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PrefaeHistory of graph olouring.The �rst results about graph olouring deal almost exlusively with planar graphs inthe form of map olouring. When trying to olour a map of the ounties of England,Franis Guthrie postulated the four olour onjeture, noting that four olours weresu�ient to olour the map, so that no regions sharing a ommon border got the sameolour. Guthrie's brother passed on the question to his mathematis teaher Augustusde Morgan at University College London, who mentioned it in a letter to WilliamHamilton in 1852. Arthur Cayley raised the problem at a meeting of the LondonMathematial Soiety in 1879. The same year, Alfred Kempe published a paper thatlaimed to have settled the question, and for a deade the four olour problem wasonsidered solved. For his aomplishment Kempe was eleted a fellow of the RoyalSoiety and later President of the London Mathematial Soiety [106℄.In 1890, Heawood pointed out that Kempe's argument was faulty. However, in thatpaper he proved the �ve olour theorem, saying that every planar map an be olouredwith no more than �ve olours, using ideas of Kempe. In the following entury, avast amount of work and theories were developed to redue the number of olours tofour, until the four olour theorem was �nally proved in 1976 by Kenneth Appel andWolfgang Haken. Perhaps surprisingly, the proof went bak to the ideas of Heawoodand Kempe and largely disregarded the intervening developments [156℄. The proof ofthe four olour theorem is also noteworthy for being the �rst major omputer-aidedproof.In 1912, George David Birkho� introdued the hromati polynomial to study theolouring problems, whih was generalised to the Tutte polynomial by Tutte, importantstrutures in algebrai graph theory. Kempe had already drawn attention to the general,non-planar ase in 1879 [90℄, and many results on generalisations of planar grapholouring to surfaes of higher order followed in the early 20th entury.Graph olouring has been studied as an algorithmi problem sine the early 1970s.The hromati number problem is one of Karp's 21 NP-omplete problems from 1972,around the time of various exponential-time algorithms based on baktraking andheuristis. One of the major appliations of graph olouring � register alloation inompilers � was introdued in 1981.This thesis was motivated by Zykov's result in 1949, where he introdued hisdeletion�ontration reurrene theorem in [161; 162℄. Though this theorem is well-vii



viii Contentsknown in the literature, it has not reeived muh attention in the algorithm design �elduntil now. Zykov's approah makes a onnetion between di�erent graphs through hisedge deletion and vertex ontration operations. From a olouring point of view, thesegraphs may have the same properties. As Hell and Ne²et°il desribe in their work [85℄ in2004, these operations an be expressed through graph homomorphisms. However, thehomomorphism approah does not provide any implementation or any algorithm, butthe approah motivates algorithmi steps. The author designed speial homomorphismlasses for the graph olouring problem with di�erent implementations in ([96�101℄).Despite the implementations being di�erent, a general framework has been worked outto form a basis for a new olouring approah. This thesis is about the author's resultsand it ontains various novel olouring strategies within a new framework.István Juhos
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Notation
N the set of all natural numbers
R the set of all real numbers
x olumn vetor of real numbers
xT transpose of vetor x, a row vetor
‖x‖i p−norm of vetor x: (

∑

i |xi|i)
1
i

‖x‖ Length of vetor x: ‖x‖ = ‖x‖2
x ‖ y Vetors x and y are parallel: xT y

‖x‖‖y‖ = 1.

x ⊥ y Vetors x and y are orthogonal: xT y

‖x‖‖y‖ = 0.
xi i−th omponent of vetor x

X a matrix of real numbers
‖X‖i Indued i−norm of matrix X: ‖X‖i = max

{

‖Xx‖i

‖x‖i

}

‖X‖ Entrywise 2−norm of matrix X: √

∑

i,j X
2
ij

Xi i−-th row of matrix X
X_j j−th olumn of matrix X.
Xij or xij (i, j) element of matrix X: xij := Xij

x ∨ y element-wise or operation between two binary {0, 1}n vetors x and y

x · y or 〈x,y〉 dot produt of vetors x and y: xTy

x⊗ y dyadi produt of vetors x and y: xyT

Diag(x) Zero matrix with x in the main diagonal. Diret sum of the elements: ⊕

i xi

e vetor of all ones.
I identity matrix: Diag(e).
J matrix with all its entries being one: e⊗ e.
J ij a matrix, where entry Jij = 1, otherwise zero: J ij = Ii ⊗ Ij .
P ij a permutation matrix: I − J ii + J ij.
X ∨ Y element-wise or operation between two binary {0, 1}n×n matries X and Y
X • Y or 〈X, Y 〉 sum of element-wise produt of matries X and Y (see dot produt).
X ◦ Y element-wise produt of matries X and Y (Hadamard-Shur produt).
diag(X) a vetor formed by the main diagonal of the X matrix: (X ◦ I) e

G a graph: G = (V,E) or G = (VG, EG)

V vertex set
E edge set: E ⊆ V × V
C olour set
AG adjaeny matrix of graph G (abbreviated form: A)
(·)col selet oloured objets, e.g. oloured verties V col

(·)unc selet unoloured objets, e.g. unoloured verties V uncxiii



n number of verties: |V |
m number of edges: |E|
k number of olours: |C|
χ hromati number
ω lique number
α independene number
θ Lovász-theta
π permutation of {1,2,...,n} elements
[x = y] The Kroneker delta funtion. [x = x] = 1 and if y 6= x, then [x = y] = 0.
f(x) = O(g(x)) |f(x)| ≤ c · |g(x)|, where c ≥ 0 for x > x0, f and g are funtions of x
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Chapter 1
Introdution
1.1 Contributions of the thesisThis thesis o�ers a general framework for graph olouring methods, where the tra-ditional olouring sheme is de�ned via speial graph homomorphisms motivated by[85; 161; 162℄. These speial homomorphisms proved useful in the design of algorithmsby the author ([94; 96�102℄). Three main reasons an be given for why this frameworkis useful.First, this approah in general provides a potential derease of the omputationalost of olouring algorithms. In order to ahieve this goal, speial homomorphismsare applied whih subsequently redue the problem. In a parallel implementation, theseredution steps an be performed as one atomi operation, hene they do not introdueany extra omputational e�ort. This helps algorithms to run faster.Seond, it provides a uniform and ompat way in whih algorithms an be de�ned.Embedding algorithms in the same ommon framework supports both their struturaland performane omparison, whih an be anyway problemati. Furthermore, it maygive a deeper and omparable insight into the struture of algorithms. The frameworkitself generalises the formal olouring approah. With this generalisation an algorithman be extended in a natural way, whih may result in new algorithms.Third, it opens the way to novel appliations that extrat useful information to helpalgorithms during their searh. On one hand, a problem redution step may reveal theskeleton of the problem and this may lead to a reonsideration of previous assumptionsin a strategy. Hene existing algorithms an be enhaned after being embedded in theframework. On the other hand, the novel problem desription results in novel informa-tion that an be used to extrat and support a new sheme of the olouring proesswhere new aspets an be identi�ed.This thesis has been organised so as to demonstrate and highlight these advantages viaexamples, experimental results and theoretial observations.1



2 Introdution1.2 Overview of the ThesisThis thesis summarises the results obtained by the author over the past few years.The results an be separated into di�erent groups aording to the parts of the grapholouring framework developed by the author :Conept The author de�ned the problem via ertain graph homomorphisms. Theauthor alled these Quotient and Power methods.Model The author desribed the onepts by onrete representations with suitableoperations, resulting in his Merge Models with his nomenlature. Merge Modelsprovide a novel desription of the olouring problem. The operations, i.e. theMerge Operations, subsequently hange the state of the model and diret it to apossible solution of the original graph olouring problem.Strategy The author developed strategies in the model (Merge Strategies), whihde�ne possible diretions toward a solution.Algorithm The author onstruted general frameworks (Merge Frameworks) in whihstrategies an be embedded. These frameworks in onjuntion with the strate-gies form olouring algorithms (Merge Algorithms). Suh algorithms generate asequene of model operations aording to the strategy to provide a andidatesolution for the original problem.Thesis points aording to the author 's publiations [94�102℄Thesis 1 The author, applying ertain graph homomorphisms, de�ned two gen-eral onepts to rede�ne the graph olouring problem, namely the Quotientand Power methods [96; 99; 100℄. He provided a onrete desription ofthe general methods using matrix representations and Merge Operation ofthe rows or olumns. He alled these desriptions Merge Models. Basedon the Merge Models the original problem undergoes an evolution and pro-dues homomorphi graph images. These models an be a basis of noveland existing algorithms too. Embedding an algorithm into a Merge Modelmay onsiderably derease its omputational e�orts. Moreover, suh anembedding supports the strutural analysis of the algorithms in a ommonway and makes available a natural extension of them, whih may result inan inrease in their performane. Traditional olouring shemes distinguishbetween the olours and the verties of the graph. Merge Models integratethem into one single objet. This antiipates a uniform algorithm design,where olour hoies do not di�er from the vertex hoies.Thesis 2 Based on the Merge Models of the olouring, the author uni�ed andgeneralised the formal sequential olouring model in three di�erent MergeFrameworks [100; 101℄. These frameworks provide a uniform and om-pat desription in whih algorithms an be de�ned and analysed in the



1.2 Overview of the Thesis 3same systemati way. Furthermore, exploiting the uniform desription, heskethed some explanations of how the struture of algorithms an have anin�uene on the overall performane. Existing sequential olouring algo-rithms �t into one of the Merge Frameworks, and the frameworks providenovel approahes for algorithm design.Thesis 3 The author provided a way to redue the omputational ost of olour-ing algorithms after embedding them into a Merge Framework [97; 99℄.This improvement was demonstrated and analysed via experiments as well.In the experiments he analysed the phase transitions of di�erent algorithmsimplemented in di�erent Merge Frameworks. Furthermore, the author pro-vided a natural extension of sequential olouring algorithms in the MergeFramework, whih results in an inrease in their e�ieny.Thesis 4 In eah Merge Model the olouring operation is replaed by a MergeOperation. Several Merge Strategies were developed by the author. Sinethe models use matrix representations, he was able to de�ne some of hisstrategies by applying speial matrix row operations as well as matrix norms.The novel strategies of the author are listed below:� Extended Hajnal; Extended Welsh-Powell (∞�norm) [97℄� Spetral norm[101℄� Spetral norm approximations [101℄� Dot produt (entrywise norms) [97℄� Cosine [97℄� Zykov-tree and Lovász-theta [94; 102℄These strategies an be ombined with di�erent Merge Models and MergeFrameworks to form di�erent algorithms. The performane analysis ofthese strategies are given. The novel algorithms are ompared with sev-eral well-known benhmark algorithms. The novel algorithms outperformedthe well-known algorithms in a standard benhmark set of graph instanes.Moreover, their e�ieny revealed in a more di�ult-to-solve graph in-stane set, where the graphs are generated during the phase transitionregion, where �nding a solution beomes really hard. In this ase, theomparison is fair; that is, it annot be manipulated by a good hoie ofthe benhmark instanes sine the generated instanes represent well allinstanes from di�ult-to-solve graph lasses.Thesis 5 The author introdued the notion of a Merge Path in [101℄. A MergePath arises from the properties of the dynamially hanging model duringits evolution. Elements of suh a path are assoiated with olouring steps.He was able to desribe an abstrat graph olouring approah based onMerge Paths, whih allows the appliation of arti�ial intelligene methodsin graph olouring e.g.:



4 Introdution� Using a training set of known graphs, a supervised learning algorithm[95℄ an learn ertain optimal Merge Paths that are assoiated with optimalolouring steps. Then using the learnt knowledge, olouring steps for anunknown graph instane an be predited.� In an unsupervised learning task optimal Merge Paths of knowngraphs are lustered. Then unknown graphs, whih are not involved inthe lustering, an be lassi�ed in order to predit their properties suh astheir hromati number.Thesis 6 He embedded his olouring strategies into a meta heuristi, an evo-lutionary algorithm and reated the following evolutionary operators forolouring [96�98; 101℄ :� A mutation operator by aquiring di�ult verties in a andidatesolution and foring their early olouring� A �tness funtion whih solves the �tness granularity problem of theolouringThese novel meta heuristi algorithms performed well in an experimentalomparison with di�erent benhmark algorithms, on di�erent benhmarkgraphs and di�ult-to-solve generated problem sets as well.Table 1.1 ontains ross-referenes between thesis points and publiations.[95℄ [96℄ [97℄ [98℄ [99℄ [100℄ [101℄ [102℄Thesis-1 • • •Thesis-2 • •Thesis-3 • •Thesis-4 • • •Thesis-5 • •Thesis-6 • • • •Table 1.1: Cross-referene between thesis points and publiations



1.3 Overview of the hapters 51.3 Overview of the haptersThis setion provides an overview of how the publiations of the author are related tothe hapters of the thesis as well as to the thesis points.Chapter 1 gives an overview of the thesis.Chapter 2 summarises neessary de�nitions whih will be used in this thesis.Chapter 3 introdues the Graph Colouring Problem. It onsists of de�nitionsand analyses it from several aspets. It details important strutural proper-ties of graphs whih may have an in�uene on the solution of the problem.Exploiting some strutural features, we o�er some simpli�ation tehniquesof the original problem. Furthermore, we give an insight into the problemdi�ulty by omplexity results and haraterise hard-to-solve problem in-stanes, whih are a basis of our experimental investigations. In our analysisvarious bounds are provided to restrit the searh spae exploration. Weoverview the possible searh spaes of the di�erent representations of theproblem.Chapter 4 outlines the related work published in this �eld in the literature. Itdisusses some important real-life appliations of graph olouring, providinggraph instanes from di�erent soures. We desribe various approahesavailable to solve the Graph Colouring Problem. Afterwards, we disussseveral well-known graph olouring algorithms. The algorithms detailedwith the provided graph instanes serve as benhmarks in our experimentalinvestigations.Chapter 5 disusses graph homomorphism approahes of the Graph ColouringProblem and its onsequenes.Chapter 6 introdues speial graph homomorphisms for the olouring problemforming the Quotient and Power methods for the Graph Colouring Problemde�ned by the author in [96; 99; 100℄.Chapter 7 desribes the modelling of speial graph homomorphisms by the so-alled Merge Models using speial matrix representations and matrix op-erations devised by the author in [96; 99; 100℄. This hapter introduesdi�erent strutures whih may help olouring algorithms and whih employMerge Models.Chapter 8 de�nes Merge Frameworks based on the Merge Models (see Juhoset al. [100; 102℄). These frameworks are generalisations of the traditionalsequential olouring shemes. They provide a general algorithm frame toassist the design and implementation of olouring algorithms. These frame-works also ontain abstrat strategies for the algorithm steps.



6 IntrodutionChapter 9 introdues novel strategies for the algorithm steps whih an beembedded into a Merge Framework to form an algorithm de�ned by theauthor in [95�98; 101; 102℄. It onsists of the analysis of the strategies be-sides their de�nition. The analysis shows a natural enhanement possibilityof existing strategies when they are embedded into a Merge Framework.Example extensions are provided based on two well-known strategies. Inanother result of the analysis, a general idea for the strategy design is in-luded, whih o�ers a way for the appliation arti�ial intelligene methodsin the olouring proess.Chapter 10 ontains di�erent novel Merge Algorithms introdued by the authorin [96�98; 101; 102℄. A Merge Framework with onrete Merge Strategiesform Merge Algorithms (olouring algorithms). A de�nition of well-knownbenhmark algorithms in a suitable Merge Framework is provided as well.A thorough experimental investigation ompares the benhmark algorithmswith the novel Merge Algorithms on several standard benhmark problemsets.Chapter 11 analyses the novel Merge Models and Merge Algorithms from vari-ous aspets, providing proofs for their e�ieny. It inludes e�ient hard-ware and software implementation details as well [99; 100℄.Chapter 12 This hapter onsists of an appendix providing further interestingdetails about the Graph Colouring Problem and a summary of the thesis inEnglish and in Hungarian.Table 1.2 shows ross-referenes between the hapters and the publiations.[95℄ [96℄ [97℄ [98℄ [99℄ [100℄ [101℄ [102℄Ch. 6 • • • Quotient and Power methodsCh. 7 • • • Merge ModelsCh. 8 • • Merge FrameworksCh. 9 • • • • • • Merge StrategiesCh.10 • • • • • Merge AlgorithmsCh.11 • • AnalysisTable 1.2: Cross-referene between hapters and publiations



Chapter 2Preliminary de�nitionsThis hapter summarises de�nitions whih will be used in this thesis in aordane with[49; 138; 150℄. Some general de�nitions have a slight restritions for the sake of betterutilisation in our topi.De�nition 2.1 (Graph) A graph is a pair G = (V,E) of disjoint �nite sets, where
E ⊆ V × V . The elements of V are the verties of the graph G, the elements of Eare its edges.
VG denotes the vertex set and EG denotes the edge set of the graph G, if the graph Gmust be emphasised in the notation. An edge between the verties v and w is denotedby vw.De�nition 2.2 (Isomorphi) G = (V,E) and G′ = (V ′, E ′) are isomorphi graphs,if there is a bijetion ϕ : V → V ′ with vw ∈ E ⇔ ϕ(v)ϕ(w) ∈ E ′De�nition 2.3 (Undireted and direted graph) A graph G is said to be undi-reted, if the relation E ⊆ V × V is symmetri; otherwise, the graph is said to bedireted.Unless it is expliitly stated, a graph is undireted. The edges of an undireted graphare alled undireted edges and the edges of a direted graph are alled direted edges.De�nition 2.4 (Loop edge) The edge e ∈ E of a graph G is a loop edge, if e = vv,where v ∈ V .De�nition 2.5 (Inident) A vertex v is inident with an edge e if v ∈ e; then e isan edge at v.The two verties inident with an edge are its endverties or ends, and an edge joins oronnets its ends.De�nition 2.6 (Adjaent or neighbour verties) Two verties v and w of G areadjaent, or neighbours, if vw ∈ E. 7



8 Preliminary de�nitionsDe�nition 2.7 (Edge density) Let G = (V,E) be a graph. The number |E|
(n

2)
is theedge density of G.Note that the value of (

n
2

) is the maximum number of edges in a graph.De�nition 2.8 (Empty graph) The empty graph is either the graph with no vertiesand hene no edges or any graph with no edges.De�nition 2.9 (Complete graph) G is a omplete graph if all its verties are pair-wise adjaent. A omplete graph on n verties will be denoted by Kn.De�nition 2.10 (Regular graph) A regular graph is a graph where eah vertex hasthe same number of neighbours.De�nition 2.11 (Simple graph) A simple graph G is an undireted graph, whihhas no loop edge.An example of a simple graph an be seen in Figure 2.1.
V = {v1, v2, v3, v4, v5, v6}

E = {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v3v1, v3v6}

v1

v2

v3

v4

v5

v6

Figure 2.1: A simple graphDe�nition 2.12 (Multigraph) A multigraph is a pair (V, E), whih ontains a vertexset V and an edge multiset E . Where E onsist of edges between any two verties andmultiple edges are permitted.If V ′ ⊆ V , then G− V ′ is obtained from G by deleting all the verties in V ′ ∩ V andtheir inident edges. If V ′ = {v} is a singleton, G− v is written rather than G− {v}.For E ′ ⊆ V × V , G − E ′ = (V,E \ E ′) and G + E ′ = (V,E ∪ E ′); furthermore for
e ∈ E, G− {e} and G+ {e} are abbreviated to G− e and G + e.De�nition 2.13 (Complement graph) Ḡ is the omplement graph of graph G, if
VḠ = VG and EḠ = VG × VG \ EG.De�nition 2.14 (Sub-graph) G′(V ′, E ′) is a sub-graph of G = (V,E), if V ′ ⊆ Vand E ′ ⊆ E. Denote it by G′ ⊆ G.



9For example H = (V ′, E ′) is a sub-graph of Figure 2.1, if V ′ = {v1, v2, v3} and
E ′ = {{v1, v2}, {v2, v3}, {v3, v1}}. The graph H is a omplete graph on three verties,namely the K3.De�nition 2.15 (Clique) A lique is a omplete sub-graph of a graph.Sine H is a omplete sub-graph of G, therefore it is a lique in G.De�nition 2.16 (Maximal lique) A maximal lique is a omplete sub-graph thatis not ontained in any other omplete sub-graphDe�nition 2.17 (Maximum lique) A maximum lique is a lique ontaining thelargest possible number of verties.A maximum lique is neessarily maximal, but the onverse does not hold. Take v4 and
v5 verties of Figure 2.1 with the edge between them. They form a omplete graphon two verties, alled K2. This K2 is not part of a larger lique in G, hene it is amaximal lique, but not a maximum beause graph H , whih is a K3 is larger lique.
H is the largest lique, and hene it is a maximal lique. Although, H is not unique.There may be more than one maximum and onsequently several maximal liques ina graph. Verties v1, v3, v6 with edges between them also form a K3 lique, whih ismaximal too.De�nition 2.18 (Independent set) An independent set of a graph is a subset ofverties suh that no two of them are mutually adjaent.There is a strong onnetion between liques and independent sets sine an independentset of a graph is a lique in the omplement graph.De�nition 2.19 (Maximal independent set) A maximal independent set is an in-dependent set that is not a subset of any other independent set.A graph may have di�erent maximal independent sets of widely varying sizes as we sawin the ase of liques.De�nition 2.20 (Maximum independent set) A maximum independent set is anindependent set ontaining the largest possible number of verties.A vertex whih is not in a maximum independent set must be onneted to a memberof the set. Otherwise, the vertex in question should be member of the maximal inde-pendent set. Take an example vertex set S = {v1, v3, v5} from our example graph inFigure 2.1. It is a maximum independent set and the verties whih are not inluded
{v2, v4, v6} are adjaent to one of the vertex in this set and form another maximalindependent set.De�nition 2.21 (Neighbour set) Let G be a graph and v ∈ V . Neighbour set isthe set of neighbour verties of v and denoted by N(v): N(v) = {w : vw ∈ E}.



