Number. Theory of Computing 2007, 3:103-128.

[161] Zykov AA: On some properties of linear complexes (in Russian). Math.
Sbornik 1949, 24:163-188.

[162] Zykov AA: On some properties of linear complexes. American Mathematical
Society Translations 1952, 79:81.