10 Preliminary de�nitions
N(.) an be extended to set of verties. If S is a set of verties, thenN(S) =

⋃

v∈S N(v).If S is a maximum independent set of graph G, then V \S = N(S) Otherwise, if therewas a vertex u /∈ N(S) then S would not be maximum, sine S ∪ u would be a largerindependent set.De�nition 2.22 (Vertex degree) The degree of a vertex v is the number of itsneighbours: d(v) = |N(v)|.The minimal vertex degree in a graph is denoted by δ, while the maximum is denotedby ∆. From now on an we will use an abbreviated form of d(vi), denoted by di, where
vi ∈ V .De�nition 2.23 (Dominating Set) D is a dominating set of verties of a graph G,if D ⊂ VG and N(D) = VG \D.A dominating set overs all verties of a graph whih are not inluded. Dominatingsets are losely related to independent sets. An independent set is also a dominatingset if and only if it is a maximal independent set. Hene, any maximal independent setin a graph is neessarily a minimal dominating set as well.De�nition 2.24 (Dominated and dominant vertex) v is a dominated vertex bya set of verties D ⊂ VG of a graph G, if N(v) = N(v) ∩N(D). A dominated vertexhas neighbours whih are all adjaent to some other vertex, the dominant vertex.De�nition 2.25 (Partition) A set {V1, . . . , Vk} of disjoint subsets 1 of a set V is apartition of V if V =

⋃k
i=1 Vi and Vi 6= ∅ for every i.De�nition 2.26 (Vertex ontration) Vertex ontration is an operation where twoverties are replaed by one single vertex. If u, v ∈ V , then G/{u, v} or G/uv repre-sents the graph after ontration of the u, v verties.A vertex ontration an result in multiple edges when the ontrated verties wereonneted to the same vertex. Multiple edges reated by a vertex ontration an beeither kept or ollapsed into one single edge. Keeping or ollapsing will be marked, ifit is not lear from the ontext.De�nition 2.27 (Edge ontration) Edge ontration is the vertex ontration oftwo adjaent verties. If e ∈ E, then G/e is the appropriate graph after the edgemerge.From here on vertex ontration will mean ontrating unonneted verties only, oth-erwise we will use the term edge ontration. All these de�nitions will appear in someform in the thesis, but for our topi, vertex ontration will be the most important onethat will rop up many times throughout this thesis.1∀ i, j Vi ∩ Vj = ∅, i 6= j



Chapter 3Graph Colouring ProblemThe graph olouring problem (GCP) is an important subset of onstraint satisfationproblems [35; 62; 104; 145℄. It has many real-world appliations suh as sheduling,register alloation in ompilers, frequeny assignment and pattern mathing [1; 18; 25�27; 31; 36; 47; 61; 108; 129; 130; 135℄. Here the problem will now be de�ned asfollows:De�nition 3.1 (Graph vertex k-olouring) LetG be a graph and C a set of olours,where |C| = k. Graph k-olouring is a map of verties to olours:
c : V

sur−−→ C , vi 7→ c(vi)Put brie�y, graph vertex k-olouring (or simply graph k-olouring) is an assignment ofolours for eah vertex. The problem ours in the olouring proess when we onsideredges as onstraints.De�nition 3.2 (Proper graph vertex k-olouring) A proper graph vertex k-o-louring, if it exists, is a k-olouring where adjaent verties are assigned di�erent olours:
c : V

sur−−→ C , vi 7→ c(vi) , ∀(vi, vj) ∈ E ⇒ c(vi) 6= c(vj)De�nition 3.3 (Graph minimum vertex olouring) Graph minimum vertex χ-o-louring is a proper χ-olouring where χ is the smallest integer needed to get a properolouring.The smallest number of olours that an properly olour verties is alled the hro-mati number of a graph and will be denoted by χ. A graph G is k-olourable if itsverties an be oloured properly by k olours; in other words, if its hromati number;is at most k. It will be alled k-hromati if k is its hromati number. In a partiularolouring, a subset of verties assigned to the same olour is alled a olour lass. Fig-ure 3.1 shows a proper olouring, whih is minimum as well. Sets {v1, v5}, {v2, v4, v6}and {v3} are the olour lasses in Figure 3.1. De�nition of k-olouring onsists ofa ondition for the existene of suh an assignment. The parameter k plays very im-portant role on the feasibility of a k-olouring. Setion 3.4 provides several bounds onthe feasibility. Without any quali�ation, the olouring of a graph is always a propervertex olouring so that no two adjaent verties reeive the same olour as seen in11



12 Graph Colouring ProblemFigure 3.1. Although, Setion 3.1.1 desribes other type of olourings as well. Sine avertex with a loop edge ould never be oloured properly, it is understood that graphsin this ontext are loopless. Moreover, it is reasonable to restrit the olouring tosimple graphs, where the edges are undireted. However, di�erent graph types an beseen in several generalisations of the problem. The terminology of using olours goesbak to map olouring initiated and analysed by the following authors in the periodof 1852-1890: Guthrie and De Morgan and Hamilton and Heawood and Cayley andKempe and Heawood [4; 8; 65; 83; 84; 157℄. Colours like red and blue are only usedwhen the number of olours is small, but generally olour names are substituted bynumbers 1, 2, 3, . . . , however they will be referred as olours. Unless stated otherwise,the unquali�ed term 'graph' usually refers to a simple graph. Without loss of generalitywe shall only onsider onneted graphs1, that is when there is only one omponent.Figure 3.1 shows a proper olouring. Colours are shown as di�erent angle oloured halfirles in ertain �gures where olours are used for the sake of larity.
v1

v2

v3

v4

v5

v6

Figure 3.1: A proper olouring of a graph.A olouring using at most k olours is alled a k-olouring. There are three mainquestions:1. Can a graph be oloured with k olours?2. What is a k-olouring of a graph, if it exists?3. How many k-olourings exist for a graph?This thesis onentrates on the algorithmi aspets of the olouring, hene we willmostly be onerned with answering question 2, but we annot ignore the other twoquestions stated above. The two other questions an assist us in algorithm design.However, providing a k−olouring (question 2.) serves to answer the k−olourability(question 1), but sometimes the k−olourability itself an be answered more easily,without providing any olouring. It is often important to know whether a graph is
k−olourable or not, e.g. before starting an expensive k−olouring algorithm. Severalmethods have been developed to quikly determine a k−olourability. These methodsusually provide bounds for k, and some of these bounds an be found in Setion 3.4. Atrivial example, when the answer to question 1 is straightforward, is when k is greater1There is a path from any vertex to any other vertex in the graph.



3.1 Graph olouring de�nitions 13than the maximum vertex degree. In this ase k olours are quite su�ient for aproper olouring as eah vertex has fewer neighbours than the available number ofolours. Non-trivial examples are the perfet graphs where the hromati number isomputable in polynomial time aording to [105; 110; 111℄. Usually, when task isthe k−olouring, �nding one solution for a olour assignment is enough. Nevertheless,Setion 3.1.4 shows how important is to analyse the whole set of solutions before wedesign an e�ient olouring algorithm. This hapter ollets neessary and interestinginformation about graph olouring to motivate and help understanding the rest of thethesis. To have better insight into the problem, it provides problem analysis besidesthe introdution of de�nitions and onepts.3.1 Graph olouring de�nitions3.1.1 Improper olouring and semiolouringWe saw an example of a proper olouring in Figure 3.1. Now we shall fous on properolourings, but �rst we shall mention other olouring types as well beause they anbe also useful in the design of proper olouring algorithms. One possibility is when analgorithm tries to exploit the features where not only proper but improper olouringsare also available.De�nition 3.4 (Graph vertex improper olouring) An improper olouring is a olour-ing where at least one onstraint is violated:
c : V

sur−−→ C , vi 7→ c(vi) , ∃(vi, vj) ∈ E ⇒ c(vi) = c(vj)Solvers whih apply improper olouring have to ope with the violated olouring, so theyhave to orret the olouring to get a proper olouring. On the one hand, this relaxationof the problem, where improper olourings are available leads to broader searh spae.This has its drawbaks sine it is more likely that we will not �nd a solution. Onthe other hand, it removes the onstraints temporarily in the spae exploration whihsupports more �exible algorithm design. We an design searh paths through thoseelements of the spae whih are not available in proper olouring. These paths anprovide a shortut to a solution.De�nition 3.5 (Graph vertex k-semiolouring [103℄) A graph k-olouring is a
k-semiolouring if at least half of the verties are oloured properly.
c : V

sur−−→ C, vi 7→ c(vi), ∀(vi, vj) ∈ E ′ ⇒ c(vi) 6= c(vj), E
′ ⊆ E, |E|/2 ≤ |E ′|Relying on a semiolouring, one an design an O(k(n) log2 n)-olouring algorithmsaording to the following [103℄.Lemma 3.1.1 If an algorithm an k(n)-semiolour any n-vertex graph G, where k(n)inreases with n, then it ould be used to O(k(n) log2 n)-olour G.



14 Graph Colouring ProblemReall our previous statements, G is a simple graph and k-olouring means proper k-olouring. Moreover, ontrating two verties refers to unonneted verties and edgeontration will identify ontration of onneted verties. Multiple edges reated bya vertex ontration an be either kept or ollapsed into one single edge. Keeping orollapsing will be marked if it is not lear from the ontext.3.1.2 Chromati and Ahromati numberMinimum olouring an be de�ned as �nding a partition of the vertex set into minimumnumber of independent sets. Consequently, the union of suh two independent setsresults in a non-independent set, otherwise we would be able to redue the number ofomponents in the partition.
χ = min{k : {Vi}ki=1 partition of V, Vi ∩ E = ∅ , (Vi ∪ Vj) ∩ E 6= ∅} (3.3)The maximisation of this expression (Eq. 3.3) leads to another important numbernamely the ahromati number.
ψ = max{k : {Vi}ki=1 partition of V, Vi ∩ E = ∅ , (Vi ∪ Vj) ∩E 6= ∅}The ahromati number tells us how badly a olouring algorithm an perform. Thenumber of olours used by and algorithm is between these two numbers, but they rarelyattain these bounds (see Setion 3.3). There are two additional numbers whih anhave a big in�uene on the performane of an algorithm, namely the lique and theindependene number.3.1.3 Clique and independene numberDe�nition 3.6 (Clique Number) The lique number ω(G) of a graphG is the num-ber of verties in a maximum lique of G.The problem of omputing the lique number for a given graph is an NP -ompleteproblem ([82; 139℄). Sine a lique is a omplete sub-graph, a omplete graph requiresas many olours as the number of its verties for a proper olouring. Hene at least asmany olours are needed for a proper olouring of a graph as the size of its maximumlique. This holds ω ≤ χ. Aording to Motzkin and Straus, formulation [66; 127℄liques an be haraterised by a submatrix in the adjaeny matrix (Figure 3.2(a) and3.3). The submatrix of an adjaeny matrix A whih belongs to a lique is a matrixwith every entry equal to one exept the main diagonal, whih has zeros 2 (Figure3.2(a)). To mask out this submatrix one an use a harateristi matrix of the edgesof the lique (Figure 3.2(b)) whih has ones in the appropriate positions, otherwiseit ontains zeros. The problem of lique �nding turns into the problem of �nding anappropriate lique mask whih masks out a lique submatrix from the adjaeny matrix.2The 0-s have been replaed by dots for the sake of larity.



3.1 Graph olouring de�nitions 15
v1 v2 v3 v4 v5 v6

v1 0 1 1 · · 1
v2 1 0 1 · · ·
v3 1 1 0 1 · 1
v4 · · 1 · 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·(a) A lique submatrix in the adjaenymatrix

x1 x2 x3 x4 x5 x6

x1 1 1 1 · · ·
x2 1 1 1 · · ·
x3 1 1 1 · · ·
x4 · · · · · ·
x5 · · · · · ·
x6 · · · · · ·(b) Charateristi matrix of the lique.Figure 3.2: Matries belongs to lique of {v1, v2, v3} verties.De�nition 3.7 (Independene number) The independene number α(G) of a graph

G is the ardinality of the largest independent set of G.Finding a maximum independent set in essene means �nding of a maximum liquein the omplementer graph. Consequently, the problem tight is the same, i.e. NP -omplete. As k-olouring de�nes a partition of V into k-independent sets {Vi}ki=1, thefollowing holds χ ≤ |V |
α(G)

. Colour lasses are independent sets in a minimum olouring.One an think of �nding suitable independent sets whih form appropriate partition ofthe vertex set. Therefore it is reasonable to examine the number of independent sets ina graph. The number of independent sets also represent the number of maximal liquesdue to their omplementary nature. The number of di�erent size maximal independentsets as well as the number of maximal liques is between n− logn−O(log log n) and
n− log n aording to Erd®s [54℄. A similar formulation an be given for independentsets as for liques using the adjaeny matrix of the omplementer graph. The submatrixof an adjaeny matrix whih orresponds to an independent set is a matrix with allentries equal to zero, i.e. the opposite of the lique submatrix ase (see Figure 9.8).Ordering the rows and relevant olumns of an adjaeny matrix aording to olourlasses in a k-olouring, we get the k number of zero bloks in the main diagonal.Hene, a olouring problem an be formulated by these zero bloks, as desribed inSetion 3.1.4.3.1.4 Colouring matriesAording to Setion 3.1.3, the submatrix of the adjaeny matrix whih orrespondsto an independent set is an all zero matrix. Colour lasses form independent setswith the assoiated zero submatries. The entries of these zero submatries de�ne theorresponding olouring, where the verties belongs to an all zero submatrix get thesame olour. These relations an be expressed by a olouring matrix X = (xij), whihis a {0, 1} matrix. It is de�ned by the onditions

xij =

{

1 if c(vi) = c(vj)

0 otherwise (3.5)An extreme example is the identity matrix, whih olours eah vertex di�erently. In



16 Graph Colouring Problemontrast, the matrix of all ones assigns just one olour for eah vertex. With a ompletegraph needs identity olouring matrix for proper olouring, the olouring matrix withall one entries is suitable for the empty graph only. Consider the {Vi}ki=1 partition ofverties into k independent sets, whih provides a k-olouring, where Vi is the i-tholour lass of ni number of verties. Taking verties in the order of the olour lasses,we an desribe the olouring by a olouring matrix whih has 1 bloks in the maindiagonal and zeros elsewhere. A few examples an be found in Figure 9.9. We notethat suh a matrix has the following properties ([51; 124℄): (vi, vj) ∈ E ⇒ xij = 0; Xis symmetri; X is positive semi-de�nite: X � 0.
3.2 Number of olouringsFor a graph there may be several possible k-olourings. The following setion is on-erned with their ardinality. The number of olours in a k-olouring an be expressedby a polynomial, alled the hromati polynomial. The hromati polynomial is de�nedas the unique polynomial of degree n through the points (k, p(k)) for k = 0, 1, . . . , n.De�nition 3.8 (Chromati polynomial) The hromati polynomial ounts the num-ber of ways a graph an be oloured using no more than a given number of olours. Ifthe number of olours is k then the hromati polynomial is denoted by p(k).The values of the polynomial ount the equivalent olourings as well (see an examplein Setion 11.7). The hromati polynomial ontains as muh information about theolourability of G as the hromati number does. Indeed, the hromati number is thesmallest positive integer that is not a root of the hromati polynomial. Thus χ =

min{k : p(k) > 0}. Setion 11.8 ontains an example for the hromati polynomial.
3.3 ComplexityUnfortunately, there is no known onvenient method for determining the hromatinumber of an arbitrary graph. Determining whether a graph admits k−olouring is di�-ult in general. However there is a polynomial time algorithm for ases k = 1 and k = 2,but for k ≥ 3 the problem beomes NP -omplete [80; 104; 138℄. Thus �nding thehromati number is, omputationally, a hard problem. It is not only NP−omplete,but there is also no polynominal time algorithm that an olour every graph G usingfewer than nǫχ olours for a spei� small positive onstant ǫ [160℄. To understandthe di�ulties involved better, the authors of [73; 144℄ demonstrated that olouring
3−olourable graph with 4 olours is still NP−hard. As for the ahromati number,determining it is NP−hard as well (see [62℄).



3.4 Bounds of the hromati number 173.4 Bounds of the hromati numberIn Setion 3.3 we saw how di�ult is to approximate the hromati number in general[160℄, but there are polynomial time omputable bounds of the hromati number whihapproximate well the hromati number in partiular ases. Moreover, the bounds allowus to relate the hromati number and the strutural properties of a graph. This setionwill desribe suh bounds.Brooks' theorem states a relationship between the degree of a graph and its hro-mati number. Aording to the theorem, for a graph where every vertex has at most
∆ neighbours, the verties may be oloured with just ∆ olours, exept for two ases.Complete graphs and yle graphs of odd length require ∆ + 1 olours.Brooks' [20℄. If the graph is not omplete or not an odd yle, it has the followingbound

χ ≤ ∆ (3.6)In Setion 3.1.3 we gave bounds where the hromati number is haraterised by thesize of the maximum lique and independene set.Clique number and independene number.
ω ≤ χ ≤ n

α
(3.7)The di�erene between the ω and χ an be arbitrarily large [70; 128℄. However, thereis no e�etive way to determine the lique number, beause it requires muh e�ort asthat for the hromati number. But there is a graph property whih an be e�ientlyomputed. This property provides a better lower bound for the hromati numberthan the lique number. Nevertheless, the di�erene between this property and thehromati number an still be large [56℄. Lovász introdued a graph property alled θ̄whih is omputable in polynomial time and gives a better lower bound than ω. θ̄(G)is omputed in the omplementer graph Ḡ, whih explains the 'bar' symbol. In fat,it serves as the vetor hromati number, whih is the solution of a relaxed grapholouring problem (see Setion 9.9).Lovász [109℄.

ω ≤ θ̄ ≤ χ (3.8)The result is tight for perfet graphs where ω = θ̄ = χ Not only is the value of theproperty important, but the way it obtained an be very useful too (see Setion 9.9). Astudy of θ̄ provides helpful information about graphs. It also has appliations in otherareas besides graph olouring.Ho�man and Wilf [88; 154℄.
1 +

λmax

−λmin

≤ χ ≤ λmax + 1 (3.9)The di�erene between the λmax and χ an be large (see Setion 3.7), but in Setion 9.5we shall see that this bound is useful in olouring algorithm design. Also, a relationship



18 Graph Colouring Problemmay be seen when we examine the relations between indued matrix norms. The spetralnorm is the smallest among the indued norms. For graphs the spetral norm is equalto the largest eigenvalue λmax. Sine ∆ = ||A||1 = ||A||∞ and λmax ≤ ∆, hene
χ ≤ λmax + 1 ≤ ∆ + 1 (3.10)For regular graphs the equality λmax = ∆ holds. Both lower and upper bounds anhelp in algorithm design. Identifying the target olouring and the starting k an bean important in a olouring proess. This an be ahieved by determining an upperbound value. Knowing the lower bound may also be useful in the preparatory step ofthe olouring proess, where a graph an be simpli�ed by applying this bound. Vertieswith degree lower than a lower bound value an be removed (see [29℄), while an upperbound an be a target olour in the beginning of a minimal olouring proess.3.5 Charateristi polynomialMany bound estimates in Setion 3.4 were obtained from an algebrai analysis of theolouring problem. Usually, the analysis is based on some matrix whih haraterisesthe problem. Di�erent matries may be assoiated with a graph. One obvious exampleis the adjaeny matrix, whih is illustrated in Figure 3.3. This matrix enodes the

v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

v1 · 1 1 · · 1
v2 1 · 1 · · ·
v3 1 1 · 1 · 1
v4 · · 1 · 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·Figure 3.3: A graph G and its adjaeny matrix.graph enoding important properties. Most notably its eigenvalues, its determinant andits trae. The eigenvalue problem for this is

Av = λv → (λI − A)v = 0 (3.11)Let the eigenvalues of this equation be λi, where λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin,and let v1,v2, . . .vn be the eigenvetors, respetively. This is a well studied equationin the literature and there are several solvers whih an ompute all the solutionse�iently. Owing to the de�nition of the trae and the relation with the sum ofeigenvalues, the following ondition holds trA =
∑

i aii =
∑

i λi = 0. For non-bipartite graphs λmax > −λmin [45℄, while for bipartite graphs the absolute values ofthe eigenvalues are equal. In Setion 3.4 we showed how the eigenvalues an be usedto set bounds on the hromati number. Also, in setions 9.4.2 and 9.5 we desribe



3.6 Searh spaes 19e�ient olouring strategies based on the the prinipal (the largest) eigenvalue and theprinipal eigenvetor. The eigenvalues as roots of a polynomial pA(x) = Πi(x − λi)give the harateristi polynomial of A.De�nition 3.9 (Charateristi polynomial) The harateristi polynomial of a ma-trix is de�ned by
pA(x) = det(A− xI) (3.12)The harateristi polynomial of a graph is the harateristi polynomial of its adjaenymatrix. It is a graph invariant, i.e. isomorphi graphs have the same harateristipolynomial, hene it is more interesting in the light of the great symmetry of theproblem (see an example in Setion 11.7). Next, write pA in the form

pa(x) = det(xI −A) = xn − c1xn+1 + · · ·+ (−1)ncn (3.13)The polynomial oe�ients also enode interesting features of the graph whih anbe of help in the olouring proess as well. Setion 9.7 desribes an appliation forolouring. From [9℄, the oe�ients of the harateristi polynomial of a graph satisfythe onditions: c1 = 0, −c2 = |E|, −c3
2
, (−1)ncn = Πiλi = detA. Setion 11.8ontains an example for the harateristi polynomial.3.6 Searh spaesThis setion desribes searh spaes whih generally arise in graph olouring algorithmdesign.3.6.1 Permutation spaeUsing a greedy olour assignment, there is always a permutation of a verties whihgenerates a solution. Setion 4.2 ontains more details about the greedy olour assign-ment problem. Next, let us see a solution (Figure 3.1) and order verties aordingto its olour lass identi�er, where the same olour verties appear in a natural order(Figure 3.4). Note that the olour lass identi�ers may be hanged without hanginga solution. The verties belonging to a olour lass an be listed in not only a natural,but arbitrary order. Hene several permutations an result in the same performaneolouring, produing a symmetry in the spae. After reating a permutation of verties,we do a greedy olour assignment to the verties, in the order of their appearane in thepermutation. Greedy olouring produes a olouring whih requires no more oloursthan the original solution. This proedure may lead to di�erent olourings. This isbeause a low degree vertex whih does not have any neighbour in any olour lassan get di�erent olours, resulting in another optimal olouring. However they anbe removed before starting a olouring (see Setion 3.4). Based on this approah, analgorithm must searh in the permutation spae of the verties. Even though the size ofthis searh spae is large (n!), it has been proved a better representation for sequential



20 Graph Colouring Problemolouring shemes in [7; 52℄ than the vetorial olour assignment sheme, whih has knelements (see Setion 3.6.3). The graph olouring problem has large symmetries (seean example in Setion 11.7), thus the n! spae will be redued onsiderably. Reallthat the verties belonging to the same olour lass an appear in an arbitrary order.Hene, several permutations may result in the same andidate solution. An algorithm,whih searhes in the permutation spae, always targets the minimum olouring ase.
π = (v1, v5, v2, v4, v6, v3) cg = (1, 1, 2, 2, 2, 3)Figure 3.4: A solution represented as a permutation π in a greedy olouring cg.3.6.2 Independent set spaeSine the olour lasses form independent sets, a searh an be performed in thisspae. The searh itself may be a searh of an appropriate harateristi vetor whihselets a suitable subset of the set of all independent sets. Although it assumes thegeneration of all independent sets, whih is time and spae onsuming task as thenumber of independents sets an be huge (see Setion 3.1.3). Therefore, a dynamigeneration approah an be applied instead of the stati one, whih generates all setsin advane. Hene a searh must be done in a dynamially hanging environment,starting with e.g. the one-size independent sets, namely, the verties. An algorithman sequentially ombine independent sets by performing a union of some of them. Theinterpretation of this approah in a olouring language might be a re-olouring shemewhere the starting olour palette is n, whih olours eah verties di�erently. In orderto redue the number of olours used, an algorithm must properly re-olour the vertiesby using an (n− 1)-olour palette. This proess is ontinued until no further redutionis possible. Usually, a greedy variation of this approah is applied in the literature[70; 72; 77; 103; 152℄. Namely, a olour is hosen in advane and some vertex hoiestrategy is applied. The olour hosen is assigned to eah possible vertex. When nofurther suh assignment is possible, an algorithm gets another olour and goes on inthe same fashion for the remaining verties, not a�eted by the previous olourings. Inan independent set formulation, it means that one an �nd an independent set, that isa dominating set and where no further vertex an be enompassed. Then removing thedominating set, the algorithm ontinues this same strategy for the remaining verties.Figure 3.5 shows the olour lasses (independent sets) of the olouring of Figure 3.1.

S1 = {v1, v5} S2 = {v2, v4, v6} S3 = {v3}Figure 3.5: A solution represented as a set of independent sets.3.6.3 Vetor spaeIn Setion 3.6.2 we introdued a searh spae where independent sets, i.e. olour lasseswere generated as onstituents of the olouring. These approahes require a {0, 1} har-ateristi vetor x with k non-zero omponent whih designates k independent sets,if the goal is a k−olouring. See a olouring in Figure 3.6 and its representation as



3.7 Random Gn,pe graphs 21a harateristi vetor in Figure 3.6. In the ase of minimum olouring, the spae ofall possible {0, 1} vetors, whose dimension is the number of possible independent sets(see in Setion 3.1.3). Although this approah is quite time-onsuming. Unfortunately,it assumes the generation of all independent sets in a graph in advane, whih requires
2n independent set examinations, using a brute fore approah. Furthermore a sophis-tiated generation of the independent sets may require extra omputation e�ort. Thebene�t of this formulation is that it is possible for an algebrai method to be appliedon a relaxed version of the problem, where x is no longer binary {0, 1} valued but realvalued. The harateristi vetor x an be deomposed into k harateristi vetors
{vi}ki=1 that form a polyhedron. Eah of these vetors have only one non-zero element,whih designates an independent set. Hene, eah vi represents only one independentset. A olour assignment to a vertex may be simply interpreted as a disrete olour

{S1 S2 S3 S4 . . . }
( 1 1 1 0 . . . )Figure 3.6: Charateristis vetor of independent sets S1, S2, S3 of a solution in the setof all independent sets.assignment funtion. The assignment an be represented by an n-tuple, an integervetor on n elements. The size of the searh spae is kn in the ase of k−olouringand nn if we desire minimum olouring. However nn an be redued based on the upperbounds and lower bounds of the problem (f. the bounds given in Setion 3.4).

3.7 Random Gn,pe graphsThere are many lasses of graphs that ould and should be used to test olouringalgorithms. The most natural lass is perhaps the lass Gn,pe, the random graphs,where n is the number of verties, and for eah pair of verties an edge is assignedwith probability pe, i.e. an edge probability. This lass of graphs has been extensivelystudied from a olouring aspet, espeially for pe = 1
2
, where the number of the possibleinstanes is the biggest. Aording to [12; 13; 58; 71℄, asymptotially, for a �xedprobability pe and b = 1

1−pe
, the hromati number is almost surely be

χ ∼ n

2 logb n
(3.14)Furthermore, if d =

P

i di

n
is the average degree in the graph, then the following holds

χ ∼ d
2 ln d

. The average degree in a graph is a lower bound for the largest eigenvalue[45; 46℄ 3 and hene the gap between the largest eigenvalue and the hromati numberan be arbitrary large.3d =
P

i di

n = 1
T A1

1T 1
≤ maxx

x
T Ax

xT x
= λmax



22 Graph Colouring Problem3.8 Phase transitionGraph k−olouring exhibits a phase transition depending on the ratio of onstraints tothe maximum number of possible onstraints (

n
k

), where the number of solvable probleminstanes quikly drops to zero. At that transition onstraint solvers require the mostsearh e�ort to �nd solutions for solvable problem instanes. Reent investigations[43℄ have shown a good explanation towards explaining the rise in di�ulty duringthe phase transition. To demonstrate the existene of the phase transition, takea lass of k−olourable random graphs, where the graph struture is known. Let
Geq,n=200,pe,k=5 be the set of 5−olourable equipartite random graphs on 200 verties.In the ase of equipartite graphs, eah olour lass has nearly the same number ofverties. Moreover, pe de�nes the edge probability (see random graphs in Setion 3.7);whose value desribes the number of the edges in the graph. Setion 4.1 provides furtherdetails about equipartite graphs. A sequene of graphs are generated by modifyingthe edge probabilities from 0 to 1 in a systemati way. Hene the number of edges ofthe generated graphs is varied in a region alled the phase transition. This is wherehard-to-solve problem instanes are generally found, whih is shown using the typialeasy-hard-easy pattern in Figure 3.7. The graphs are all equipartite, whih means that ina solution eah olour is used approximately as muh as any other. The demonstrationgraphs are generated using a well-known graph k−olouring generator of Culberson[44℄. The graph set onsists of groups aording to the following edge probabilities
pe ∈ {0.01, 0.03, 0.05, . . . , 0.98}. Eah group has ten graph instanes generated byusing the same pe, but di�erent random seeds {1, 2, . . . , 10} in the generation. Thesame random order of the verties is �xed for eah graph. Then a greedy olourassignment is applied for eah graph; that is, taking the ordered verties of a graph,the �rst vertex get the �rst olour and all following verties get the �rst available olourwhih produed proper olouring. Setion 4.2.2 ontains more information about thegreedy olouring and its analysis. This proedure is repeated nine times to get tendi�erent random orders. Hene, there were ten olourings for eah graph instanes.The number of olours of the olourings was averaged for eah pe groups, i.e. numberof olours of ten olourings for ten graphs of a pe group resulted in 200 values. Theseaverages with 95% on�dene intervals are plotted in Figure 3.7. A ompetition graphset in the literature may ontain only partiular instanes of graph families. Therefore,generated instanes, whih inlude the phase transition region, are neessary in anexperimental omparison of di�erent olouring algorithms.3.9 SummaryIn this hapter we provided an insight into the graph vertex k−olouring problem andinvestigated it from several angles. In the next hapter we will give an overview of thework done on this problem in the literature.
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Chapter 4Related workGraph olouring has a wide range of real-world appliations to solve onstraint satisfa-tion problems, hene its results are of great intrest for researhers. Sine the problem�rst appeared in the literature, a lot of researh has been done in this �eld. This hap-ter reviews the major appliation areas of graph olouring and desribes approahes forsolving the problem. In addition, interesting graph instanes and onrete algorithmsare given with whih the various approahes an be ompared experimentally.4.1 Benhmark graphsThis setion desribes a set of benhmark graph instanes used in the experimentsperformed in Chapter 10. They are drawn from a large number of soures. Their de-sription reveals how a real-world problem an be de�ned as a graph olouring problem.The DIMACS arhive. A ommon repository was reated for testing olouringalgorithms in the Seond DIMACS Challenge [93℄ in 1992. Graph olouring was oneof the problems addressed in the hallenge. The purpose of the ompetition was toenourage and oordinate researh in the experimental analysis of algorithms. Laterthe repository was extended by Trik adding other instanes [143℄.Random k-equipartite graphs. Next, de�ne the following lass of graphs to provideanother testbed for our algorithms. Let Geq,n,pe,k be the set of suh Gn,pe randomgraphs (see Setion 3.7), where the vertex set of G is partitioned into k as nearlyequal sized sets. These graphs form the lass of random equipartite graphs. They areone of the most di�ult to solve instanes beause they have the largest symmetryand the largest number of instanes in the Gn,pe lass. To get an instane in thislass one an k−partite verties and draw edges only between the members of di�erentsubsets with a ertain probability, i.e. an edge probability pe. Of ourse, the hromatinumber of suh an instane is not greater than k, but it strongly depends on the edgeprobability. Indeed, for a zero edge probability the hromati number drops to one. Theedge probability of a k−partite graph lies in the inequality range 0 ≤ pe ≤ (k−1)
(n−1)

· n
k
.Varying p systematially, experiments may reveal those regions where algorithms havedi�ulties, namely the phase transition region. In order to produe test instanes ofequipartite graphs, Culberson's graph generator [44℄ was used here.25



26 Related work4.2 Benhmark algorithmsThis setion provides benhmark algorithms whih are ommonly used to ompare theperformane of methods [17; 48; 70; 75; 151℄. The performane of these methods servesas referene in the experimental omparison of the algorithms desribed in this thesis.Finding a solution of the olouring problem is hard in general, as shown in Setion 3.3.Hene one an rely on heuristis whih do not provide an exat solution, but only anapproximate one. However, several algorithms have been developed to solve the graphvertex olouring problem, but none of them is optimal, their performane is alwaysdepending on the investigated problem. There are several polynomial time algorithms(see [70; 75; 77; 103; 151; 152℄) that provide a guarantee for the approximate solutionof the olouring for a given number of olours. Some of our benhmark algorithmshave this guarantee, but for ertain problems their performane an be worse thanthose algorithms whih do not ensure suh a guarantee.4.2.1 Traditional sequential olouring shemesAording to the authors of [70℄, there are two traditional sequential olouring ap-proahes. The �rst is the sequential olour assignments, where verties get olours ina greedy manner; that is, eah vertex gets the earliest available olour. Algorithms inthis sheme take unoloured verties in order via some strategy then apply a sequentialgreedy olour assignment to the verties, as desribed in Setion 4.2.2. The searh spaeis the spae of vertex permutations, as seen in Setion 3.6. This greedy olouring ap-proah works well with several vertex ordering strategies, as shown in [17; 48; 75; 151℄.These algorithms use some heuristis and usually without any guarantee of the numberof olours to be used. Furthermore, there is always an order of the verties whihresults in an optimal olouring with the greedy olouring approah. See Setion 4.2.2for further details. The seond approah is the maximal independent set proedure,where instead of unoloured verties, the olours or olour lasses are taken step bystep. Colour lasses form independent sets. At the start, there are no olour lasses,hene it starts with an empty olour lass, i.e. an independent set. Then it �lls thisset with unoloured verties, aording to a vertex hoosing strategy, until its satu-rated; that is, no more unoloured verties an be enompassed. Saturation ourswhen the set beomes a dominating set; that is, eah external vertex is onneted toone of the internal verties. In terms of a olour assignment, take the �rst olour andolour as many verties as possible with the same olour. If a olour lass is saturated,then it reates a new one and ontinues in the same fashion, That is, when no moreunoloured verties an be oloured with the urrent olour, take a new olour andolour with the new olour as many unoloured verties as possible, repeating this stepuntil unoloured vertex exists. Algorithms whih provide a guarantee for a maximumnumber of olours used in their olouring apply this approah [70; 77; 103; 151; 152℄.This above approah an be interpreted as a maximal independent set strategy [70℄.In fat, a olour hoie is a hoie of a olour lass, whih is an independent set. Withthis strategy, an empty independent set � a new olour � is reated and �lled with



4.2 Benhmark algorithms 27verties until it beomes maximal, i.e. when no more vertex addition is possible. Toillustrate this, start with a single vertex, a one-element independent set and put asmany non-neighbour verties into this set as possible in order to inrease the size of theindependent set to its maximum. After a while the set beomes a maximal independentset, i.e. eah non-inluded vertex will have a neighbour vertex in the independent set.Then ontinue with the rest of the verties in the same fashion. In traditional se-quential olouring shemes one is onerned with oloured and unoloured sub-graphs,denoted by Gcol and Gcol respetively. Algorithms exploit information taken from bothsub-graphs. Hene we shall now de�ne some of their important properties:De�nition 4.1 (Unoloured degree) The unoloured degree of a vertex v is thenumber of unoloured neighbours of v: dunc(v) = |{vj | vj ∈ N(v) , vj ∈ Gunc}|.De�nition 4.2 (Coloured degree) The oloured degree of a vertex v is the numberof oloured neighbours of v: dcol(v) = |{vj | vj ∈ N(v) , vj ∈ Gcol}|De�nition 4.3 (Colour saturation degree) The oloured saturation degree of avertex v is the number of di�erent neighbour olours of v: dsat(v) = |{c(vj) | vj ∈
N(v) , vj ∈ Gcol}|The same notation is used for their maximum and minimum as for the maximum degree
∆ and minimum degree δ, with the inlusion of the appropriate supersripts unc,col ,sat.4.2.2 Greedy olouring sheme (∆ + 1)Greedy olouring takes an order of the verties and assigns olours sequentially to themin a greedy manner. That is, a vertex gets the earliest available olour. Vetor xontains the sort keys of the ordering of the verties. It is predetermined by a vertexordering strategy.Greedy olouring algorithm(G,C,x)1 for t← 1 to n2 do3 v← [arg maxvi{xi | vi ∈ V unc}]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]The greedy olouring method takes the unoloured vertex v whih has the maximumvalue in the sort key vetor x. Then it �nds the earliest available olour c, then assigns
c to v. The �rst available olour is that olour whih has a minimum index and is notassigned to any of the neighbours of v. Note that C = {1, . . . , k} and every olourassignment implies that theGcol = Gcol+v andGunc = Gunc−v sub-graphs are updatedeah time. There may be the same degree verties and they form a vetor of urrently



28 Related workhosen verties v in the order of their hoie. The algorithm always hooses the �rst
v1 among them. The greedy olouring proedure does not provide any strategy forordering the verties. Many heuristis exploit the power of the greedy performane andtry to further re�ne the upper bound of the number of olours used. These heuristisexplore the spae of the vertex permutations. The vertex hoie of these heuristis anresult in a set of verties if no other hoie is present, the �rst being hosen amongthem by taking a natural order. A vertex ordering heuristis whih uses greedy olouringannot perform worse than ∆ + 1 as they keep the olouring below the Brook's bound(see Setion 3.4). Nevertheless, for partiular graphs the greedy performane variesgreatly, but for large Gn,pe random graphs, almost surely, it onsumes approximately

n
logb n

olours, where b = 1
1−pe

([70; 71℄); that is, approximately twie as many asthe hromati number (see Setion 3.7). Setion 3.8 detailed an experiment wheregreedy olouring was performed by taking 5−olourable equipartite random graphs on
200 verties. The phase transition ourred when the edge probability approahed
pe = 0.4; that is the performane of the greedy olouring beame worse in this region.The expeted number of olours is n

logb n
= 200

log1.6̇ 200
= 19.28, whih seems quite goodafter analysing the plot of Figure 3.7. However, for other pe−s, the expression givesover and underestimations: for pe = 0.2 it is 8.42 and for pe = 0.8 it gives 60.75. Notethat the expression belongs to random graphs and our analysis overs only randomequipartite graphs on 200 verties. Nevertheless, this expression haraterises well thegreedy olouring at the peak of the phase transition.4.2.3 Welsh-Powell (maxi min{di + 1, i})The Welsh-Powell heuristi approah [151℄ is based on the greedy algorithm. The basisof the unoloured vertex hoie is the degree. This variant of the greedy olouringapplies a vertex ordering. Verties are ordered aording to dereasing vertex degrees.The di = d(vi) is the degree of the vertex in the i-th position in the ordering. Thengreedy olouring is applied to the verties in order, whih uses at most maxi min{di +

1, i}. Let [ . ] be an operation whih generates a vetor from the elements of a set,taking a natural order.Welsh-Powell olouring algorithm(G,C)1 for t← 1 to n2 do3 v← [arg maxvi∈V
unc dG(vi)]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]The olouring onstraints are spei�ed by the edges. The Welsh-Powell heuristi on-siders the highest degree vertex as the most onstrained one. i.e the most di�ult oneto olour. However, during a sequential olouring the olouring onstraints are spei�edby the number of neighbouring olours. It is a variant of the greedy olouring wherethe x = d, where d ontains the degrees of the verties.



4.2 Benhmark algorithms 294.2.4 Hajnal (λmax + 1)The Hajnal heuristi approah [75; 153℄ applies a similar assumption as the Welsh-Powell heuristi approah, but its bound may be better than ∆ + 1. The maximumnumber of olours used by this heuristi is equal to the maximum 1, i.e. the prinipal(the largest) eigenvalue λmax of the adjaeny matrix of G. This bound is providedby a greedy olour assignment where the order of the verties is determined by theomponents of the prinipal eigenvetor 2. Eah eigenvetor omponent is assoiatedwith a vertex aording to the orresponding adjaeny matrix rows/olumns. Thisvariant of the greedy olouring de�nes the sort key vetor x by the omponents of theprinipal eigenvetor.Hajnal Colouring Algorithm(G,C,x)1 for t← 1 to n2 do3 v← [arg maxvi{xi | vi ∈ V unc}]4 v = v15 c← min C \ {c(vi) | vi ∈ N(v)}6 c(v)← c7 return [{c(vi)}ni=1]

4.2.5 DSatur of BrèlazThe DSatur heuristi [17℄ rely on the olour or olour saturation degree dsat of vertiesin the urrent state of the olouring, i.e the number of di�erent neighbour olours ofa vertex. The Welsh-Powell and the Hajnal heuristi do not onsider the state of theurrent olouring, but DSatur does it. Hene it is reasonable to distinguish between theoloured and unoloured sub-graphs of the original graph G. Objets belonging to theoloured or unoloured sub-graphs are denoted by col and unc subsripts, respetively,e.g. V col and V unc = V \V col. DSatur hooses the most onstrained vertex in terms ofthe olour degree; that is, it hooses the maximum olour degree vertex and performsa greedy olouring on it. Sine DSatur does not re-olour, there is no sense in usingthe olour degree for the already oloured verties. For tie breaking, when more thanone vertex has the same olour degree, the Welsh-Powell heuristi is applied in the
Gunc graph. It looks for the vertex that has the highest unoloured degree ∆unc amongthe unoloured verties. The unoloured degree dunc = dGunc is then alulated in theunoloured graph Gunc, i.e. the edges of oloured verties are not taken into aount.1For graphs λmax ≥ −λmin, equality ours only in the ase of bipartite-graphs.2The adjaeny matrix is symmetri, hene the right and the left eigenvetors are the same.



30 Related workDSatur olouring algorithm(G,C)1 for i← 1 to n2 do3 U ← {vi | dsat(vi) = ∆sat, vi ∈ V unc}4 v← [vi | dunc(vi) = ∆unc, vi ∈ U ]5 v = v16 c = 1 + minC \ {c(vj) | vj ∈ N(v)}7 c(v) = c8 return [{c(vi)}ni=1]Dsatur put the most saturated verties into the U set. If there are more than onesuh vertex, then applies a trial for tie breaking by the degrees of the elements of U .The �nal tie breaking is performed by hoosing the �rst of the same maximum degreeverties of U as seen in the greedy olouring sheme. Then a the vertex hosen gets aolour by a greedy olour assignment.4.2.6 Erd®s (O(n logn))The Erd®s heuristi makes similar assumptions as DSatur but in the opposite way,however he reommended it for a theoretial analysis, and several algorithms apply hispriniple or similar assumptions [77; 152℄. An Erd®s O(n/ logn) heuristi [70, p. 245℄works as follows. First, take the �rst olour and assign it to the vertex v that has theminimum degree. Vertex v and its neighbours are removed from the graph. Continuethis in the remaining sub-graph in the same fashion until the sub-graph beomes empty,then take the next olour and use the algorithm for the non-oloured verties and soon until eah vertex is assigned a olour. This approah guarantees O(n/ logχ(n))number of olours in the worst ase. However, an algorithm whih has proved boundsfor the number of olours used in a olouring makes an exat analysis possible, but otheralgorithms without suh a bound an perform better in many ases. Next, separatethe oloured and unoloured sub-graphs as well, as desribed in Setion 4.2.5 for theDSatur heuristis. Here the minimum degree of the unoloured verties will be denotedby δunc(v) = δGunc(v) = mini{dunc(vi) | vi ∈ V unc}.Let Vc be the olour lass of c, i.e. the set of the same oloured verties.Erd®s olouring algorithm(G,C)1 c← 12 for i← 1 to n3 do4 v← [vi | dunc(vi) = δunc, N(vi) ∩ Vc = ∅, vi ∈ V unc]5 if v = [ ]6 then c← c + 17 else v ← v18 c(v) = c // v beomes the member of Vc9 return [{c(vi)}ni=1]The vetor v onsists of the unoloured minimum degree verties, whih an get theurrent olour c, keeping the rule of the proper olouring; that is, the neighbours of



4.2 Benhmark algorithms 31these verties annot be in the olour lass Vc. The �rst vertex of these verties isseleted and c is assigned to it. The last olour c is updated only when v is empty, i.e.there is no further vertex whih an get a olour c.4.2.7 Evolutionary algorithm � standard �tnessAn evolutionary algorithm (EA) is a subset of evolutionary omputation, a generipopulation-based metaheuristi optimisation algorithm. One popular approah for deal-ing with graph k−olouring is evolutionary omputation [40; 42; 52; 55; 68; 133℄,where a set of andidate solutions (the population) is ontinuously hanged (evolved)until it ful�ls a ertain stop ondition. The evolution of the population is divided intogenerations. Candidate solutions an be modi�ed or ombined, reating new andi-dates between two generations. We use a standard steady state evolutionary algorithm[6; 53℄ to searh through the spae of permutations (see Setion 3.6.1). The steadystate model keeps the size of the population onstant throughout the generations. Thisalgorithm maintains a population Π of permutations of the verties. Eah permutation
π is evaluated by the so-alled �tness funtion f(π), whih de�nes the goodness of aandidate solution π. Here, f(π) = k(π) − χ̂, where χ̂ is a lower bound of the hro-mati number (e.g. 1). The k(π) determines the number of olours used by a greedyolouring (see Setion 4.2.2), using the π order of the verties. Randomly generatedpermutations form the initial population. Then the appropriate �tness values are alu-lated in eah generation. After doing the �tness alulation eah andidate solution ismodi�ed (mutated) by a ertain probability pmut and eah andidate pair is ombined(reombinated) based on another probability pxover to get new andidate solutions inthe searh spae. Reombination or rossover is the ommon name of the two operandhange operators, whih produe one or two new permutation(s). A seletion is per-formed in the set of the original and new elements of the population to reate the nextpopulation. This proedure ontinues until the stop ondition is satis�ed. Then thegreedy olouring by the best andidate solution, i.e. permutation, provides the outputof the algorithm. The settings of the evolutionary algorithm :initialisation: uniform random generation of permutations.mutation: simple swap mutation, whih selets at random two di�erent elementsin the permutation and then swaps them (see Figure 4.1(b)).rossover: 2−point order based rossover (ox2), as shown in Figure 4.1(a). Thetwo permutations π1 and π2 are ut at two points. The �rst and the last partof the permutations are inserted without any hange into the two new andidatesolutions π′

1 and π′
2. After the entral part in the new permutations is orderedaording to the element order in the other permutations.seletion: 2−tournament seletion, where it employs elitism of size one; that is, itkeeps the best andidate solution. Tournament seletion involves running several"tournaments" among a 2 individuals hosen at random from the population.The winner of eah tournament (the one with the best �tness) is seleted.stop ondition: the algorithm terminates, when it reahes a ertain number ofgenerations or number of �tness evaluations. Furthermore, when an optimal



32 Related worksolution is found, here, usually the �tness is zero at an optimum point. In ourase, it is ahievable if χ̂ = χ.
EAswap,ox2

k−χ̂ (G,C)1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate eah permutation5 do6 k(π)← max{Greedy colouring(G,C, π)} //Number of olours used7 f(π)← (kπ − χ̂) // Fitness a8 Π = Π ∪ mutation(Π, pmut) ∪ crossover(Π, pxover)9 Π = selection(Π, f)10 π ← best(Π, f)11 return Greedy colouring(G,C, π)aχ̂ is a lower bound of χ.
π1 = v6 v̊1 v̊4 v3 v2 v5

π2 = v3 v2 v5 v̊4 v6 v̊1

π′
1 = v6 v̊4 v̊1 v3 v2 v5

π′
2 = v3 v2 v5 v4 v6 v1(a) Order-based rossover (ox2). v1 v4 v3 v2 v5 v6

swap(v4,v5)−−−−−−→ v1 v5 v3 v2 v4 v6(b) Swap mutationFigure 4.1: EA operators. Elements v1, v4 of π1 are ordered aording to the order ofthese elements in π2 in Fig.4.1(a)4.2.8 Evolutionary algorithm � Stepwise adaptation of weightsThe Stepwise Adaptation of Weights (saw) was introdued in [52℄ as a very promisingtehnique for olouring graph 3-olouring problems. The basi idea behind saw is tolearn on-line about the di�ulty of onstraints in a problem instane. This is ahievedby keeping a vetor of weights that assoiates the weights with onstraints. In theontext of graph k-olouring, every edge is assigned a weight. These weights thenget initial values of one. Next, a basi evolutionary algorithm is used to solve a givenproblem instane. Every generation is interrupted in order to vary the vetor of weightsusing the best individual of the urrent population. Every onstraint violated by thisindividual is inremented by one. Then the evolutionary algorithm uses this new vetor.The �tness of an individual equals the sum of the weights of all the onstraints itviolates. By adapting this �tness funtion using the vetor of weights may prevent theevolutionary algorithm from getting stuk in loal optima.



4.3 Algorithm approahes 334.3 Algorithm approahesExtending the list of Setion 4.2, this setion disusses other frequently used approahesas well to solve the graph olouring problem. Lots of algorithms have been reated andstudied to solve the graph minimum vertex olouring problem. Atually, these algo-rithms ome in two main types: the exat algorithms where �nding of a solution is guar-anteed, but the time involved may be onsiderable due to the omplexity of the problem(see Setion 3.3); and the non-exat, the approximation algorithms where however asolution is not guaranteed but one may �nd a solution or a good approximation of it ina reasonable time. The latter methods may have stohasti omponents. Some reentsurveys of these methods an be found in [60; 91; 114; 158℄ The graph olouring prob-lem an be exatly solved by an exhaustive searh, i.e. systematially exploring a searhspae [43; 44; 93℄. Unfortunately, when the size of the instanes grows the runningtime for exhaustive searh soon beome prohibitively large, even for instanes of fairlysmall size. To improve the e�ieny of the searh, several heuristis were developed togenerate a 'good' starting andidate solution whih may be lose to an optimal solution[17; 48; 70; 75; 77; 108; 116; 131; 137; 151�153℄. Then starting the exploration proesswith the generated andidate solution, a systemati searh an onsiderably improve theperformane. Usually, the exploration is based on an examination of the loal environ-ment of the generated solution and it assumes that a neighbourhood relation is de�nedon the elements of the searh spae. This approah led to the development of loalsearh methods [5; 24; 30; 60; 79; 87℄. These methods usually apply some heuristi togenerate a new andidate solution from an existing one in its loal environment. Butthough a heuristi an onsiderably improve a solution they do not always provide anoptimal solution, hene these methods belongs to the lass of approximate algorithms.Many algorithms studied today employ a stohasti proess in the loal searh to guidea andidate solution to a suboptimal solution or, hopefully, to an optimal solution.Several of these approahes maintain a population of andidate solutions. Examplesof suh methods inlude tabu-searh [10; 87℄, simulated annealing [28; 92℄ and antolony optimisation [21; 39℄. One popular approah for dealing with graph olouringis evolutionary omputation [6; 40; 42; 52; 55; 59; 68; 81; 115; 133; 145℄. In thedevelopment of algorithms for graph olouring, various integer programming formula-tions of the problem ould be used. Several suh formulations, usually involving binaryvariables, have been proposed. These variables an identify di�erent strutures: e.g.independent sets [118℄; a variable for eah possible olour and vertex [33; 120; 122℄;ayli orientations of a graph [57℄. In several formulations an optimal solution anbe represented as a binary vetor of the variables. These binary vetors onstitute apolytope, a olouring polytope. These polytopes are the entral topis of the prob-lem analysis [22; 67℄. Several relaxed versions of these integer programmes have beendeveloped to approximate a fae of a olouring polytope [50; 103; 118; 121; 136℄. Dif-ferent tehniques may improve the e�ieny of these methods e.g. olumn generationwith branh-and-bound [23; 118; 136℄ or branh-and-ut [122℄. Atually the branh-and-bound tehnique impliitly uses Zykov's idea (see [136℄). This idea is detailedseparately in the next setion.



34 Related work4.3.1 Zykov-tree approahIn the middle of the last entury Zykov ame with the idea, of applying an edge additionor vertex ontration instead of a olour assignment in the olouring problem. Duringthese operations new graphs are reated from the original one whih may inherit theparent graph's properties.Theorem 4.1 (Zykov theorem [162℄) Let G be a graph. If {v, w} /∈ E, then
χ(G) = min{χ(G+ vw), χ(G/vw)}ProofLet C be the set of proper olourings and |c| the number of olours used by a olouring

c ∈ C, then χ = min{|ci ∈ C|} = min{min{|ci| : ci(v) 6= ci(w)},min{|ci| : ci(v) =

ci(w)}} = min{χ(G+ vw), χ(G/vw)} 2Two verties v and w get either the same or di�erent olour in any olouring. Therefore,there may be a ontration or edge between them. A Zykov binary tree ([14; 162℄)is built on these two operations of two unonneted verties of a graph. Here weonnet them or ontrat them, keeping their neighbours with simple edges. Aordingto the Zykov theorem, one of the result graphs with these operations has the samehromati number as the original graph (see 4.2). The onstrution of the Zykov-tree isterminates, when no further redution is possible. Hene, the leaves onsist of ompletegraphs Ki. Eah of them desribes a olouring where ontrated verties get the sameolours. Consequently, χ = mini |V (Ki)|. The Zykov-tree is not uniquely determined,however. It depends on the order in whih non-adjaent vertex pairs are hosen. EahZykov-tree has exatly one branh that is exlusively generated by ontrations. Later,Zykov's idea was desribed via graph homomorphism (see Chapter 5).
G + vw G/vw

G

v

w

K4 K3

K3

Figure 4.2: A Zykov-treeZykov's theorem itself does not give a olouring algorithm, but o�ers suggestions forits design. This is the basis of an algorithm by Corneil and Graham for χ(G), whihsearhes through the Zykov-tree in a depth-�rst manner. Despite some tehnial re�ne-ments, this algorithm is inferior to the other sequential algorithms [37℄. Today the useof the Zykov-tree in algorithm design has fallen into oblivion, but vertex ontrationsare applied in several other areas of graph theory and it has remained a powerful toole.g. in proof by indution. Moreover, despite its rare usage today in the olouringproess, this thesis was mainly motivated by Zykov's original idea.



4.4 Vertex ontrations 354.4 Vertex ontrationsAlthough, Zykov introdued his vertex ontration theorem [162℄ in the middle of thelast entury, it has not been applied muh. There are a numerous appliations ofvertex ontrations in the literature, but usually not for olouring ([14; 19; 29; 43;45; 63; 113; 132; 146; 147℄). The term of 'ontration' may have aliases suh as'merge', 'identi�ation', 'gluing', 'fusing', 'amalgamating' or 'oalesing'. The latter isommonly used in the domain of register alloation problems ([19; 63; 113; 132; 146℄).Coalesing is a terminology frequently used when two registers are oalesed wherethis is safe, in order to eliminate move operations between distint variables (registers).Register alloation an be modelled as a graph olouring problem too. If the problemis represented by graph olouring, oalesing is a ontration of unonneted verties.The purpose of merging may either be the simpli�ation or the fusing of several simplegraphs into one larger graph [112℄. The vertex ontration tehnique is most helpfulin proof by indution on the number of verties or edges in a graph, where we anassume that a property holds for all ontrations of a graph, and we an use it todemonstrate this for the larger graph. Usually, algorithms use vertex merging forgraph simpli�ation and for ombination graphs. For instane, a simpli�ation isdone by merging two or more unonneted verties to get fewer verties before orduring olouring. In [29℄, [147℄ and [43℄ a pre-proessing of graphs is performed beforeolouring, where two verties in a graph are merged to one if they are of the sameolour in all olourings. This is analogous to studies of the development of a bakboneor spine in the satis�ability problem [11; 126℄. Here, the appliation of merging refersto removing one of two unonneted verties. In fat, we also ould remove edges thatbelong to the removed vertex. The only reason for performing these merges is to removeunneessary or unimportant verties from the graph in order to make it simpler. Thoseverties that ful�l some spei� ondition will be removed from the data struturewhih desribes the graph. This proess will result in a loss of information. Theseond approah is to onsider two graphs, that have ertain olouring properties. Forexample one property might be that they are not k-olourable. Then the two graphs arejoined by merging verties from both graphs to reate a more omplex graph, where thedesire is that the original properties are inherited. In both ases the identi�ed vertiesget the same olour. A nie example is the Hajós onstrution [76; 112℄ where
k−unolourable graphs are built from building bloks. One of the onstrution steps isa vertex ontration whih may join building bloks.Although, we shall be onerned with merging unonneted verties, the Hadwigeronjeture [74℄ deserves a mention whih is �one of the deepest unsolved problemsin graph theory� [15℄. The onjeture an be de�ned by edge-ontrations where on-neted verties are merged together by deleting the edge between them. The onjeturerefers to graph olouring. Namely, eah k-olourable graph ontains Kk, a ompletegraph on k verties as minor; that is, G has a sub-graph for whih a Kk is reahableby applying edge-ontrations. An equivalent form of the Hadwiger onjeture (thereverse form of that stated above) is that if there is no sequene of edge-ontrationsthat brings graph G to the omplete graph Kk, then G must have a vertex olouring



36 Related workwith k − 1 olours. In spite of the di�erent terms, from here on the terms 'on-tration' and 'merge' will be used where appliable. 'Contration' is a widely usedexpression in the literature, but so is 'merge'. The following models are based on thevertex ontrations/merges of vertex-related strutures suh as the appropriate rows ofthe adjaeny matrix. The name 'ontration' haraterises well the identi�ation oftwo objets as one, hene identi�ation redues the size of the graph. Nevertheless,the name 'ontration' does not appropriate term to desribe operations on relatedstrutures of verties so the term 'merge' seems more suitable beause there an be noonventional shrinking in an assoiated graph.4.5 SummaryThis hapter disussed some important real-life appliations of graph olouring and pro-vided graph instanes from di�erent soures. We disussed several well-known grapholouring algorithms and desribed various approahes to solve the Graph ColouringProblem. Zykov's theorem introdues a new aspet, where olours are no longer neededto de�ne and handle the problem. It implies a generalisation of the olouring and anbe expressed via a graph homomorphism, where the verties of a graph are mapped toverties in another graph instead of mapping olours.The ontents of this thesis is supported by graph homomorphisms as well, therefore wekeep separated hapter (Chapter 5) for them. In this thesis we generalise the Zykov'sapproah by introduing di�erent models (Merge Models). We will demonstrate thenovel models e�ieny via a theoretial and experimental analysis as well. MergeModels reformulate the original problem, In this reformulated environment three dif-ferent general frameworks will be introdued to desribe an abstration for algorithmsbased on the Merge Models. They provide a uniform and ompat way in whih al-gorithms an be de�ned. Embedding algorithms in the framework supports both theirstrutural and performane omparison in a ommon basis, whih an be anyway prob-lemati. Traditional olouring shemes an be identi�ed in one of the frameworks andextended shemes may be provided. The framework itself generalises the formal sequen-tial olouring approah. Due to this generalisation suh an embedding an algorithman be enhaned, resulting in new algorithms. The novel aspet of the Merge Modelsimplies the development of novel olouring strategies, i.e Merge Strategies. The MergeModels desribes speial graph homomorphisms, hene their analysis may reveal on-netions between strategies and di�erent graph properties. Many novel e�ient MergeStrategies will be provided whih outperform several standard benhmark algorithms.Moreover, a general strategy design will be desribed whih allows the appliation ofmahine learning tehniques in the algorithm design.



Chapter 5Graph homomorphismThe problem of k-olouring has another interpretation by using graph homomorphisms.In fat, we an generalise the k-olouring problem. The main bene�t of the homomor-phism approah is that we an get rid of the olours and we an design pure graphalgorithms exploiting properties of the graphs stem from the desription of partiu-lar homomorphisms. This setion desribes how we an make equivalene between
k-olouring and ertain graph homomorphisms.5.1 H-olouringLet H be a �xed graph. The homomorphism problem for H asks whether a graph
G admits a homomorphism to H . A homomorphism of G to H is also alled as
H-olouring of G.De�nition 5.1 (H-olouring) Let G and H be graphs. A homomorphism of G to
H is a map h : G→ H , where we map verties VG → V (H) suh that {x, y} ∈ EG →
{h(x), h(y)} ∈ E(H).If there exists a homomorphism h : G→ H we shall write G→ H and G 9 H meansthere is no suh homomorphism. If G → H we shall say G is homomorphi to H orthat G is H-olourable. Note that the map is not neessarily surjetive.De�nition 5.2 (Complete H-olouring) Complete H-olouring, if exists, is a sur-jetive H-olouring G sur−−→ H .Composition h1 ◦ h2 of homomorphism h1 : G → H1 and h2 : H1 → H2 is homo-morphism of G → H2 (see Figure 5.1(a)). Compositions will play an important rolein the design of sequential olouring algorithms using homomorphisms, in this aseonseutive homomorphisms will substitute eah olouring steps.Although, the substitution will bring several bene�ts, we annot avoid the omplexityof the k-olouring problem. The following theorem shows how hard it is to �nd ahomomorphism between two graphs.Theorem 5.1 (Hell and Ne²et°il, 1990 [85℄) If H is bipartite or ontains a loop,then H-olouring is polynomial time solvable; otherwise, H is NP-omplete.37



38 Graph homomorphism
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(a) The proedure for omposing homomorphisms
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(b) Vertex set partition of a H-olouring5.2 H-olouring and k-olouringFrom the above de�nition it is lear that homomorphism preserves the adjaeny relationand G admits an H-olouring if and only if there is a partition of VG into sets Si sothat eah of them is an independent set and there are no edges between the verties of
Si and Sj if {Si, Sj} /∈ E(H). The Si sets represent the verties of H (as illustratedin Figure 5.1(b)). Reall that a k-olouring of G is a mapping c : VG → {1, 2, . . . , k},where adjaent verties have distint olours, whih means that c(u) 6= c(v) whenever
{u, v} ∈ EG. Hene, olour lasses {Si}ki=1 form independent sets and there is anedge between any two olour lasses Si and Sj if and only if their omponents areonneted. If k = χ, then there are no olour lasses so Si and Sj are unonneted,otherwise we ould derease the number of olours used, applying a ommon olour fortheir members. The Si-s form a vertex set of a omplete graph. However, for larger kthan χ we an get unonneted Si-s, e.g. for k = n, but here we should notie thatthe ondition c(u) 6= c(v) is equivalent to the ondition {c(u), c(v)} ∈ E(Kk); thatis, we an embed graphs de�ned by olour lasses into a omplete graph and we mayonlude the following.Proposition 5.1 Homomorphisms h : G→ Kk are preisely the k-olourings of G.As mentioned above, the embedding of a graph de�ned by olour lasses does notneessarily result in a omplete graph, but for those speial ases when the result is aomplete graph the homomorphism will be a omplete H-olouring.De�nition 5.3 (Complete k-olouring) Complete H-olouring, if it exists, is aomplete Kk-olouring.Eah omplete k-olouring of G is assoiated with a partition of verties into k non-empty independent sets, any two of whih are joined by at least one edge.



5.3 Chromati and Ahromati number 395.3 Chromati and Ahromati numberTheorem 5.2 (Colour Interpolation Theorem [86℄) If a graph admits a omplete
k1-olouring and k2-olouring then it admits a omplete olouring for all k, where
k1 ≤ k ≤ k2.The smallest k where the graph G admits a k-olouring de�nes the hromati numberof G (Eq. 5.1) and the largest k where the graph G admits a omplete k-olouringde�nes the ahromati number of G (Eq. 5.1). Note that any χ-olouring of a graphmust be omplete.

χ(G) = min
k
{k | G→ Kk} (5.1)

ψ(G) = max
k
{k | G sur−−→ Kk} (5.2)Thus we may onlude from the Colouring Interpolation Theorem that G admits aomplete k-olouring for any k between its hromati and ahromati number.Proposition 5.2 Let G be a graph. For eah k, χ(G) ≤ k ≤ ψ(G), G admits aomplete k-olouring.It is not hard to verify that if G → H then χ(G) ≤ χ(H). Indeed, if H → Kk existsthen G is Kk-homomorphi thanks to the omposition of homomorphisms. Conse-quently if χ(G) > χ(H), then G 9 H . We an similarly prove that if G → H , then

ω(G) ≤ ω(H), using a Kk → G homomorphism, based to the following equation:
ω(G) = max

k
{k | Kk → G}5.4 SummaryIn this hapter we saw how the H−olouring problem generalises the traditional k-olouring problem. The k-olouring was interpreted as a homomorphism. The reationof suh a map is not easy for any kind of target graph. Nevertheless, the omplexity ofthe H-olouring remains the same for k-olouring, but the bene�ts of reating of graphhomomorphisms instead of olour assignments an be exploited. On the one hand, asonly one struture is neessary for the graph, we an omit the olours. On the otherhand, using the possibility of homomorphism ompositions, we an transform a graphinto other graph instanes whih an tell us more about the struture of the originalproblem. Moreover, we an generate a homomorphi graph series between a graphand a omplete graph by suessive homomorphisms (see Figure 5.1(a)). These graphseries or onseutive homomorphisms orrespond to partiular sequential olourings.In the next hapter we will present di�erent approahes for ahieving homomorphismslike this for k−olouring. Although, [16; 107; 148; 159℄. desribes how we an de�neother graph olourings suh as irular and frational olourings through H-olouring,de�ning various target graphs. Furthermore, H-olouring an be analogously stated forany relational system H , e.g. for the general onstraint satisfation problem.





Chapter 6Quotient and Power methodsIn this hapter we shall de�ne graph olouring proesses as a series of homomorphismsusing quotient or power graphs, where the verties whih get the same olour will be'glued' or 'grouped' together, respetively, to form a new vertex set. Here a modi�edvertex set usually results in a modi�ed edge set as well.These graph operations produe helpful graph strutures whih an be exploitedfor an e�ient olouring and also help provide a deeper insight into the olouringproedure. Moreover, they allow us to design e�ient new or redesign existing grapholouring algorithms in a framework supported by quotient or power graphs (see Juhoset al. [96�102℄).In the following we shall introdue the theory of quotient and power methods andlater on we shall disuss the implementation details by desribing urrent and novelolouring methods.6.1 MotivationFigure 6.1() shows a drawing of a graph where the verties are denoted by irles,while Figures 6.1(d) and 6.1(e) show di�erent proper olourings of the same graph,namely a 3-olouring and a 2−olouring. Although, olours and verties are di�erententities, they may be jointly enoded in one objet by a irle symbol. Colour entitiesare impliitly enoded in the vertex, but they an be handled separately. In Figure
v1

v2

v3() A graph (v1, 1)
(v2, 2)

(v3, 3)(d) 3−olouring (v1, 1)
(v2, 2)

(v3, 2)

(v2, 2)

(e) 2−olouringFigure 6.1: Di�erent olourings of a graph. Verties {v1,v2, v3} and olours {1, 2, 3}are not separate entities. One irle enodes information about a graph vertex and aolour as well.6.2 olours have been detahed from the verties. Figures 6.2(a) and 6.2(b) display41



42 Quotient and Power methodsthe detahed olours and their relations in aordane with the 3−olouring and the
2−olouring of Figure 6.1(d) and 6.1(e), respetively. The detahed 2−olouring learlyshows the redundany, of the olour 2 instanes in Figure 6.2(). In order to eliminatethis redundany one an eliminate the di�erent instanes of the olour 2 and use justone instane instead, this elimination leads to a ompat representation of the olourrelations. If the elimination step is stored, then this ompat representation an de�nethe original 2−olouring. Sine the graph of the detahed olours inherits the originalvertex relations, this graph is equivalent to the original one. Consequently, olours andverties an be identi�ed as a ommon entity. Depending on the ontext where theyour, this entity an be alled either as a olour or vertex. Usually, it is reasonableto all them as a vertex beause olours an assist the presentation and the generalexplanation for instane olours an be useful progress indiators of a olouring proess,where oloured and unoloured verties are distinguished.
1

2

3(a) Relation be-tween the oloursin a 3−olouring.
1

2

2(b) Relation be-tween the oloursin a 2−olouring.Colour 2 has twoinstanes. Redun-dany.
1 2() Relation be-tween the oloursin a 2−olouring.Colour 2 has oneinstane. Noredundany.Figure 6.2: Motivation of quotient graphs. Colours 1, 2 and 3 are irles. 2−olouringintrodue hoies: keeping redundant olour instanes or eliminating redundany.The ompat representation of the olouring requires storing of eah elimination stepto have a hane of reovering the olouring of the original graph. To eliminate thisstoring proess, �rst preserve the di�erene between vetries and olours, and handlethe vertex � olour relations together with the eliminations. Colours and verties shouldbe detahed as well, but both are retained as di�erent entities, as illustrated in Figure6.3. Verties are the inner irles while olours are the outer irles. This speialpositioning of the irles is just to aid understanding, but they ould be arranged inother ways. The vertex � olour assignments are represented by direted edges frominner irles to the outer ones. Here, the 2-olouring provides the possibility of theelimination as well. The two instanes of the olour 2 may be eliminated by allowingonly one single instane of the olour 2. Figure 6.3(b) shows a olour redundantrepresentation of the 2−olouring of Figure 6.1(e). But in Figure 6.3() the olourredundany has been eliminated. This approah provides a ompat representation forthe olours and hene the vertex�olour relations. Nevertheless, there is no need tostore the elimination steps, sine the vertex � olour relations, i.e. the vertex � olourassignments are always available. The reated graph (Figure 6.3) an be transformedinto the graph of Figure 6.2() by ontrating the outer irle, as depited in Figure6.4.
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1

2

3

v1

v2

v3(a) Vertex � olourrelations in a
3−olouring.

1

2

2

v1

v2

v3(b) Vertex � olourrelations in a
2−olouring. Colour
2 has two instanes.Redundany.

1 2v1

v2

v3() Vertex � olourrelations in a
2−olouring. Colour
2 has one instane.No redundany.Figure 6.3: Motivation behind power graphs. Verties v1,v2 and v3 are inner irles,while olours 1, 2 and 3 are outer irles. The �gures depit verties � olour relations.

2−olouring introdue hoies: keeping redundant olour instanes or eliminating re-dundany.
1 2v1

v2

v3

1 2{v2, v3}v1

1 2

Figure 6.4: Contration of outer irles.The approah whih keeps the vertex � olour relations is the motivation behind thepower methods, while the vertex � olour identi�ation is the basis of the quotientmethods.6.2 Quotient methodDe�nition 6.1 (Topologial spae [155℄) A topologial spae is a set V togetherwith V, a set of subsets of V , satisfying the following axioms: the empty set and Vare in V; the union of elements V is also in V; any �nite intersetion of elements of Vis also in V.The set V is alled a topology on V . A quotient spae omes from the original one by'gluing' the elements of the spae. More preiselyDe�nition 6.2 (Quotient spae [155℄) Let V be a topologial spae and ∼ bean equivalene relation on V . The topologial quotient spae V/ ∼ is omposed ofequivalent lasses of the spae V by relation ∼, using a surjetive map V → V/ ∼.Equivalene lasses form a partition, onversely, a partition de�nes an equivalene re-lation ∼ whih is the kernel of the surjetive map 1. If only one equivalene lass hastwo or more elements, then that lass desribes the whole partition, i.e. the relation1The kernel of a funtion f is ker f = {(v, u)|f(v) = f(u)}



44 Quotient and Power methods
∼. Let S be a subset of V , where v ∼ u i� v, u ∈ S. Then following [78℄ and [125℄,we may denote V/ ∼ by V/S as well or by using elements of S, e.g. in the ase of
S = {v, u} we an also use notation V/vu.Aording to [119℄, the form of the previous de�nition for a partiular ase, namely forgraphs, is the followingDe�nition 6.3 (Quotient graph) Given a graph G = (V,E) and a partition2 S of
V , the quotient graph G/S is the graph (S, E) where E = {{Si, Sj} | Si×Sj∩E 6= ∅}.In [94; 100�102℄ the author desribed a general model where the graph olouring ise�iently modelled by speial Quotient graphs, forming a general Quotient method forthe graph olouring. They showed that e�ient graph olouring algorithms ould bedesigned based on the Quotient method.The following relations an be identi�ed between images of H-olourings and QuotientGraphs, as desribed in Setion 5.1.Proposition 6.1 (H-olourings and Quotient Graphs) Every quotient graph of
G is a homomorphi image of G and, onversely, every homomorphi image of G isisomorphi to a quotient of G.

S1
S2

S3 S4(a) A graph G withpartition S
S1

S2

S3
S4(b) G/S quotientgraphFigure 6.5: An example of a quotient graph.A quotient graph (see Figure 6.5) is a simple graph, thus its edges form a set, but re-taining di�erent images of the original edges an lead to multiple edges between lassesand indue an edge multiset in a quotient multigraph (see Figure 6.6) in aordanewith Def. 2.12. To distinguish between quotient graph and multigraphs, we shall usea double slash in our notation for quotient multigraphs e.g. G�S. Quotient graphsmay be onstruted by graph vertex ontrations, where eah Si is a set of ontratingverties. Reall that vertex ontration an be applied to onneted and unonnetedverties as well, but we will use edge-ontration for ontrating two onneted ver-ties. As mentioned earlier, unless otherwise stated vertex ontration will be used forunonneted verties only.2S =

⋃

Si and Si ∩ Sj = ∅ if i 6= j
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S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3
S4(b) G�S quotientmultigraphFigure 6.6: An example of produing quotient multigraph.Graph vertex olouring de�nes partition of verties, where the same olour vertiesform the equivalent lasses and, onversely, any partition provides a olouring. That is,

x, y ∈ Si implies {x, y} /∈ E to get a valid graph olouring. To simplify the strutureof the graph we an reate a quotient graph by merging verties in the same lass.Applying a vertex ontration for eah olouring steps results in several intermediatequotient graphs until a omplete graph is obtained. We shall see how bene�ial theappliation of the vertex ontration is in the graph olouring. In minimum olouring,we have to �nd a homomorphism whih results in as small omplete graph as possi-ble. Thus an algorithm must look for the longest sequene of ontrations; that is,the longest homomorphi graph series, beause eah merge dereases the number ofverties in the graph, hene the longest path results in the smallest graph.Though ontrated graphs speify a H-olouring proess quite well, they lose informa-tion about the original graph struture when we simplify it via ontrations. We willintrodue another method whih keeps information about the original graph and worksin harmony with the H-olouring priniple as the quotient method does.6.3 Power methodInstead of ontrating or merging verties we an merge related strutures of vertiesto produe a speial non-quotient graph. E.g. merging relevant rows of the adjaenymatrix gives rise to a vertex 'grouping' e�et. This grouping an be haraterised bypower graphs (see Figure 6.7), whih put putting a new vertex alled 'group-vertex'(whih enompasses some of the original verties) into the original vertex set. A group-vertex takes over the inoming edges from the enompassed verties. A group-vertexwill be a olour lass in the traditional sense, hene all verties belonging to a group-vertex may be regarded as oloured verties with the same olour. A power graph anbe de�ned on a power set of the verties of a graph in aordane with [2℄.De�nition 6.4 (Power graph) Let G =
(

V,E
) be a graph. The verties of a powergraph G′ =

(

V ′, E ′) are de�ned by a subset of the power set of the G verties V ′ ⊆ 2V .



46 Quotient and Power methodsPower verties are onneted to eah other by power edges E ′ ⊆ V ′ × V ′.The author introdued the Power method for the graph olouring problem in [96℄, wherethe graph olouring is modelled by a speial Power graph sequene. They demonstratedthe e�ieny of the Power method and developed several powerful graph olouring al-gorithms based on the method desribed in [97�100℄.Figure 6.7 shows how a power graph may be reated from a partition of verties. Thenew vertex set is a subset of the power set of the original verties, where we an �ndgroup-verties that represent equivalent or olour lasses. The original graph is a simplegraph whih de�nes its edge set as a symmetri relation; if (x, y) ∈ E then (y, x) ∈ E.We an make these undireted edges as ombinations of two direted edges, whereone is from a vertex to one of its neighbours and another is the reverse ase. Thegroup-verties beome new endpoints of the direted edges that determines a vertex-'neighbour olour' relation. Therefore we an map two direted edges representing anundireted edge in the original graph to two power edges of the power graph. Thismap is surjetive, but not neessarily injetive. For example, if neighbours of a vertexhave the same olour, then four direted edges are mapped to three power edges, likeverties in S1 and S3 in Figure 6.7 In order to get an injetive edge map we have to
S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3 S4(b) G/S power graphFigure 6.7: An example of produing power graph.use a power multigraph with a multiset for its edge set, as we saw earlier in the ase ofquotient multigraphs in aordane with Def. 2.12. A similar graph homomorphisman be de�ned between a graph whih is equivalent with the original graph 3 andits olouring power graphs. Hene, we shall denote it in harmony with the quotientgraphs, but use supersript to represent the power. Thus, denote H-olouring powergraphs by G/S and, likewise, multigraphs by G�S .Note that ontrating the appropriate power verties (with all the verties it enom-passes, e.g. S1 and its two verties in Figure 6.7), results in a homomorphism from a3Verties in the related graph are doubled or interpreted as a (vertex,olour�vertex) pair. Initiallyeah vertex gets di�erent olours, then some of them an share the same olour�vertex; that is, ertainolour�verties get ontrated. An outgoing edge onnets a vertex with a olour-vertex.
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S1

S2

S3 S4(a) A graph G with partition
S

S1
S2

S3 S4(b) G�S power multigraphFigure 6.8: An example of produing power multigraph.power graph to a quotient graph .With our sequential graph olouring approahes we an onstrut a olouring for a graphby progressively merging strutures of a graph that generates quotient or power graphsequenes. The �nal graph in the sequene de�nes a olouring where the ontrated orgrouped verties get the same olour in the original graph. In fat, quotient or powergraph sequenes themselves de�ne the whole olouring proess. Here the use of oloursfor verties of intermediate graphs was employed in order to see the steps involved.6.4 SummaryThis hapter introdued two methods, namely the Quotient and Power methods for thegraph olouring problem and, in addition, two variants of them. These methods modelthe graph olouring problem via ertain graph homomorphisms. The omposition ofseveral homomorphisms de�nes olouring steps in the traditional sense.In the next hapter we shall provide a matrix representation of these models with speialmatrix operations, whih results in homomorphi images based on the Quotient andPower methods.





Chapter 7Merge ModelsThe relation between the original graph and a quotient or power graph/multigraph is de-�ned by a graph homomorphism. The author introdued four kinds of matrix operations,alled Merge Operations to map a representation struture of the original graph to itsfour di�erent homomorph images, respetively, and then subsequent Merge Operationswill produe vertex olouring [96; 100℄. They showed that Merge Operations produeappropriate homomorph images of the original problem in aordane with Chapter5, modelling the original graph olouring problem [96; 100℄. The representations andthe operations form new olouring models, alled Merge Models, that supports parallelimplementations. They got signi�ant improvements both theoretially and via experi-ments in [99℄ when an algorithm applied their models. Exploiting the performane theydesigned powerful graph olouring algorithms in [94; 97�99; 101; 102℄. The details oftheir analysis an be found in hapters 10 and 11.Verties having the same olour in the traditional olouring proess indue merges in theadjaeny matrix, and eah edge that is onneted to these verties is either ollapsedinto a single edge or forms a multi-edge in the resulting struture. Multi-edges an beidenti�ed as single but weighted edges where their weight ounts the multipliity of theedge. We shall present matrix representations of the result quotient or power graphs.There will be two subtypes of representations where one does not depend on the numberof ollapsed edges, while the other one does. These representations are used togetherwith basi Merge Operations to reate power graphs where only rows are merged orprodue quotient graphs when the relevant olumns are also merged. By ombiningthese representations with the Merge Operations we will provide four olouring modelsalled the Binary/Integer Merge Square and the Binary/Integer Merge Table models.Their representation matries will be denoted by A,A, T and T, respetively. Here,Merge Squares are assoiated with the adjaeny matrix of the merged graph, i.e. aquotient graph. The Integer types assign weights to the edges aording to how manyedges are merged. The Binary types approah simply ollapses these edges onto thesame one ommon edge, but it does not preserve their ardinality. The tables trakinformation about the original verties, while the squares omit. The graph depitedin Figure 7.1 and its adjaeny matrix will be used as examples to help explain thedi�erent model types. 49



50 Merge Models7.1 Merge matriesIn order to generate sequential olourings, onseutive homomorphisms will be appliedstarting with the original graph and ending up with a omplete graph of a graph whihis homomorphi with a omplete graph. The number of transformation steps an befollowed by the upper index t e.g. At.
v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·Figure 7.1: A graph G and its initial Merge Matrix, the adjaeny matrix: the v-s referto verties and the r-s refer to rows, i.e. olours. The 0-s have been replaed by dotsfor the sake of larity.The initial Merge Matrix is the adjaeny matrix of G: A[0] = A[0] = T [0] = T[0] := A.Here we shall only deal with valid olourings, hene simple non-adjaent verties anbe merged together. In the ase of Merge Squares representations, a Merge Square isthe unweighted or weighted adjaeny matrix of a quotient graph, thus olumns androws refer to the same objets of the graph, namely to the merged verties/olourlasses. The ondition of the merge depends on the relation between verties, i.e. theedges of the quotient graph. The oinidene of a given row and olumn of the MergeSquare must be zero. We an easily see that this ondition is the same for MergeTables (MT), but it breaks the symmetry of the representation. Therefore, we haveto hek the adjaeny between a normal the original vertex (whih refers to an MTolumn) and a merged vertex-set/olour lasses (whih refers to an MT row). We ansummarise the merge onditions by the following:

a
[t]
ij = a[t]

ij = t
[t]
ij = t[t]

ij = 0 (7.1)Consequently a[t]
ji = a[t]

ji = 0 and thanks to the inherited graph property a[t]
ii = a

[t]
jj =a[t]

ii = a[t]
jj = 0. Next we shall de�ne the following matries:

P = Ii ⊗ Ij R = Ij ⊗ Ij W = P − R (7.2)where Ii is the i−th row of the identity matrix, P (Plus) will be used for addition (orbitwise�or operation) of the j-th row of a matrix to the orresponding i-th row. R(Redution or Minus) will support the subtration of the j-th row from itself, therebysetting its omponents to zero. This ould also be done by a bitwise exlusive or (xor).In the ase of the third matrix, W ombines these operations together. Here let a and
b de�ne the i-th and j-th row vetor of a matrix for step t. We now de�ne the fourmodels formulated both as row/olumn operations and matrix manipulations. First the



7.1 Merge matries 51integer-based models and then the binary-based model, whih do not trak the numberof edges folded into an edge.7.1.1 Merge TablesWith addition or bitwise-OR two rows of an adjaeny matrix reates a power graphstruture, whih haraterises a relation between the original verties and the neighbour-ing olours or olour lasses. We may assoiate rows of an adjaeny matrix to olourlasses or power verties and olumns to verties of the original graph. The matriesof these power graphs are known as Merge Tables owing to their shape. As previouslymentioned, there are two subtypes, namely a weighted type and an unweighted type,based on how the number of the edges are taken into aount in the merging proess.The Integer Merge TableInteger Merge Tables keep trak of multi-edges. As we said earlier we an refer to amulti-edge by a weight, ounting the number of edges folded into one edge during themerging proess.A row-based formulation of the i-th and j-th row of T after merging the j-thvertex into the i-th: let ti be the i-th row and t_i be the olumn vetor. ThenT[t+1]
i = a + b , T[t+1]

j
= b− b = 0 (7.3)A matrix-based formulationT[t+1] = T[t] +WT[t] = (I +W )T[t] (7.4)where W is de�ned in Eq. 7.2. In Figure 7.2, rows r1 and r4 have merged, after whihthe row r4 is removed to get a ollapsed Merge Table. An Integer Merge Table modeldoes not lose any edge from the original graph beause it keeps trak them as multipleedges. Multiple edges are represented by values whih are greater than one. It ourswhen two rows have non-zero elements in the same positions in the merge. In Figurethere is a 2 in the ({r1, r4}, r3) position of the ollapsed Merge Table. This value of

2 appears as a multiple edge whih starts from v3 to the only power node {v1, v4} inFigure 7.2(). Due to this fat, the sum of the matrix does not hange. We ouldnormalise entries of Integer Merge Tables in several ways, one an be the leaving outthe ounting the number of edges folded together to get a {0, 1} binary matrix.The Binary Merge TableThe binary version of the Merge Tables fouses on the relation but not the degree of therelation between edges and olours. Here we have two options; apply a pieewise oroperation (see equations 7.5 and 7.7) or apply Integer Merge Table model and subtrat



52 Merge Models
v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adjaeny matrix AG

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · · · · ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Integer Merge Table T(G�{v1,v4})

v1

v2

v3
v4

v5

v6
{v1, v4}() Power multigraph G�{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Collapsed Integer Merge Table T(G�{v1,v4})Figure 7.2: Merging (addition) rows r1, r4 of AG results in a T(G�{v1,v4}) Merge Table.irrelevant items from it. The latter solution may be useful in algebrai methods (seeequations 7.6 and 7.8), while the former is easy to implement.A row-based formulation

T
[t+1]
i = a ∨ b , T

[t+1]
j = 0T (7.5)

T
[t+1]
i = T[t+1]

i − a ◦ b , T
[t+1]
j = 0T (7.6)

a ◦ b = diag(a⊗ b) =
∑

i

(a⊗ b)IiA matrix-based formulation
T [t+1] = T [t] ∨ PT [t] − RT [t] (7.7)
T [t+1] = T[t+1] −

∑

j

(a⊗ b)(Ij ⊗ Ii) (7.8)where P and R are de�ned in Eq. 7.2. In Figure 7.3, row r4 is merged with row r1to form {r1, r4}, after whih r4 is deleted. An option to get a Binary Merge Tablefrom the integer ounterpart an be that when eah non-zero elements are multipliedby the reiproal value of the element. Unfortunately, this pieewise operation does notsupport well the algebrai omputation, nevertheless it an be useful in the pratialimplementation. A Merge Table desribes relation between verties and olour lasses,but a power graph an be transformed into an appropriate quotient graph of the originalgraph by ontrations as seen in Figure 6.3. Then verties and power verties/olourlasses an be identi�ed only one objet either vertex or olours depending on theontext where we would like to use them. The appliation of a Merge Operation to
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v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adjaeny matrix AG

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · · · · ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Binary Merge Table T (G/{v1,v4})

v1

v2

v3
v4

v5

v6 {v1, v4}() Power graph G/{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Collapsed Binary Merge Table T (G/{v1,v4})Figure 7.3: Merging (bitwise OR) rows r1, r4 of AG results in T (G/{v1,v4}) MergeTable.the rows and the relevant olumns as well we arrive to quotient graph where vertiesbeomes olours and onversely.7.1.2 Merge SquaresThe result matrix after a merge of rows and appropriate olumns is square, more exatlyeither weighted or unweighted adjaeny matrix of the vertex ontrated graph. Similarto the Merge Tables we will de�ne their ounterpart Merge Squares.The Integer Merge SquareA row/olumn-based formulation let ai be the i-th row and a_i be the olumnvetor and de�ne aj and a_j in the same way for the j-th row and olumn.A[t+1]

i = a + b , A[t+1]
j = 0T (7.9)A[t+1]_i = aT + bT , A[t+1]_j = 0 (7.10)A matrix-based formulationA[t+1] = A[t] +WA[t] +A[t]W T (7.11)Sine at

ij = 0 and at
ji = 0, it follows that WA[t]W T=0. Due to this, we an rewrite



54 Merge ModelsEq. 7.11 as A[t+1] = (I +W )A[t](I +W )T (7.12)where W is de�ned in Eq. 7.2. Note that the ondition of the merging of the row i and
j is tij = tji = tii = tjj = 0. Rede�ning the starting matrix aording to T0 = A− Iallows us to keep trak of whih verties have been enompassed by a merged vertex.The original Merge Operation should not be modi�ed. In this ase, −1 entries thenrefer to the merged verties. We should also take this modi�ation into aount in thealgorithm design. In Figure 7.4, a Merge Square has aused both olumns and rows tobe merged. The result is an adjaeny matrix of the merged graph with weights on theedges that desribe the number of edges that were merged.

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adjaeny matrix AG

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} · 1 2 · 1 1
r2 1 · 1 · · ·
r3 2 1 · · · 1
r4 · · · · · ·
r5 1 · · · · 1
r6 1 · 1 · 1 ·(b) Integer Merge Square A(G�{v1,v4})

v2

v3v5

v6
{v1, v4}() Quotient graph G � {v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} · 1 2 1 1
r2 1 · 1 · ·
r3 2 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(d) Collapsed Integer Merge SquareA(G�{v1,v4})Figure 7.4: Merging (addition) rows r1, r4 of AG results in Integer Merge Square.Note that the merge ondition, in the ase of the row i and j, is aij = aji = aii =ajj = 0 in aordane with Eq. 7.1. Hene after a merge aij = aij + aji + aii + ajjremains zero. We ould also use up aii ells to store additional strutural information.Starting with the A0 = A− I matrix instead of the pure adjaeny matrix A, we ouldthen ount the number of verties enompassed by a merged vertex, while keepingthe original Merge Operation 1 . In this ase, diagonal entries will ontain all theardinalities. However, an algorithm should handle the modi�ed diagonal elements.Similar to the Integer Merge Tables, the Integer Merge Square model does not lose anyedges either, but store them as multiple edges. Thus, the sum of the matrix does nothange in this model.1A + I is an alternative here.



7.1 Merge matries 55The Binary Merge SquareA row/olumn-based formulation Let aj be the j-th row and let a_j be theorresponding olumn vetor. Then
A

[t+1]
i = a ∨ b , A

[t+1]
j = 0T (7.13)

A
[t+1]
i = A[t+1]

i − a ◦ b , A
[t+1]
j = 0T (7.14)

A
[t+1]_i = (A

[t+1]
i )T , A

[t+1]_j = 0 (7.15)A matrix-based formulation
A[t+1] = A[t] ∨ (PA[t] + A[t]P T )− (RA[t] + A[t]RT ) (7.16)
A[t+1] = A[t] ∨ (PA[t]P T )− (RA[t]RT ) (7.17)where P and R are de�ned in Eq. 7.2. Figure 7.5 shows a binary merge ollapse thatdoes not perform a ount of the merged edges.

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r4 · · 1 · 1 ·
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(a) Adjaeny matrix AG

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} · 1 1 · 1 1
r2 1 · 1 · · ·
r3 1 1 · · · 1
r4 · · · · · ·
r5 1 · · · · 1
r6 1 · 1 · 1 ·(b) Binary Merge Square A(G�{v1,v4})

v2

v3v5

v6
{v1, v4}() Quotient graph G/{v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} · 1 1 1 1
r2 1 · 1 · ·
r3 1 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(d) Collapsed Binary Merge Square A(G�{v1,v4})Figure 7.5: Merging (addition) rows r1, r4 of AG results in a Binary Merge SquareIn a Binary Merge Square model a merge results in a simple graph from a simple graph,sine it just ollapses the multiple edges. The same behaviour an be seen here withthe Integer Merge Square model. If some row is merged into the i−th row then the

aii elements remain zero due to the merge ondition (7.1). A Binary Merge Square issimply the adjaeny matrix of the resulting simple graph after a merge. If neessary,
AG an be used to identify the adjaeny matrix of the original graph, whih ontainsthe learest representation of the generated problem after a merge. This is quite useful



56 Merge Modelsif an algorithm fouses just the ore of the problem.Merge Algorithms work on Merge Models, performing subsequent merges until theMerge Operation beomes unfeasible. These merges generate a matrix sequene and aorresponding graph sequene. The following de�nitions identify states of the matriesand graphs during an algorithm run.De�nition 7.1 (Merge Matrix and merge graph) The Merge Matrix is a generalname for a matrix of an integer or Binary Merge Table or square. The merge graph isthe orresponding power or quotient graph.De�nition 7.2 (Initial Merge Matrix and merge graph) Let G be the graph tobe oloured. The initial merge graph is G and the initial Merge Matrix orresponds tothe adjaeny matrix of G.De�nition 7.3 (Final Merge Matrix and merge graph) The �nal Merge Matrixis that matrix where no more merges are possible. The orresponding merge graph isthe �nal merge graph.De�nition 7.4 (Intermediate merge matries and merge graphs) Intermediatemerge matries and merge graphs are those between the initial and �nal merge matriesand graphs, respetively.Generally, when speaking about any of the merge representations we use the termMerge Matrix instead of alling them a table or square. Now let M denote a generalMerge Matrix in the following. We may assoiate eah row of a Merge Matrix with anappropriate vertex in the orresponding quotient or power graph and designate thoseverties as merge verties. The number of non-zero elements the onstraints do notderease by any of the Merge Operations sine addition or binary-or do not dereaseentries; that is, non-zero entries remain non-zero. But a zero entry may beome non-zero after a merge. This proess leads to the saturation of non-zero entries. The maintask of the olouring strategies is to ontrol this saturation proess and prolong it asmuh as possible, beause the number of rows desribe the number of olours used.Hene a prolonged merge sequene leads to fewer rows in the �nal Merge Matrix. Thisis a key onept in Merge Algorithms.7.2 Sub- and o-struturesSub-strutures Sine sequential olouring uses steps where one olour is assignedfor eah step, the oloured and unoloured parts of the graph hange in a step-by-step fashion. Now it is worth de�ning the relevant parts of merge matries separatelyin the oloured and unoloured sub-graphs. Supersripts col and unc stand for partialstrutures e.g. for sub-merge-matries M col and Munc, respetively. Figure 7.6 showsthese partial strutures in the ase of Integer Merge Tables, where M col = T
col and



7.2 Sub- and o-strutures 57
Munc = T

unc. Eq. 7.19 reveals more preisely the ontent of a sub-merge-matrix. Therows in the oloured and unoloured sub-merge-matries are referred to oloured andunoloured rows, respetively.

v1

v2

v3

v4

v5

v6

(a) Partial olouring of G

v1

v2

v3

v4

v5

v6

{v5, v3}

(b) Relevant power multi-graph
v1 v2 v3 v4 v5 v6

r4 · · 1 · 1 ·
{r5, r3} 1 1 · 2 · 2() T

unc unoloured Merge Table
v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1
r2 1 · 1 · · ·
r6 1 · 1 · 1 ·(d) T

col oloured Merge TableFigure 7.6: Sub-graphs and sub-merge-matries of a power multigraph for a partialolouring. The dashed and dotted lines denote the oloured substruture in Figure7.6(b), while solid lines show the unoloured struture.Coloured (and unoloured) verties may be haraterised by a vetor, the harateristivetor, whih onsist of 1−s in the appropriate positions and zeros elsewhere.De�nition 7.5 (Charateristi vetor of oloured rows) The harateristi ve-tor of the oloured rows will be denoted by ecol. The dimension of the vetor is equalto the number of rows in the relevant Merge Matrix. Indies of oloured rows de�nethe positions where ecol have ones, the other entries being all zero.De�nition 7.6 (Charateristi vetor of unoloured rows) The harateristi ve-tor of the unoloured rows is denoted by eunc. The dimension of the vetor is equalto the number of rows in the relevant Merge Matrix. The indies of unoloured rowsde�ne the positions where eunc have ones, the other entries being all zero.Figure 7.6 shows a partial olouring where rows {{r3, r5}, r4} are oloured and {r1, r2, r6}are unoloured. This partial olouring indues the following harateristi vetors:
eunc = (

r1⌣

1 ,
r2⌣

1 ,
{r 5,r 3}

⌣

0 ,
r4⌣

0 ,
r6⌣

1) ecol = (
r1⌣

0 ,
r2⌣

0 ,
{r 5,r 3}

⌣

1 ,
r4⌣

1 ,
r6⌣

0) (7.18)Sine r5 is merged into r3, position 5 is removed and entry 3 represents the oloured/mergedrow. The harateristi vetors of rows an be obtained from eah other by a simplesubtration; namely eunc = e − ecol, where e is the vetor of all ones. Sub-merge-matries an be de�ned like so:
M col = Diag(ecol) M Munc = Diag(eunc) M (7.19)



58 Merge Modelswhere Diag(.) makes a diagonal matrix where the argument vetor is in the maindiagonal, and the o�-diagonal entries are all zero. In this ase Munc and M col-sontain zero rows, they are not ollapsed. Figure 7.2(b) shows an example of suh annon-ollapsed matrix Munc.Similar harateristi vetors an be de�ned for verties of the original graph ecol
Gand eunc

G , where two {0, 1}n vetors haraterise the unoloured and oloured vertiesand n = |VG|.De�nition 7.7 (Charateristi vetor of oloured verties) The harateristi ve-tor of oloured verties is denoted by ecol
G . The dimension of the vetor is the sameas number of verties in the original graph G. Indies of oloured verties de�ne thepositions where ecol

G have ones, while the other entries are all zero.De�nition 7.8 (Charateristi vetor of unoloured verties) The harateris-ti vetor of unoloured verties is denoted by eunc
G . The dimension of the vetor isthe same as the number of verties in the original graph G. Indies of unoloured rowsde�ne the positions where eunc

G have ones, while the other entries are all zero.Regarding Figure 7.6 the {r3, r5, r4} verties are oloured and the {r1, r2, r6} ver-ties are unoloured. Hene the harateristi vetors are ecol
G = (0, 0, 1, 1, 1, 0) and

ecol
G = (1, 1, 0, 0, 0, 1). These vetors are also omplementer of eah other, sine ecol

G =

e−eunc
G . The ecol and eunc vetors may be derived from ecol

G and eunc
G by simple binary-or operations (merges) on the relevant indies belonging to merged verties. In thetraditional olouring, the sub-adjaeny-matries are assoiated with Gcol and Guncwhih are sub-graphs of G, they di�er from the merge interpretation. Here rows andolumns must be removed from the original adjaeny matrix, as follows

Acol = (ecol
G ⊗ ecol

G ) ◦M Aunc = (eunc
G ⊗ eunc

G ) ◦M (7.20)The (ecol
G ⊗ecol

G ) dyadi produt 'masks out' the relevant entries of the adjaeny matrix.First order o-strutures are the ells of the representation merge matries. Theyde�ne the neighbourhood relation of the merge verties for the binary and weightedrelations for the Integer Models.Seondary order o-strutures or, simply o-strutures, are the sums of the rowsand olumns in the representation matries, respetively. There are four suh vetors.We an get the sum of the rows and olumns of Binary Merge Matries from their integerpairs by ounting their non-zero elements. Figure 7.7 shows the four o-strutures onthe four sides of the sub-merge-matries in the ase of Merge Tables and Merge Squaresas well. The left hand side ontains the sums of the rows of the Integer Models, whilethe right side ontains the sums of the non-zero elements of the rows. This is the samefor the olumns, where the top vetor is the sum of the rows and the bottom is thenumber of non-zeros. In the ase of the Binary Models the left and the right/the topand the bottom o-strutures are the same.



7.3 Summary 59The seond order strutures will be denoted by µ, using t,b,l,r indies as subsripts torefer to the top, bottom, left and right vetor, respetively. Figure 7.7 shows sub-merge-matries for oloured verties, but o-strutures may be de�ned for the unoloured partand for the whole Merge Matrix as well. To be onsistent, with the previous notations,
unc and col will be denote the loation of the o-struture.

v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1

r2 1 · 1 · · ·
r3 1 1 · 1 · 1

r4 · · 1 · 1 ·
r5 · · · 1 · 1

v1 v2 v3 v4 v5 v6

8 1 1 1 2 1 2

r4 2 · · 1 · 1 · 2

{r5, r3} 6 1 1 · 2 · 2 4

1 1 1 1 1 1 6

v1 v2 {v5, v3} v4 v6

8 1 1 2 2 2

r4 2 · · 2 · · 1

{r5, r3} 6 1 1 · 2 2 4

1 1 1 1 1 5

v1

v2

{v5, v3}

v4

v6

µl

µr

µt

µb

µb

µt

µl

µr
v1

v2

v3

v4

v5

v6

{v5, v3}

Figure 7.7: The original graph, its sub-Integer Merge Table and then its sub-IntegerMerge Square of oloured verties when olouring is in progress. Here µl gives the sumof the degree of the verties in a olour lass, µr gives the number of adjaent vertiesof a olour lass, µt gives the number of adjaent oloured verties, and µb gives thenumber of adjaent olour lasses.Third order o-strutures sums the seondary order strutures. These may bedivided into two parts, like the seond order strutures, based on the oloured andunoloured sub-graphs. These strutures will be denoted by ζ . In this study, they willbe employed in the �tness funtion of the evolutionary algorithm. The top-left sums
ζt of the top vetor (or the left vetor) and the bottom-right sums ζb of the bottomvetor (or the right vetor). These are shown in bold in Figure 7.7. We will also usethe unc or col notation to distinguish between the parts, while o-strutures without anysupersript will refer to the whole Merge Matrix.7.3 SummaryThis hapter introdued four di�erent models, alled Merge Models, for the grapholouring problem. The models onsist of matrix representations and speial matrixoperations, i.e. Merge Operations. The Merge Operations replae the traditional olourassignments. These models desribe graph homomorphisms based on the Quotient andPower methods of Chapter 6. In order to get a olouring algorithm, the algorithm stepsmust be de�ned; that is, a sequene of the Merge Operations must be de�ned.In the next hapter we will reate a general framework for the algorithms based on theMerge Models.





Chapter 8Merge FrameworksIn Chapter 7 we modelled the graph olouring problem via matrix via matrix repre-sentations and operations, starting with the adjaeny matrix of the graph. The au-thor introdued general frameworks for graph olouring algorithms supported by MergeModels in [100; 101℄. These are generalisations of the traditional olouring shemesof Setion 4.2.1. Sequential olouring and independent set methods also �t into theseframeworks. This general framework with the new Merge Models supports a ommonstrutural analysis of the existing and novel graph olouring methods, as shown by theauthor in [97; 99; 101; 102℄.8.1 The UC and CU Merge FrameworksThere are two options in the ase of sequential olouring: either we hoose an un-oloured vertex �rst and then hoose a suitable olour for the vertex (UC) or, on-versely, we an hoose a olour �rst and then �nd an appropriate unoloured vertex forthe assignment (CU). These two types may be learly desribed by using unoloured andoloured merge sub-merge-matries in the UC and CU Merge Frameworks (see Figure8.1). These frameworks do not provide any seletion strategy. However, a ombinationof partiular strategies with a Merge Frameworks results in an algorithm. Consequently,the same strategy with di�erent framework results in di�erent algorithms. The otheroption for making an algorithm is when di�erent strategies are ombined with the sameframework. Chapter 10 will give examples for eah type. Note that Merge Models workwithout using olours. Reall that olours serve only to aid understanding; they onlyindiate whether a row has already been taken into aount in the merge proess. Forthis purpose one an use oloured and unoloured harateristi vetors, as desribed inSetion 7.2. The choose-unc and choose-col funtions/strategies are not de�ned pre-isely here. They an be replaed by di�erent onrete hoie strategies whih operateon oloured and unoloured sub-merge-matries, respetively. The choose-unc funtionselets an unoloured row/vertex, while choose-col selets a oloured row/'olour lass'or alloates a new empty row in the oloured sub-merge-matrix. The alloation stepintrodues a new 'olour'/olour lass into the system. In fat, in term of traditional61



62 Merge FrameworksUC Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 u← arg choose-unci{Munc
i } //Choose an unoloured row index4 c← arg choose-coli{M col

i } //Choose a oloured row index,a where Muc = 05 M ← merge(M, {u, c}) //Merge u and c rows/olumns b6 until Munc is empty7 return MCU Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 c← arg choose-coli{M col
i } //Choose a oloured row index4 u← arg choose-unci{Munc
i } //Choose an unoloured row index, where Mcu = 05 M ← merge(M, {u, c}) //Merge u and c rows/olumns6 until Munc is empty7 return MaMuc = Mcu = 0 is the merge ondition, i.e. there is no edge.bFor Merge Squares, olumns are also a�eted in a Merge Operation.Mcu = Muc = 0 is the merge ondition, i.e. there is no edge.Figure 8.1: The UC and CU Merge Frameworksolouring, a merge puts the unoloured vertex hosen into the seleted 'olour lass'1.Note that a merged row haraterises olour lasses where a merged row enompassesadditional rows of the original adjaeny matrix. Substituting olourings by merges,the sequential merge generalises the sequential olouring, where instead of a olourassignment a Merge Operation is performed. It is a generalisation of sequential olour-ing beause on the one hand the traditional olouring shemes an be de�ned withinthese frameworks and, on the other hand, traditional shemes an be extended. Se-tion 4.2.1 desribes the two traditional sequential olouring shemes. The �rst is thesequential olour assignment, where verties get olours in a greedy manner. This maybe de�ned in the UC Merge Framework (see Figure 8.1). An unoloured row seletionby choose-unc means seleting an unoloured vertex. Then the strategy choose-colan be a greedy oloured row hoie. Finally, the olour assignment is equivalent to amerge. The seond is the independent set approah, where subsequent independentsets are reated in a step-by-step fashion, and eah of them is �lled with unolouredverties until their saturation; that is, no more unoloured verties an be enompassed.It may be expressed in the CU Merge Frameworks. The strategy choose-col an reatean empty row in the oloured sub-merge-matrix, choose-unc selets a row from theunoloured sub-merge-matrix, then the rows merged. An independent set representsa olour lass; moreover, these olour lasses orrespond to the rows in a olouredsub-merge-matrix. Thus, an empty row refers to an empty olour-set. In addition, the1A olour lass is deemed empty when a new 'olour', a blank row, is reated in the olouredsub-merge-matrix.



8.2 The CC Merge Frameworks 63unoloured row seleted by choose-unc is assoiated with an unoloured vertex. Then amerge itself puts the unoloured vertex into the empty olour lass. Later, choose-unckeeps seleting the last row reated in the oloured sub-merge-matrix, i.e. the lastolour lass, until its saturation; that is, no more unoloured rows an be seleted fora merge. These two traditional approahes both apply greedy olour seletion for anassignment or greedy vertex �lling. The UC and CU Merge Frameworks provide ad-ditional possibilities where the greedy hoie strategies may be replaed by any othersophistiated one. The task of a hoie strategy is to generate hoie probabilities foreah row of the Merge Matrix. Then, based on the probabilities generated, it seletsa row from the unoloured sub Merge Matrix and another one from the oloured subMerge Matrix. Depending on the sequene of hoies, the algorithm will belong to theUC or the CU Merge Framework. All rows must get a hoie probability. Hene, a rowhoie probability funtion must be de�ned to assign probabilities to the rows.De�nition 8.1 (Row hoie probability funtion) The row hoie probability fun-tion assigns hoie probabilities to eah row of the Merge Matrix. A hoie probabilitydetermines how probable the seletion of the two rows is for a merge in the next stepof a Merge Algorithm.An algorithm in the UC and CU Merge Framework de�nes two row hoie strategies.One is for the rows of the unoloured sub-merge-matrix, while the other is for the rowsof the oloured sub-merge-matrix. These row hoie strategies in turn de�ne two rowhoie probability funtions whih are the basis for the seletion. The probabilities ofthe row hoie probability funtion may be represented in vetor format.De�nition 8.2 (Choie probability vetor) A hoie probability vetor x ontainsvalues of the row hoie probability funtion. The xi element of the vetor representsthe hoie probability of the i− th row for a merge.8.2 The CC Merge FrameworksNotie here that choose-col and choose-unc strategies are ompatible in Setion 8.1.Both hoose a row from the Merge Matrix, but they operate on di�erent subsets of therows of the matrix. If one de�nes a choose-col oloured row seletion funtion thenone an without any di�ulty use it as unoloured hoie strategy choose-unc and viaversa. Now let us exploit this observation and introdue the CC Merge Framework(see Figure 8.2). Sine the two hoose funtions are ompatible, use a ommon oneinstead of two. Note as well that there is no need to distinguish between oloured andunoloured sub-merge-matries; just take only the set of rows and apply the ommon
choose funtion suitable for all of them. Next, take two di�erent, arbitrary rows fromthe Merge Matrix whih satisfy the merge ondition and merge them.The CC Merge Framework is the most general. Even although it overs the UC andCU Merge Frameworks, it is worth de�ning them separately so as to have a possibilityof ategorising the algorithms later Moreover, it is useful in the identi�ation of the



64 Merge FrameworksCC Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 {i, j} ← arg choose{i,j}{Mi,Mj : i 6= j} //Choose two row indiesa, where Mij = 04 M ← merge(M, {i, j}) //Merge i and j rows/olumns5 until M is not mergeable6 return MaMij = Mji = 0 is the merge ondition, i.e. there is no edge.Figure 8.2: The CC Merge Frameworkstraditional shemes 2. To understand better the behaviour and reason why the CCMerge Framework is so-alled, one an represent it as a speial independent set sheme.The rows of the Merge Matrix orresponds to olour lasses, i.e. independent sets. Analgorithm in a CC Merge Framework selets two olour lasses/independent sets andreates the union of them, this approah being outlined in Setion 3.6.2. This is done bymerging two arbitrarily seleted rows taken from the whole Merge Matrix. An algorithmterminates when no further merge is possible. Row identi�ers of the �nal Merge Matrixare the olour lasses that desribe the olouring. The seletion of two rows for mergingis done by a strategy (Merge Strategy). With Merge Strategy, one may de�ne a hoieprobability for eah pair of verties.De�nition 8.3 (Row-pair hoie probability funtion) The row-pair hoie prob-ability funtion assigns hoie probabilities to eah pair of rows of the Merge Matrix.A hoie probability determines how probable the seletion of two rows is for a mergein the next step of a Merge Algorithm.The row-pair hoie probability funtion is �nite funtion, so the values of the funtionan be represented in matrix format.De�nition 8.4 (Choie probability matrix) The hoie probability matrix X on-tains values of the row-pair hoie probability funtion. An xij element of the matrixdetermines how probable the seletion of row i and j is for a merge in the next step ofa Merge Algorithm.A Merge Strategy always has an expliit or impliit hoie probability matrix for theurrent problem. The strategy itself an hoose the most probable pair of vertiesfor a merge in the next step or it an apply a probabilisti hoie using the values ofthe hoie matrix. The higher the value in a matrix for a vertex pair, the higher thehane for a merge of the verties. A Merge Strategy always generates this matrix, butsometimes it is hidden, just de�ned impliitly via a desription of the strategy. The keyproperty of a Merge Algorithm is a varying hoie probability matrix that onverges byprogressive merges, to a zero matrix when no more merge is possible. In fat the main2Ususally, traditional shemes �ts into the CU and UC Merge Frameworks.



8.3 Summary 65task of the olouring is to �nd an appropriate hoie matrix for eah step. Sometimesit is onvenient to represent the hoie matrix as an n× n size square matrix like thatof adjaeny matrix of the original graph. In order to ahieve this, one an keep zerorows/olumns in a Merge Matrix � i.e. non-ollapsed Merge Matrix � to have a size of
n×n. An X hoie probability matrix ontains zeros in the non-zero entry positions ofthe relevant non-ollapsed Merge Matrix beause adjaent verties annot be merged.Moreover, with xii-s the diagonal entries are also zeros. Therefore it is reasonable toguarantee this property for eah step. E.g. in the ase of the Binary Merge Square,the X ◦ Ā entrywise produt gives the desired result, where Ā is the Binary MergeSquare, i.e the adjaeny matrix of the omplementer quotient graph. The matrix
Ā = J − I −A serves as the appropriate Merge Square, where J is the matrix with allone entries and I is the identity matrix. The UC and CU Merge Frameworks divide theproblem into unoloured and oloured parts when an algorithm is running. Merges anbe only between two rows whih are in di�erent parts; that is, unoloured and olouredrows an only be merged. Therefore X an only have non-zero values in the relevantross positions.8.3 SummaryIn this hapter we introdued graph olouring frameworks whih generalise the tradi-tional sequential olouring shemes. Eah name refers to the applied olouring/mergingsheme. Namely, U means an unoloured vertex and C means a olour lass. Henein a UC Merge Framework an unoloured vertex is hosen �rst, then a olour lass isassoiated with it. These frameworks over and extend the traditional vertex orderingshemes outlined in Setion 4.2.1. The CU Merge Framework selets a olour lass�rst, then assoiates a unoloured vertex with it. This framework inludes the tradi-tional independent set approah of Setion 4.2.1 sine a olour lass is an independentset. In the third framework the CC does not distinguish between olour and unolouredentities, but takes only olour lasses/independent sets then ombines them. Note thata single vertex forms an independent sets, hene initially it takes eah vertex as oneelement independent sets and ombines them aording to a strategy. All of theseframeworks are de�ned in a uni�ed manner using the Merge Model sheme. An algo-rithm in one of these frameworks applies a subsequent seletion of rows of the mergematries and merges them to ahieve a olouring. None of these frameworks has aonrete strategy for the hoie of rows for merging. A framework with a onrete rowhoie strategy forms a partiular algorithm.





Chapter 9Merge StrategiesIn hapters 7 and 8 Merge Operations and general Merge Frameworks were de�nedin order to perform sequential Merge Operations on the original graph and other sub-sequent merges. A Merge Operation takes two rows/olumns of a Merge Matrix andprodues a new Merge Matrix if the merge ondition allows it. By repeating MergeOperations we will end up with a �nal Merge Matrix where a Merge Operation is nolonger possible. In the ase of the Merge Squares, the �nal Merge Matrix orrespondsto a omplete graph, while in the ase of Merge Tables the �nal Merge Matrix orre-sponds to a power graph whih is homomorphi with a omplete graph. The sequeneof the Merge Operations is ruial. It determines the quality of the solution, i.e. thenumber of olours used in the olouring of the original graph. The number of oloursis the same as the number of rows in a Merge Matrix. Hene the main aim is to reduethe number of rows in a Merge Matrix. Eah Merge Operation dereases the numberof rows by one, until a merge is no longer possible. Therefore the goal is to make asmany merges as possible.This hapter desribes various strategies used to generate merge sequenes, as de-sribed in [94; 96�102℄ by the author. Binary Merge Squares or Tables are assumedin the desriptions of the strategies but their integer extensions are also disussed.These strategies proved useful in the theoretial analysis and experimental study. Chap-ter 10 outlines various algorithms, where these strategies are ombined with di�erentMerge Frameworks of Chapter 8. These algorithms were studied by Juhos et al. in[94; 96�102℄. The algorithms whih apply these strategies outperform several well-known benhmark algorithms from the literature, whih were desribed in Setion 4.2.In Setion 4.2.1 we presented two traditional priniples for olouring strategies. The�rst was the sequential olour assignment sheme, where an unoloured vertex is ho-sen �rst and then a �rst available olour is assigned to this vertex. Then the seondwas the maximal independent set approah where the next available olour is taken,then as many verties as possible are oloured with this olour. The same olouredverties form maximal independent sets in this ase. In both ases the olour hoieis greedy and the unoloured vertex hoie is based on some strategy. In Chapter 8,67



68 Merge Strategiesthese approahes were generalised in the UC and CU Merge Frameworks, respetively,where an additional framework alled the CC Merge Framework was also introdued.A olour an be interpreted as a olour lass that is an independent set. An unolouredvertex is also an independent set ontaining a single member. Merge Models asso-iate the olour lass with the rows of merge matries. Eah row of a Merge Matrixrepresents an independent set whih an be either a olour lass or an unoloured ver-tex. The olour assignment operation is implemented as a Merge Operation of theappropriate rows/olumns representing a merge of two orresponding independent sets.Hene instead of a olour hoie or an unoloured vertex hoie, we may just de�nea row hoie from the set of appropriate Merge Matrix rows. Consequently, the rowhoie generalises the traditional hoie shemes. A row hoie may represent either anunoloured vertex hoie or a olour hoie in the traditional olouring term, depend-ing on whih set of rows of a Merge Matrix forms the basis of the hoie. Followingtraditional olouring shemes, rows of a Merge Matrix will be partitioned into olouredand unoloured row sets. There are two strategies available to hoose a row from theoloured and another from the unoloured part. The Merge Operation is based on theseseletions. In the ase of Merge Tables it is rows, but in the ase of Merge Squaresthe orresponding olumns are merged as well. Depending on the order of the hoiesfrom the two row sets, the result will be the UC or the CU Merge Framework. Therow seletion in the unoloured and oloured row sets are de�ned by two row hoiestrategies. In the traditional shemes one of them is usually a greedy strategy, e.g. takethe �rst row from the oloured row set whih is mergeable with a row seleted fromthe unoloured row set. If the row set is not partitioned, then an algorithm an hoosetwo arbitrary rows for a merge. This approah is de�ned in the CC Merge Framework.Here, instead of two separated row hoies, one row-pair hoie is used.9.1 Row-pair hoie strategiesAn algorithm in the CC Merge Framework does not make a distintion between theoloured and unoloured states of the rows of the Merge Matrix. Eah row representsan independent set/olour lass. Merging the two representation rows results in a unionof the independent sets. These algorithms just fous on a sequene of merges of twoseleted rows of a Merge Matrix. To �nd suh a sequene, a strategy must be a row-pair hoie strategy that selets row-pairs suessively in order to merge them. Thisproedure presupposes a row-pair hoie probability funtion (pf), whih assigns aprobability value for eah row-pair (Mi,Mj) of a Merge Matrix M , in proportion totheir hane of being hosen. This is illustrated by a general row-pair pf:
∀Mi,Mj (Mi,Mj)→

{

xij i 6= j ∧Mij = 0

0 i = j ∨Mij 6= 0
0 ≤ xij ≤ 1 (9.1)where Mi is the i−th row of a Merge Matrix and xij is the probability of hoosing of

i−th and j−th rows for a merge. A hoie probability funtion an be de�ned by a



9.2 Row hoie strategies 69hoie probability matrix (see De�nition 8.4), where the matrix (i, j) element is the
xij. To get reasonable probabilities, the funtion for non-mergeable row-pairs shouldbe zero, i.e. when i = j and Mi,j 6= 0. Instead of probabilities xij , sometimes itis easier to generate x̂ij values whih do not neessarily lie in the interval [0, 1], butare orrelated with the row-pair pf. In this ase a [0, 1]−normalisation provides theorresponding row-pair pf. A simple [0, 1]−normalisation is de�ned by

xij =
x̂ij −mini,j x̂ij

maxi,j x̂ij −mini,j x̂ij
(9.2)

v1

v2

v3

v4

v5

v6 (a) A graph G

v2 v6 v4 v1 v5 v3

r2 · · · 1 · 1
r6 · · · · 1 1
r4 · · · · 1 1
r1 1 1 · · · 1
r5 · 1 1 · · ·
r3 1 1 1 1 · ·(b) Initial Merge Matrix, the adja-eny matrix of G

r2 r6 r4 r1 r5 r3

r2 · 1 0.6 · 0 ·
r6 1 · 0.6 · · ·
r4 0.6 0.6 · 0.3 · ·
r1 · · 0.3 · 0.3 ·
r5 0 · · 0.3 · 0.6
r3 · · · · 0.6 ·() A hoie probability matrixFigure 9.1: A hoie probability matrix.Figure 9.1() gives an example for a hoie probability matrix (pm). The olumns androws of the pm of Figure 9.1() orrespond to the rows of the Merge Matrix of Figure9.1(b). Based on the values of the pm, a strategy an hoose two rows for a merge,e.g. the hoie probability of the row-pair (r4, r2) is 0.6. A hoie strategy in a MergeAlgorithm alulates the values of the relevant pm and arries out a deterministi orstohasti seletion of two rows for a merge.9.2 Row hoie strategiesThe CC Merge Framework does not distinguish between oloured and unoloured rows.It takes two rows from the Merge Matrix aording to a row-pair hoie strategy andmerges them, then repeats this on the result Merge Matrix. But an algorithm in bothUC and CU Merge Frameworks separates the oloured and unoloured parts. Bothhoose a row from the unoloured sub-merge-matrix, i.e. an unoloured vertex, andanother from the oloured sub-merge-matrix whih represents a olour lass. Aftermaking these seletions, the two rows are merged, whih is the olouring step. Onlythe sequene of the hoies is di�erent. An algorithm in the UC Merge Framework �rstselets a row from the unoloured part, then from the oloured part; while an algorithmin the CU Merge Framework hanges this order and �rst selets a oloured row thenan unoloured row. The �rst seletion may have an in�uene on the seond seletion.Note that in traditional olouring shemes (Setion 4.2.1) the verties and oloursor olour lasses are di�erent objets. In the Merge Model, both orrespond to a row



70 Merge Strategiesof a Merge Matrix. Hene, a row hoie strategy is suitable for hoosing an unolouredvertex or a olour lass as well. The only di�erene is that a row hoie strategy mustoperate on either the oloured sub-merge-matrix or on the unoloured one. Hene,we may de�ne general row hoie strategies. A general row hoie strategy an serveas unoloured or oloured row hoie strategy in the UC or CU Merge Frameworks.Di�erent ombinations may result in di�erent algorithms. A Merge Algorithm generatestwo row seletions. Hene there must be two, not neessarily di�erent, strategies forthese two row hoies. To get a row hoie strategy, an algorithm must impliitlyor expliitly de�ne a row hoie probability funtion. This is di�erent from the row-pair hoie probability funtion, whih is suitable for the CC Merge Framework. Arow pf assigns seletion probability values to single rows instead of row-pairs. Theseprobability values an be represented in vetor form, in the row hoie probability vetor.An algorithm in a UC Merge Framework an reate a row hoie probability vetor inadvane, whih orresponds with the traditional vertex ordering sheme. In fat, thisvetor is a row of a suitable hoie probability matrix, de�ned by a 'hidden' row-pairpf. Usually, a row-pair pf is impliitly de�ned through the separated unolouredand oloured row pf-s. However, one an ombine two row pf-s to provide a row-pair pf. The ombined funtion must assign zero probability values for those rowswhih have the same states, either oloured or unoloured. The following equationde�nes a general row-pair pf for both the UC and CU Merge Frameworks.
∀Msi

i ,M
sj

j (Msi
i ,M

sj

j )→
{

xij si 6= sj ∧Mij = 0

0 si = sj ∨Mij 6= 0
:

0 ≤ xij ≤ 1

si, sj ∈ {col, unc}(9.3)Figure 9.2 shows a plot of the hoie probability matrix in orresponding with Eq. 9.3,where only unoloured and oloured rows an be seleted for a merge.
unc

col 0

0

unc col

0

Figure 9.2: The hoie probability matrix in UC and CU Merge Frameworks. Onlythe blak parts an have non-zero entries. Here 'ol' and 'un' refer to oloured andunoloured row indies, respetively.Combining two row pf values results in a value pair. However, a omparison of singlevalues may be unambiguous, but a omparison of a value pair is sometimes problematie.g. take (3, 1) and (2, 2), where 3 > 2, but 1 < 3. For all i, let xi be the hoieprobability of rowMi generated by a row pf and onstrut a �exible hoie probabilitymatrix X of the row-pair pf. De�ne xij entries of X aording to Eq. 9.5.



9.3 Update mehanism 71
x̂ij = xν

i · x1−ν
j [Mij = 0] (9.4)

xij =

{

max{x̂ij , x̂ji}
κ

i 6= j

0 i = j
(9.5)Eq. 9.4 de�nes an unnormalised support for the hoie. Often only these values formthe basis of the deision of a strategy without normalisation. The κ is a normalisingonstant to get values between zero and one. The merge ondition is (Mij = 0). Itis expressed by the following Kroneker delta funtion: [Mij = 0]. This funtion givesone in the ase of equality, otherwise results in zero. It an be substituted by (1−Mij)if the xi-s are non-negatives. The term (1−Mij) is one if rows i and j are mergeable,otherwise it is non-positive, hene only mergeable rows play a role in the seletionproess. The max{x̂ij , x̂ji} ensures the symmetry of the hoie probability matrix.Furthermore, 0 ≤ ν ≤ 1 de�nes a bias. It favours large values in the ombination.In the ase of ν = 1

2
, this strategy favours the seletion of rows having large valuesbut not neessarily the largest. In order to favour those rows having the largest pfvalue, the 1

2
bias should be altered. The bias ν = 0 (or ν = 1) result an be utilisedas a row pf, where only one value of the pair is onsidered. As an example, taketwo pairs of mergeable rows (r1, r2) and (r3, r4) whih have the following row pfvalues (2, 2) and (3, 1), appropriately. Let ν = 1

2
, then apart from the normalisation

(
√

3 ·
√

1) < (
√

2 ·
√

2). The 3ν > 2 should be hold to favour the seletion of (r1, r2)pair whih have the largest row pf value 3. Indeed, hoose ν > log3 2 then 3ν > 2and hene the (r1, r2) is seleted for a merge. Otherwise, when ν < log3 2, then theother pair (r3, r4) is favoured.9.3 Update mehanismThe relation between the Merge Matrix rows usually hanges after a merge. It requiresa realulation of the relevant hoie funtions. In the UC and CU Merge Frameworks,an unoloured row is merged into a oloured one. Hene, the a�eted unoloured rowmust be removed, or set to zero, in the unoloured sub-merge-matrix. Furthermore,the oloured sub-merge-matrix also hanges in the a�eted oloured row. Row hoieprobability funtions have to be updated for the two a�eted rows. It means that oneentry has to be updated in the oloured and another in the unoloured hoie probabilityvetor. The CC Merge Framework needs a row-pair hoie probability funtion. Whentwo rows are merged, the orresponding funtion values have to be updated. In thehoie probability matrix representation of the funtion values, the appropriate row andorresponding olumns have to be updated.9.4 Extension of non-merge based strategiesA non-merge based hoie strategy an be extended using a Merge Model. The exten-sion is based on the transformations of the problem, i.e. merge matries and assoiatedgraphs, indued by Merge Operations. Conseutive Merge Operations generate a Merge



72 Merge StrategiesMatrix series. A merge redues the size of the matrix, produing ompat relationswhere problemati parts may be revealed. Hene these matries an better haraterisethe original problem. Intermediate matries in the matrix sequene may ontain moreand more information proportional to the number of merges, beause intermediate ma-tries asymptotially approah a �nal Merge Matrix. An intermediate matrix has thesame struture as the initial one in the ase of Merge Squares1. Consequently, if astrategy an operate on the adjaeny matrix, the initial Merge Matrix, then the samestrategy an ooperate with the intermediate matries as well. It introdues a dynamireonsideration proess where previous deisions of a strategy, i.e. pf-s an be revisedby exploiting the additional information ontained in the intermediate matries.9.4.1 Extended Welsh-Powell (∞−norm) StrategyMotivation. In Setion 4.2.3 we introdued the Welsh-Powell algorithm, where theverties are ordered in dereasing vertex degree and then greedily oloured. It uses atmost maxi min{di + 1, i} olours, where di is the degree of the i−th position vertex.The degree of a vertex may be alulated by the sum of the relevant row of the adjaenymatrix. Hene the vetor whih ontains every degree is the following:
d = AG e (9.6)where AG is the adjaeny matrix of the original graph and e is the vetor of allone entries. This strategy selets the most onstrained unoloured verties by edgesin a graph. It is represented by the maximum row sum, whih is looked for amongthe rows orresponding to unoloured verties. This is the maximum of dunc of Eq.9.7, where dunc = d ◦ eunc

G and eunc
G is the harateristi vetor of the unolouredverties (see De�nition 7.8). After olouring a vertex, the searh for the maximum rowsum proeeds with the rest of the verties. Hene the maximisation proess alwaysjust takes the unoloured degrees (Eq. 9.7), whih ontains only those rows of theadjaeny matrix whih orrespond to unoloured verties.

dunc = AG eunc
G = d ◦ eunc

G (9.7)The original Welsh-Power strategy hooses that unoloured row whih has the maximumdegree in the original graph; that is, the basis of the hoie is dunc. A generalisationof this strategy an be de�ned by the following merge sheme. The general idea isthe same, namely to avoid the possibility that the least onstrained verties ollet toomany irrelevant verties, as the original Welsh-Powell method does. The initial MergeMatrix is the adjaeny matrix in eah Merge Model. After a Merge Operation theMerge Matrix M is transformed into another one, where the number of rows dereasesby one, resulting in a reformulated problem graph where the sums of the rows hange2.Next, we examine the produt ofM with the vetor of all ones e in Eq. 9.8. It provides1Usually an extension is similar for Merge Tables as well.2Without loss of generality, we shall assume that there is no isolated vertex (it has no neighbours).



9.4 Extension of non-merge based strategies 73the relevant sums in a vetor. This vetor is introdued as a left o-struture of aMerge Matrix in Setion 7.2:
µl = Me (9.8)A row in the Merge Models represents a olour lass. The sum of the rows have adi�erent meaning in di�erent Merge Models. Some of these are illustrated in Figure7.7. The Welsh-Powell vertex hoie strategy an be de�ned in the Merge Model usingthe left o-struture of the Integer or Binary Merge Tables or the Integer Merge Square.However, three ombinations out of the twelve3 result in the original Welsh-Powellalgorithm, the others provide extensions of this. Combination of this strategies withdi�erent Merge Models and Merge Frameworks results in di�erent olouring algorithms.They are the Extended Welsh-Powell strategies, whih were introdued by the authorin [97℄.De�nition 9.1 (Extended Welsh-Powell strategies) Extended Welsh-Powell strate-gies are those strategies whih are de�ned by a Merge Model in a Merge Frameworkusing the maximum row sum hoie strategy.The Welsh-Powell strategy an be de�ned by unoloured row hoies in several MergeModels. However, an Extended Welsh-Powell strategy an apply the maximum rowsum strategy for oloured rows as well. When unoloured and oloured rows are hosenseparately, then the suitable Merge Framework for these type of algorithm are the UCand CU Merge Frameworks. The row hoies are always supported by a row hoieprobability funtion. Here it was based on the row sums.The row hoie probability funtion for the UC and CU Merge Frameworks.Both UC and CU Merge Frameworks hoose a row from the unoloured sub-merge-matrix and another from the oloured. Only the sequene of the hoies di�ers. Therow hoie probability funtion for the unoloured sub-merge-matrix is de�ned in Eq.9.9. Its ounterpart for the oloured sub-merge-matrix is de�ned in Eq. 9.10. Thevalues of the funtions as a sequene an be written as vetors, the hoie probabilityvetors xunc and xcol, respetively.

xunc
i =

〈Munc
i , e〉
κ

(9.9)
xcol

i =
〈M col

i , e〉
κ

(9.10)where Munc
i and M col

i are the appropriate unoloured and oloured row vetors, re-spetively and e is the vetor of all one entries. of The i−the omponent of the hoieprobability vetor xunc
i of xcol

i desribes the hane of a seletion of the i−th unolouredor oloured row. These hoie vetors may be applied separately or they an be om-bined together with other row hoie strategies. The κ must be a reasonable onstant3Four types of Merge Models and three variants of the Merge Frameworks.



74 Merge Strategiesto normalise the values to get probabilities, e.g. the maximum of the possible rowsums. These hoie probability vetor supports the row hoies, whih an be eitherdeterministi of stohasti. The deterministi hoie strategy for both unoloured oroloured rows is de�ned in Eq. 9.11. The stohasti hoies is based on a randomvalue generation by some probability distribution. The hoie will be the index of thatomponent of the hoie probability vetor whih has the nearest value to generated arandom value 0 ≤ rnd ≤ 1, as stated in Eq. 9.12.
arg max

i
xs

i s ∈ {col, unc} (9.11)
arg min

i
{|xs

i − rnd|} s ∈ {col, unc} (9.12)where xs
i is the appropriate unoloured or oloured part of the vetor. The minimisationproblem of Eq. 9.12 results in the index of the losest xs

i element to the generatedvalue of rnd. The maximum row sum strategy may be interpreted via the indued
∞-norm of matries. The ∞-norm provides the maximum row sum:

‖Munc‖∞ = max
i
{〈Munc

i , e〉} (9.13)In order to de�ne a row-pair hoie probability funtion for the CC Merge Frameworkwe will follow the onstrution of Setion 9.2.The row-pair hoie probability funtion for the CC Merge Framework. Un-oloured and oloured row hoies are needed within the UC an CU Merge Frameworks.The CC Merge Framework does not make any distintion between oloured and un-oloured states, but the maximum row sum strategy an be exploited in this frameworkas well. In the CC Merge Framework, hoose two rows for a merge; if they are merge-able and they represent the maximum row sum ombination. Sine 'ombination' isnot an exat term here, make use of De�nition 8.4 and introdue a hoie probabilitymatrix where row sums an be 'ombined'. An (i, j) entry of the hoie probabilitymatrix represents the hane that the i and j rows will be involved for a merge. Heneit de�nes the row-pair hoie probability funtion:
x̂ij = 〈Mi, e〉ν · 〈Mj , e〉1−ν [Mij = 0] (9.14)

xij =

{

max{x̂ij , x̂ji}
κ

i 6= j

0 i = j
(9.15)where κ is a normalising onstant needed to get values less than one. Moreover, the

xij-s are all non-negative numbers. The κ an be the maximum of the xij entries orthe sum of the entries |M |. In the ase of κ = |M |, the sum of the entries of thehoie probability matrix will be one. The sum of the entries of the X hoie matrixan be also a good option for normalising onstant. The Kroneker delta [Mij = 0]represents the merge ondition when the merge ondition is not satis�ed, i.e. Mij 6= 0,



9.4 Extension of non-merge based strategies 75the funtion give 0, otherwise 1. In the ase of Binary Merge Matries the Kronekerdelta funtion an be substituted in Eq. 9.14, thus
x̂ij = 〈Mi, e〉ν · 〈Mj , e〉1−ν (1−Mij) (9.16)In the ase of Binary Merge Squares, an equivalent hoie strategy an be de�ned by

X = (Ae)(Ae)T ◦ Ā (9.17)where A is a Binary Merge Square, i.e. the adjaeny matrix of an appropriate quotientgraph, whih is a simple graph. Here Ā is the adjaeny matrix of the omplementergraph of the quotient graph. It has zeros in the edge positions of A and ones elsewhere,exept along the main diagonal whih has zeros too. An entrywise produt with Ā isa suitable hoie beause it retains only those array positions where Aij 6= 0, whilethe other array positions will have zero values. Figure 9.3(b) shows a typial hoieprobability matrix. The Integer Merge Table of Figure 9.3(a) omes from Figure 7.6with ν = 0.5. The matrix has positive-valued elements only in the possible mergepositions.
v1 v2 v3 v4 v5 v6

r1 · 1 1 0 · 1
r2 1 · 1 0 · 0

{r3, r5} 1 1 · 2 · 2
r4 0 0 1 · 1 0
r5 · · · · · ·
r6 1 0 1 0 1 ·(a) Integer Merge Table. The 0-s are the pos-sible merge positions.

r1 r2 {r3, r5} r4 r5 r6

r1 · · · 1 · ·
r2 · · · 0.8 · 1

{r3, r5} · · · · · ·
r4 1 0.8 · · · 1
r5 · · · · · ·
r6 · 1 · 1 · ·(b) Choie probability matrix. A greedy hoieis given in bold.Figure 9.3: The ∞−norm hoie probability matrix.For Merge Squares the indued ∞−norm is equivalent to the indued 1−norm, but forthe Merge Tables these norms give di�erent results, sine the olumns and the rowsbelongs to di�erent objets. Columns refers to the verties in the original graph, but therows orrespond to olour lasses. A Binary Merge Table desribes the relation betweenthe verties and the olour lasses. The 1−norm provides the maximum olumn sum,while the ∞−norm provides the maximum row sums. A olumn sum in the olouredsub-merge-matrix gives the number of neighbour olours of a vertex as depited inFigure 7.7, i.e. the olour saturation degree (Def. 4.3). Therefore the DSatur algorithmin Setion 4.2.5 an be de�ned by this value as well, while the∞−norm belongs to thenumber of neighbours; and hene, this value helps the Welsh-Powell algorithm.Improvement. The Extended Welsh-Powell methods apply merges. The number ofrows derease by merges. The max min{di, i} is translated into max min{〈Mie〉 , i},



76 Merge Strategieswhere Mie is the sum of the i-th row of the Merge Matrix M and i is the position ofthe row by the hoie probability vetor. That rows are ordered by their sums. Thanksto the derease in the number of rows, the i-th position dereases, whih an bringimprovement in the bound. Moreover, in the ase of Binary Merge Squares the sum ofthe rows must be derease after a ertain number of merges; beause the number ofolumns also dereases after eah merge. A �nal Binary Merge Square of a k−olouringhas k number of rows and olumns and the ommon degree is k− 1. We may supposethat the minimal degree δ of the verties of the original graph satis�es δ ≥ k−1, thanksto the low degree redution tehnique (see Setion 3.4). Therefore, after ertain mergesteps the sum of the rows must approah4 k − 1, leading to a derease in the upperbound.9.4.2 Extended Hajnal StrategyMotivation. In Setion 4.2.4 we outlined the Hajnal algorithm, whih utilises vertexordering aording to the dereasing values of the omponents of the prinipal eigenve-tor of the adjaeny matrix of the original graph AG. Then a greedy olour assignmentto the verties assures that an upper bound of the number of olours is used. Thisbound is the prinipal (the largest) eigenvalue λmax. This strategy was extended by theauthor in the UC Merge Framework, taking advantage of the Binary Merge Squares,beause they are the adjaeny matries of the appropriate quotient graphs. After amerge, we employ the strategy for the result Merge Square, and ontinue in the samefashion as long as a merge is still possible. The Gershgorin disk theorem [64; 149℄ andthe bound λmax ≤ ∆ give the same upper bound for the prinipal eigenvalue, whihis the maximum degree in a graph. In this ase it is a quotient graph, whih is also asimple graph like the original graph. Hajnal strategies improve the upper bound betterthan the Welsh-Powell 4.2.3 strategy does. This bound has been improved still furtherby the author in the Merge Models.Improvement. In the Binary Merge Square model, onseutive merges ontrat theoriginal graph G to quotient graphs until the omplete graph Kk is reahed, where
k ≤ |VG| and no further merges are possible. Kk is a k−regular graph, hene itsprinipal eigenvalue λmax(Kk) = k − 1 (see [46℄). Moreover, we may suppose thatthe minimal degree satis�es the onstraint k − 1 ≤ δG. Otherwise, apply a low degreevertex removal5 (see 3.4). Aording to [45℄, the following holds: δG ≤ λmax(G), fromwhih we onlude that λmax(Kk) = k− 1 ≤ δG ≤ λmax(G). The prinipal eigenvalueof a �nal Binary Merge Square must be not greater than the prinipal eigenvalue of theoriginal adjaeny matrix. Thus

λmax(Kk) ≤ λmax(G) (9.18)The di�erene between the value of the left hand and right hand side of Eq. 9.18 an4k − 1 is the sum of eah row in a �nal Binary Merge Square.5A vertex removal does not inrease λmax [45℄.



9.4 Extension of non-merge based strategies 77be large 6. So that the appliation of the Hajnal strategy with the Binary Merge Squaremodel an signi�antly redue the upper bound of this strategy in an intermediatequotient graph, whih resides between G and Kk. The experimental results in Setion11.3 show this improvement in pratie. To illustrate the relationship between theverties and the omponents of an eigenvetor, take the eigenvalue-equation Ax̂ = λx̂.It is reasonable to denote the eigenvetor by 'hat' (x̂), beause it is the basis of the rowhoie probability vetor, but it should be normalised by its largest element. Now letus onsider the fourth omponent x̂4 of an eigenvetor x̂ and examine the eigenvalue-equation; namely A4x̂ = λx̂4. The A4 de�nes the neighbours of the v4 verties and
A4x̂ sums the eigenvetor omponents related to the neighbours of v4, enlarging the
x̂4 by λ. Figure 9.4 shows how the eigenvetor omponents are related to eah otherin a graph.

v1

v2

v3
v4

v5

v6

x3 = 0.548

x1 = 0.475

x2 = 0.358

x6 = 0.448

x5 = 0.256

x4 = 0.282

λmax · 0.282 = 0.548 + 0.256

Figure 9.4: The prinipal eigenvetor omponents orrespond to graph verties. Hereto the solid thik lines denote the eigenvetor omponents, while the thin lines are theedges. The arrows graphially represent the relationship λmaxx̂4 = A4x̂max = x̂3 + x̂5.Take the graph G in Figure 9.4 as an example and sort the vertex identi�ers of G indereasing order, aording to the omponents of the prinipal eigenvetor of G.
v̊3 v1 v6 v2 v4 v̊5

x̂max = (0.548 0.475 0.448 0.358 0.282 0.256)
(9.19)The vertex v3 gets the highest omponent value in the sorting, but the only mergeableverties are v5 and v3, eah being marked by a ring in Eq. 9.19. After merging v3 and

v5 and again alulating the prinipal eigenvetor for the resulting quotient graph, weget the following:
{v3, v5} v̊1 v2 v6 v̊4

x̂max = (0.582 0.523 0.412 0.217 0.256)
(9.20)Figure 9.5 shows the resulting graph of the merge {v3, v5}, where the λmax value isredued from 2.853 to 2.685. Hene, the upper bound is dereased. The {v3, v5}vertex is adjaent to all the other verties, hene v1 must be seleted next. Its onlynon-neighbour vertex is v4. So both are designated for the next merge. As it standsthis strategy does not work with Merge Tables. However, there is a way to extend it.6The di�erene between the δG and d̄G values may be large and λmax(Kk) ≤ δG ≤ d̄G ≤ λmax(G)(see [45℄).
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v1

v2

v4

{v3, v5}

v6

Figure 9.5: A quotient graph produed by the Extended Hajnal strategy.Take the prinipal, the largest singular value σmax(M) of a Merge Matrix M and theorresponding left singular vetor alled the prinipal left singular vetor. In the ase ofa symmetri matrix (like a Merge Square), singular values are eigenvalues and singularvetors are eigenvetors, respetively. Merge Tables are not square matries7, but theprinipal left singular vetor an be used to determine an order of the rows, muh likethat for Merge Squares.De�nition 9.2 (Extended Hajnal strategies) Extended Hajnal strategies are thosestrategies whih are de�ned by a Merge Model in a Merge Framework using the �rstleft singular vetor hoie strategy. The left singular vetor omponents are assoiatedwith the verties. A higher value means a higher hane for seletion of the row in thenext merge.Vertex ordering strategies like the Hajnal strategies orrespond to either the UC or CUMerge Framework. There must be two row hoie probability funtions de�ned in bothframeworks based on possible row hoies.The row hoie probability funtion for the UC and CU Merge Frameworks.The hoie probability vetor for hoosing either from the oloured or unoloured sub-merge-matries an be de�ned by the relevant part of the following hoie probabilityvetor like so
x =

x̂

κ
, κ = maxi{x̂i} (9.21)Similar to the equations 9.11 and 9.12 a deterministi or stohasti hoie an bede�ned.

arg max
i

xs
i s ∈ {col, unc} (9.22)

arg min
i
{|xs

i − rnd} s ∈ {col, unc} (9.23)The row-pair hoie probability funtion an be de�ned based on the row hoie prob-ability funtion desribed in Setion 9.2.The row-pair hoie probability funtion for the UC and CU Merge Frame-works. If x̂ is the left prinipal singular vetor, then the omponents of the hoie7Exept for the zeroth Merge Table, whih is the adjaeny matrix of the original graph.



9.5 Spetral Norm � 2−norm Strategy 79probability matrix xij are de�ned for the Extended Hajnal strategy, namely
xij =

{

x̂ν
i ·x̂

1−ν
j

κ
(1−Mij) i 6= j

0 i = j
(9.24)Note that every x̂i is non-negative due to the prinipal eigenvetor Perron-Frobeniusproperty [140℄.9.5 Spetral Norm � 2−norm StrategyMotivation. The Hajnal heuristi (see Setion 4.2.4) provide an upper bound for thenumber of olours used in a olouring. The bound is equal to the prinipal eigenvalue,whih de�nes the spetral norm of the adjaeny matrix. Unfortunately, the prinipaleigenvalue may be far away from the hromati number, as mentioned in Setion 3.4.Therefore, the Extended Hajnal strategy (Setion 9.4.2) tries to exploit the fat thatmerges an bring a derease in the eigenvalue in the ase of Binary Merge Squares. First,let the Merge Matrix be a Binary Merge Squares. Then applying the Hajnal strategyafter a merge, the upper bound should derease until the proess gets to the �nalMerge Matrix. A �nal Merge Matrix represents a omplete graph Kk on k−verties.The prinipal eigenvalue is k−1 in this ase beauseKk is (k−1)−regular, as mentionedin Setion 9.4.2. The hromati number is the smallest among the possible k-s, i.e. Kχis the smallest omplete graph whih an be produed by a merge sequene. Therefore,

χ − 1 is the smallest prinipal eigenvalue whih an be ahieved. Exploiting thisobservation, the author introdued a steepest desent spetral norm strategy in [101℄.The spetral norm strategy selets two rows from the Merge Matrix whih an minimisethe spetral norm of the resulting Merge Matrix. Figure 9.14(a) shows how the spetralnorm evolves in the intermediate Merge Matrix ases. There are random olourings andan optimal olouring of a 20−hromati graph. Moreover, the �gure ontains the valuesassoiated with the spetral norm minimisation strategy. Here 24 olours are used inthe olouring proess by the strategy, while random olouring uses over 36 olours. Toget a k−olouring, |VG| − k merge steps are neessary. Therefore, the urves of Figure9.14(a) never reah |VG| = 200, but they were extended to get a better insight intohow the �nal olouring is realised. Here, not just the Binary Merge Squares approahan bene�t from this strategy. The spetral norm is de�ned by the prinipal singularvalue σmax, hene it an be applied to non-square matries as well. Thanks to thisfat, the strategy works with Binary Merge Tables as well. Furthermore, the spetralnorm is equivalent to the indued 2−norm [69; 89℄, thus
‖M‖2 = σmax(M) (9.25)The row-pair hoie probability funtion for the CC Merge Frameworks.Using Eq. 9.25, de�ne the row-pair hoie probability funtion of the steepest desent



80 Merge Strategiesspetral norm strategy by ‖ · ‖2 like so
xij =

{

κ
‖M/ij‖2

(1−Mij) i 6= j

0 i = j
(9.26)Here M/ij represents the Merge Matrix, whih is derived from the Merge Matrix M bymerging the i−th and j−th rows, while Mij is the (i, j)−th omponent of the matrix.The onstant κ is a normalisation onstant that prevents the values from getting toosmall. Note that for the Integer Merge Matries the strategy must be the opposite.Sine they keep all the original edges, the values of the entries inrease when the sizeof the matrix dereases. Beause 1√

n
‖M‖∞ ≤ ‖M‖2 (see [69℄), the inreasing valueof the spetral norm will de�ne the strategy.The row hoie probability funtion for the UC and CU Merge Frameworks.The spetral norm strategy like other row-pair hoie strategies an work in the UC andCU Merge Frameworks as a seond row hoie strategy. When an arbitrary strategy se-lets a row from the unoloured sub-merge-matrix, it designates a row vetor from thehoie probability matrix whih satis�es Eq. 9.26. The seond row seletion from theoloured sub-merge-matrix an be done by the steepest desent spetral norm hoiealong the designated row vetor of the hoie probability matrix.The strategy must generate trial matries like M/ij in order to get the appropriatehoie probability values whih onstitute the hoie probability matrix. However, thestrategy needs to make as many alulations as the number of mergeable row-pairs.After a merge the number of mergeable elements is redued, hene the generation ofthe hoie matrix speeds up. Nevertheless, the alulation of the prinipal eigenvaluean be done e�iently [69℄. In pratie, the alulation is problemati with large graphs.Fortunately, there are suitable tehniques available to get a good approximation of thevalue for the spetral norm [123℄. This approximation helps speed up the alulationof the hoie probability values, beause the update tehnique of Setion 9.3 an beutilised.9.6 Spetral norm approximation strategiesMotivation. The spetral norm strategy must �rst make several trial merges. Withthe resulting trial merge matries, the spetral norm strategy makes spetral normalulations to reate a suitable row-pair hoie probability funtion. Calulating thespetral norm of the M/ij is omputationally expensive, but Merikoski and Kumar oneintrodued an e�ient spetral norm approximation in [123℄. Based on their results,the author [101℄ adapted his spetral norm strategy to an approximated spetral normstrategy, whih produed e�etive alulations of the hoie probabilities, where theapproximation an be given by the entries of the Merge Matrix. Let M = A be a



9.6 Spetral norm approximation strategies 81Binary Merge Square then
‖A/ij‖2 ≈

√

∑l
r=1

〈

(A/ij)r, e
〉2

l
(9.27)where l is the number of rows of the Merge Matrix A/ij . 〈(A/ij)r, e〉2 is the square ofthe r-th row sum, whih may be replaed by 〈(A/ij)r, (A/ij)r〉2 in the ase of BinaryMerge Matries. Sine Merge Tables are non-symmetri matries8, the symmetri

T/ijT
T
/ij must be applied9 in Eq. 9.27 instead of T/ij . This leads to an approximationof the square of the spetral norm of M/ij . Note that Eq. 9.27 must be applied for theMerge Matries produed by trial merges in order to get hoie probability values (seeEq. 9.26), but a diret alulation of these values is also possible, as desribed below.The row-pair hoie probability funtion for the CC Merge Framework. Thespetral norm strategy makes as many trial merges as the number of hoie probabilitiesrequired for the deision. The author, improving on earlier results, introdued a hoieprobability alulation without applying any trial merges. The hoie probabilities arealulated diretly, using just the Merge Matrix entries. Owing to this, this strategyan exploit the update mehanism of Setion 9.3, whih is not present in the originalspetral norm strategy (Setion 9.5).In the ase of an Integer Merge Matrix M a diret alulation of the xij hoie proba-bility values for the i-th and j-th rows is performed using the formula

‖M/ij‖2 ≈

√

∑

r 6=i,r 6=j 〈Mr, e〉2 + (〈Mi, e〉+ 〈Mj , e〉)2

l
(9.28)where l is the number of rows of the 'trial' Merge Matrix M/ij . After merging rows

i and j of M , the row sums do not hange in the resulting M/ij , exept for the i-th and j-th rows: Mi and Mj , whih will hange as follows: (M/ij)i = Mi + Mjand (M/ij)j = 0. Therefore, the i−th row sum will be 〈Mi, e〉 + 〈Mj , e〉, while the
j-th row sum will be zero. With a Binary Merge Matrix M , this situation is a bitmore ompliated beause the pieewise or operation results in 1-s for the ommon 1values. That is, if (M/ij)ir = 1 and (M/ij)jr = 1 then they result in the merged row
(M/ij)ir ∨ (M/ij)jr = 1. Figure 9.6 shows a typial example for the ase of a BinaryMerge Table and Square as well. Let I be an index set, the set of the ommon onepositions of the rows Mi and Mj . In this example it is I = {4, 6} (see Figure 9.6).Let M = A be a Binary Merge Square, the hanges in the row sums after the row Ai8Exept for the initial Merge Table, whih is the adjaeny matrix.9Atually, this form may be suitable for Merge Squares as well, but auses extra omputation e�ort,hene in this ase it is not reommended.



82 Merge Strategiesis merged into Aj an be summarised as follows
〈

(A/ij)i, e
〉

= 〈Ai, e〉+ 〈Aj , e〉 − 〈Ai, Aj〉
〈

(A/ij)j , e
〉

= 0
〈

(A/ij)r, e
〉

= 〈Ar, e〉 − 1 r ∈ I
〈

(A/ij)r, e
〉

= 〈Ar, e〉 r /∈ I ∪ {i, j}

(9.29)Here A/ij denotes the Merge Matrix after merging the i-th and j-th rows. The i-th rowand j-th row must be added, hene their sums are added, but the sum of the ommonrow positions 〈Ai, Aj〉 must be subtrated, due to the or operation. Besides thesehanges, based on a merge of the two appropriate olumn, the row sums are hangedby −1 in the I positions. Note that the merge ondition Aij = Aji = 0 ensures thatthe index set I will never ontain i and j indies.
4. 6.

· 1 1 · · 1
1 · 1 · · ·

∗ 1 1 · 1 · 1
· · 1 · 1 ·

∗ · · · 1 · 1
1 · 1 · 1 ·

=⇒

∗ ∗
· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· · 1 · 1 ·
· · · 0 · 0
1 · 1 · 1 ·

=⇒

· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· 1 1 · 0 ·
· · · 0 · 0
1 1 1 · 0 ·Figure 9.6: The ∗ rows and olumns are assigned for a merges. The left matrix is theinitial Merge Matrix, namely the adjaeny matrix. The middle is a Binary Merge Tableafter merging ∗ rows. The right is a Binary Merge Square, after merging ∗ olumns.Common ones and their amendments are shown in bold. The ommon one positionsare I = {4, 6}.For a Binary Merge Table T the approximation may be performed using the symmetri

T/ijT
T
/ij matries, where the results of the approximations are the squares of the spetralnorm values. Nevertheless, an alternative e�ient strategy an be the appliation ofEq. 9.27 for T only. Sine just the rows are merged in the ase of Merge Tables,the olumns remain una�eted (see Figure 9.6). The hanges in the row sums aftermerging the i-th and j-th rows may be represented by the following

〈

(T/ij)i, e
〉

= 〈Ti, e〉+ 〈Tj , e〉 − 〈Ti, Tj〉
〈

(T/ij)j , e
〉

= 0
〈

(T/ij)r, e
〉

= 〈Tr, e〉 r /∈ {i, j}
(9.30)In the ase of Integer Merge Tables, the omponent −〈Ti, Tj〉 must be removed fromthe 〈

(T/ij)i, e
〉 alulation, beause the Merge Operation is the addition operation,while the others sums remain the same.Remark. The row hoie probability funtion values are generated in the same wayas that desribed in Setion 9.5. Kumar and Merikoski in [123℄ o�er more sophistiatedapproximations for the spetral norm whih an be utilised as well. Notie that the



9.7 Dot Produt (entrywise norm) Strategy 83omponents of this strategy ontain row sums like those in the Welsh-Powell method,but here all the row sums are taken into aount in a row-pair seletion. Moreoverthese row sums orrespond to a Merge Matrix whih is derived from the atual MergeMatrix by a merge. However, there may be rows whih remain unhanged. Also notiethat in the binary ases, the dot produt of the two rows also have an in�uene on theseletion. The dot produt in the strategy takes the relation of the rows into aountas well as their individual properties, like a row sum. The bigger the dot produt value,the greater the derease in the row sum. The following strategy fouses on an analysisof the observed relation between the two rows.9.7 Dot Produt (entrywise norm) StrategyMotivation. As we saw earlier, the number of rows in a �nal Merge Matrix de�nesthe number of olour lasses used in the olouring problem. Hene the aim is to reduethe number of the rows as muh as possible in order to have as few olours as possible.The non-zero elements, the edges an only prevent the further redution of the rows.Sine merges result in hanges in the number of non-zero elements, this strategy keepsthe number of edges as low as possible in the intermediate Merge Matrix stage. Toahieve this goal, two rows must be hosen whose merge redues the highest numberof non-zero elements in the Merge Matrix. Figure 9.7 shows an example.
· 1 1 · · 1
1 · 1 · · ·

∗ 1 1 · 1 · 1
· · 1 · 1 ·

∗ · · · 1 · 1
1 · 1 · 1 ·

=⇒

· 1 1 · · 1
1 · 1 · · ·
1 1 · 1 · 1
· · 1 · 1 ·
· · · 0 · 0
1 · 1 · 1 ·Figure 9.7: A merge of the ∗ rows auses the greatest redution in the number ofnon-zero elements. The �gure shows this redution in a Binary Merge Table.It leads to the reognition that those rows whih have the maximal number of ommonnon-zero elements should be hosen for a merge. In the adjaeny matrix, ommonnon-zero entries in two rows mean ommon neighbours of the orresponding verties.This strategy was introdued in [97℄ by the author. The strategy with various MergeFrameworks was analysed by Juhos et al. in [98�101℄. The results of the analysis willbe presented in Chapter 10.The row-pair hoie probability funtion for the CC Merge Framework. Adesription of this hoie strategy by merge matries will help keep the de�nition simple.First let M be a Binary Merge Table or Merge Square. The ommon non-zeros of therow pairs are provided by the Gram Matrix of M , i.e. MMT , whih onsists of the dotproduts of the rows. Although the Gram Matrix ontains essential information, furtherproessing is required to get the mergeable positions beause not all positions refer to



84 Merge Strategiesmergeable rows. The hoie probability matrix is derived from the Gram Matrix, withelements
xij =

〈Mi,Mj〉 [Mij = 0]

κ
(9.31)A 〈Mi,Mj〉 dot produt gives the number of ommon ones in the two row vetors Miand Mj . The normalisation onstant κ may be the square of the maximal row sum,beause every dot produt is non-negative and it must not be bigger than this sum. Abetter hoie may be the maximal 〈Mi,Mj〉, however. In the ase of Binary MergeSquares the hoie probability matrix an be de�ned by a matrix notation, based onEq. 9.32. The only di�erene between the latter an Eq. 9.31 is that the [Mij = 0]restrition is expressed by a Kroneker produt. The non-edge positions are 'maskedout' by the entrywise produt with the adjaeny matrix of the omplementer quotientgraph Ā. Using an entrywise produt of matries, this Ā is a suitable hoie beauseit retains only those positions where Mij = Aij 6= 0, while the others will have a zerovalue.

X =

(

A

(

1

κ
I

)

AT

)

◦ Ā (9.32)The hoie strategy in the CC Merge Framework is de�ned by
arg max

i,j
xij (9.33)The row hoie probability funtion for the UC and CU Merge Frameworks.The UC and CU Merge Frameworks an apply this strategy as well, but the neessaryoloured and unoloured row sets must be kept and the hoie probability matrix mustontain additional zero elements to prevent merges between the rows having the samestates, oloured or unoloured, as seen in Figure 9.2. In the UC Merge Frameworkan unoloured row is hosen by an arbitrary strategy, and based on the maximum dotprodut values a suitable oloured row is seleted for the hosen unoloured row.Connetion with the entrywise matrix norms. With a Binary Merge Square orTable this strategy an be expressed in terms of entrywise norms. A binary merge is thepieewise or operation of the rows. Hene the number of ones dereases by the valueof the dot produt of two mergeable rows (see Eq. 9.34). In the ase of Binary MergeSquares this derease is twie this amount beause the olumns are also merged. Thedot produt maximisation strategy introdues a minimisation in the entrywise 1−norm.To see this, let M be a Binary Merge Table and M/rs be the resulting Merge Tablewhen the maximum dot produt strategy is applied, where r and s are the row indiesof the rows Mr and Ms seleted by this strategy (Eq. 9.33). Eq. 9.35 helps explainwhy the norm dereases.
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∣M/rs
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i6=r,i6=s
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j Mij +
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∑
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∑

j Msj − 〈Mr,Ms〉
) (9.34)
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i6=r,i6=s

∑

j Mij +
∑

j Mrj +
∑

j Msj

)

− 〈Mr,Ms〉 = |M | − 〈Mr,Ms〉



9.8 Cosine Strategy 85The dot produt maximisation introdues a minimisation in Eq. 9.34. This minimisesthe entrywise 1−norm in the resulting Merge Matrix, as shown in Eq. 9.35. Hene thestrategy an be turned into a norm minimisation where two verties are hosen for amerge whih minimises the norm, similar to that in Setion 9.5.
arg

(

|M | −max
r,s
〈Mr,Ms〉

)

= arg min
r,s

(|M | − 〈Mr,Ms〉) = arg min
r,s

∣

∣M/rs

∣

∣ (9.35)Sine the resulting Merge Matrix is also a {0, 1}−matrix an entrywise 1−norm min-imisation means a minimisation in every entrywise norm. Thus the entrywise 2−norm(the Frobenius norm) is also minimised. The Frobenius norm may be alulated by theformula
‖M‖ =

√

√

√

√

l1
∑

i=1

l2
∑

j=1

M2
ij =

√

tr(MTM) =

√

√

√

√

min{l1, l2}
∑

i=1

σ2
i (9.36)where, l1 and l2 stand for the dimension of M . This lets us see the strategy fromanother aspet. There are di�erent forms of the Frobenius norm (Eq. 9.36). However,they enode the same value, but their analysis better explains the priniple behind thestrategy. The �rst form gives the sum of the ones in the matrix; that is, the entrywise

1−norm. The seond is the sums of the row sums. This ontains the maximum rowsum employed separately in the Welsh-Powell strategy, but here it is only a omponentof the summation. The last expression represents the summation of the square of the σisingular values, where the prinipal singular value is just a omponent. Reall that thespetral norm minimisation strategy onsiders the prinipal singular value only. Boththe spetral norm and the dot produt strategies try to exploit a norm minimisation ofthe Binary Merge Matries. The reason is that a �nal Merge Matrix, whih orrespondsto an optimal solution, has the minimal norm among the possible merge matries whihmay ome from the adjaeny matrix, the initial Merge Matrix.Remark. For a Binary Merge Square the third oe�ient −c2 of the harateristipolynomial (Eq. 3.13) of a quotient graph also gives the number of edges [9℄; that is,the number of ones in the orresponding Merge Table (see Setion 3.5). Reduing thenumber of non-zero elements an be a good heuristi to prevent the growth of non-zeroelements whih forbid possible merges. However, one an onsider the zero elementsof the Merge Matrix as well, sine they supports the possible merges. Consequentlywe should deal with the ratio of the number of zero and non-zero elements whih anharaterise better our goal.9.8 Cosine StrategyMotivation. The osine strategy was introdued by the author in [97℄, who demon-strated the e�ieny of the strategy in several experiments [98; 100; 101℄. Following



86 Merge Strategiesthe dot produt strategy, it is mainly intended for Binary Merge Models. The dotprodut strategy fouses on the evolution of the number of non-zero elements duringsuessive merges and attempts to keep them as low as possible. To ahieve this goal,the dot produt strategy selets those two verties for a merge whih have the max-imum dot produt value. The goal of every Merge Algorithm is to make as manymerges as possible beause the number of merges is proportional to the quality of thesolution as outlined in Setion 9.7. Though the non-zero elements in a Merge Matrixfrustrate the merges, the number of zeros assist them. Hene the osine strategy takesthe number of non-zero elements into aount, but also onsiders the number of zerospresent. It employs the maximum dot produt strategy to determine the number ofnon-zero elements in the resulting Merge Matrix after a merge. In order to inlude thezero elements as well, the osine strategy onentrates on the ratio of the zero andnon-zero elements in the resulting Merge Matrix. Therefore in the row-pair hoie thisstrategy ombines the dot produt of the two rows with the number of zero elements inthe rows. Two rows are favoured in the seletion if they have large dot produt valuesand a large number of zero elements.The row-pair hoie probability funtion for the CC Merge Framework. Arow has a large number of zero elements if it has few non-zeros. That is, the number ofnon-zero elements and the number of zero elements are inversely proportional. There-fore, to measure the number of zero elements in a row our strategy takes the reiproalof the sum of a row. The sum of a row is provided by the vetor entrywise 1−norm.The reiproal values are multiplied so as to have a ommon measure for the numberof zeros of the two rows.
1

|Mi|
1

|Mj|
(9.37)Eq. 9.37 shows one of the omponents of our strategy, while Eq. 9.31 shows theother omponent, the dot produt. The produt of these omponents form the osinestrategy, whih takes the non-zeros and zeros into aount as well in the row-pairseletion. In order to get suitable row-pairs, the produt must be maximised. Hene,the row-pair seletion of the osine strategy is

arg max
i,j

〈Mi,Mj〉
|Mi| |Mj |

(9.38)Sine Binary Merge Matries are {0, 1}-matries, the sum of the row elements is equalto the sum of the squares of the elements. Moreover, the square root of the sums doesnot hange the seletion in Eq. 9.38, hene
arg max

i,j

〈Mi,Mj〉
‖Mi‖‖Mj‖

= arg max
i,j

〈Mi,Mj〉
|Mi| |Mj |

(9.39)Where |Mi| provides the sum of the row. Note that the square root of the sum of squareof the elements gives the length of the vetor. Based on this observation the row-pairhoie probability funtion will be de�ned by the maximum osine of two mergeable



9.8 Cosine Strategy 87rows, like the following
xij =

〈Mi,Mj〉
‖Mi‖‖Mj‖

[Mij = 0] (9.40)Due to the osine de�nition, the xij values always lie in the interval [0, 1].The row hoie probability funtion for the UC and CU Merge Framework.The osine strategy for the UC and CU Merge Frameworks may be de�ned in a similarway to the dot produt strategy. In both ases this strategy is appropriate for theseond hoie. The ondition is that the �rst row seletion must be performed byanother strategy, e.g. a greedy one. With the UC Merge Framework, the �rst row isseleted from the unoloured sub-merge-matrix, then the other row is seleted from theoloured sub-merge-matrix using the maximum osine strategy.Remark. If a vertex is dominated by another vertex, i.e. when the neighbour set ofone of them is a subset of the neighbour set of the other, then they an be olouredwith the same olour in eah optimal olouring. In our terminology they an be mergedtogether before starting a olouring algorithm. The most obvious ase is when theyhave the same ommon neighbours. Then their osine value is one. If their neighboursets are slightly di�erent, then their osine value will be high. Therefore our osineformula appears to be meaningful in a merge proess. A �nal Binary Merge Squareis the adjaeny matrix of a omplete graph. Eah row has k − 1 ones, and the dotprodut of eah pair is (k−2). Thus the osine is value is k−1
(k−2)2

. This value is maximalif k is minimal. Hene the osine strategy fores us to make k as low as possible; thatis, it fores us to use as few olours as possible, whih is the goal of minimal olouring.In Setion 3.1.3 the zero bloks (i.e. independent sets) in the adjaeny matrix aredisussed, whih form a solution (see Figure 9.8). Notie that the rows, whih belongsto a zero blok, are almost parallel. The next strategy is based on an optimisationwhih hanges the zero entries in suh a way as to get an almost parallel state of theappropriate rows.

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 0 0 0 1 · 1
v6 0 0 0 1 1 1
v4 0 0 0 · 1 1
v1 1 1 · 0 · 1
v5 · 1 1 · 0 0
v3 1 1 1 1 0 0Figure 9.8: Zero bloks of the independent sets.



88 Merge Strategies9.9 Zykov-tree and Lovász-theta strategy(enhaned osine)Motivation. This strategy was introdued for Binary Merge Squares only (for quo-tient graphs) by the author in [94; 102℄ based on the results of the authors of [51; 103;110; 124; 161; 162℄. Merge/olouring algorithms generate hoie probability matriesfor eah step of the algorithm run. The matrix values represent probability values basedon the algorithm strategy for how probable the merge of two rows is. A olouring ma-trix orresponds to a partiular olouring. It desribes whether two verties are olouredwith the same or di�erent olours. Figure 9.9 shows all the optimal olouring matriesof a graph of Figure 2.1. All of them provide an exat merge probability matrix, whereverties in the same olour lass have a probability value of one and di�erently olouredverties have a value of zero. Unfortunately, none of them is available, beause theyform the solution of the minimal olouring problem. Although they are unavailable,their average an be approximated by a semi-de�nite program of Karger et al. [103℄.The optimum of the semi-de�nite program is the so-alled vetor olouring number,the Lovász-theta [110℄ (see Setion 3.4), but the optimum point is a matrix10 X̂, whihapproximates the average of the olouring matries of optimal solutions. It is reason-able to all this matrix X̂ beause this will the basis of the hoie probability matrixof the strategy, but the diagonal elements must be set to zero, otherwise they bias theseletion.The average of the optimal olouring matries. The sum of the optimal olour-ing matries ontains very important information about the olouring (see Figure 9.9).An element of the sum matrix refers to the number of optimal olourings where twoverties got the same olour. Normalising the values by the number of optimal matri-es results an result in a hoie probability matrix. The normalisation turns the summatrix into the average matrix of the optimal olouring matries. In fat, the values ofa hoie probability matrix express the likelihood of the same olouring of two verties.This an be haraterised through the sum matrix. The values of the sum matrix areproportional to the relevant hoie probabilities. Now let us onsider the sum matrixof Figure 9.10. The zeros are still represented by dots, exept for the {v2, v5} position,there being a 0 instead of a dot. The dot positions are edges in the original graph, i.e.there are 1-s in the adjaeny matrix. Although v2 and v5 are not onneted, they arenever oloured with the same olour in optimal olourings. Indeed, it is not hard toverify that hoosing the same olour for them always leads to a non-optimal solution,a 4-olouring. But v2 and v6 are highly likely to get the same olour, beause theyshare the same olour in all optimal solutions, as desribed by X2,6 = 3. Exploitingthis observation, the author designed a Zykov-tree approah [161; 162℄. Reall Setion4.3.1, where we introdued the Zykov-tree. Here there are two Zykov-steps, namelyonnetion or ontration of two verties. That is, a 1 addition to an appropriateMerge Square or performing a merge of two rows of the Merge Square. This strategy10Rows of the matrix form the so-alled vetor olouring of the orresponding verties of the graph.
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v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 1 ·
v5 0 · · 1 1 ·
v3 · · · · · 1

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 · ·
v5 0 · · · 1 1
v3 · · · · 1 1

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 1 1 · · 0 ·
v6 1 1 · · · ·
v4 · · 1 1 · ·
v1 · · 1 1 · ·
v5 0 · · · 1 1
v3 · · · · 1 1Figure 9.9: The optimal olouring matries of olourings. Here the rows and olumnshave been reordered for the sake of better larity.

v1

v2

v3

v4

v5

v6

v2 v6 v4 v1 v5 v3

v2 3 3 2 · 0 ·
v6 3 3 2 · · ·
v4 2 2 3 1 · ·
v1 · · 1 3 1 ·
v5 0 · · 1 3 2
v3 · · · · 2 3Figure 9.10: The sum of the optimal olouring matries of Figure 9.9
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v1
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{v6, v2}
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v3

v4

v5

v6

G

G + v2v5G/v6v2

Figure 9.11: The Zykov-tree and Lovász-theta approahombines the solution of a semi-de�nite optimisation of the Lovász-theta [103℄ withthe Zykov-tree approah [162℄. The optimisation produes an approximation matrix X̂for the average of the optimal olouring matries. This X̂ matrix may be a suitablebasis for making a row-hoie probability matrix, where two rows of a Binary MergeSquare are merged if their row-pair hoie probability in X̂ is the largest. Furthermore,they are onneted by an edge if their row-pair hoie probability in X̂ is the smallestand they are mergeable. An example of this an be found in Figure 9.11, where twoZykov steps are performed by the sum matrix of Figure 9.10. To de�ne the strategymore preisely, we need to examine the approximation method of Karger et al. [103℄.An approximation of the average of the optimal olouring matries. Takean optimal olouring matrix example Xopt from Figure 9.9. This example is also shownin Figure 9.12(a). A olouring matrix X̃ is symmetri (X̃ = X̃T ) and positive semi-de�nite (X̃ � 0), as shown in Setion 3.1.4. In addition, x̃e = 0 ∀e ∈ E; that is,a olouring matrix must have 0−s in the edge positions where the adjaeny matrixhas 1−s. Now deompose the example olouring matrix as follows: Xopt = LLT , e.g.applying an Inomplete Cholesky Deomposition [69℄. This is possible thanks to thesymmetri and semi-de�nite properties of the olouring matries. If Xopt is an n × nmatrix, then the rows of L desribe n sets of unit length vetors. However, some ofthese vetors may be the same (Figure 9.12(b)). Here, Xopt ontains the dot produtsof the unit length vetors, i.e. the osines of the angles of these vetors. Notie thatthe vetors in the deompositions de�ne the olour assignments (ci, vi), where ci is the
i−th olour and vi is the i−th vetor. Finding an optimal olouring matrix is equivalentto �nding an optimal olour assignment that minimises the number of olours k usedin a proper olouring. One approah is to searh the spae of olouring matries, wherethe number of 1−bloks is to be minimised among all possible arrangements. Karger et
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v2 v6 v4 v1 v5 v3

v2 1 1 1 · 0 ·
v6 1 1 1 · · ·
v4 1 1 1 · · ·
v1 · · · 1 1 ·
v5 0 · · 1 1 ·
v3 · · · · · 1(a) Xopt

v1 v2 v3 v4 v5 v6

c1 1 · · · · ·
c2 1 · · · · ·
c3 1 · · · · ·
c4 · 1 · · · ·
c5 · 1 · · · ·
c6 · · 1 · · ·(b) LFigure 9.12: An optimal olouring matrix example Xopt and its deomposition L intounit length vetors, where Xopt = LLT .al. turned the problem into an integer optimisation problem (see Eq. 9.41), where thenumber of olours k an be handled expliitly by retaining the positive semi-de�nitenessproperty of the transformed matrix [103℄. That is

χ = min
k
{k : kX̃ − J � 0, X̃ : olouring matrix} (9.41)Here J is the matrix with all one elements and the minimisation is performed amongall X̃ olouring matries, and k is integer-valued. For the example olouring matrix

Xopt (Figure 9.12(a)), the reformulated problem is shown in Figure 9.13 along with thenormalisation fator 1
k−1

.
v2 v6 v4 v1 v5 v3

v2 k − 1 k − 1 k − 1 −1 −1 −1
v6 k − 1 k − 1 k − 1 −1 −1 −1
v4 k − 1 k − 1 k − 1 −1 −1 −1
v1 −1 −1 −1 k − 1 k − 1 −1
v5 −1 −1 −1 k − 1 k − 1 −1
v3 −1 −1 −1 −1 −1 k − 1(a) kXopt − 1

v2 v6 v4 v1 v5 v3

v2 1 1 1 −1
k−1

−1
k−1

−1
k−1

v6 1 1 1 −1
k−1

−1
k−1

−1
k−1

v4 1 1 1 −1
k−1

−1
k−1

−1
k−1

v1
−1
k−1

−1
k−1

−1
k−1

1 1 −1
k−1

v5
−1
k−1

−1
k−1

−1
k−1

1 1 −1
k−1

v3
−1
k−1

−1
k−1

−1
k−1

−1
k−1

−1
k−1

1(b) kXopt−1

k−1Figure 9.13: Reformulations of the optimal olouring matrix Xopt.A deomposition of Figure 9.13(b) desribes 3 sets of unit length vetors. The osinevalues of their pairwise angles are −1
k−1

. The smaller the k, the larger the angle. Theminimum is k = χ. That is, for a 3−hromati graph (where χ = 3) the angle is 120◦.This suggests an angle maximisation problem here. Eq. 9.41 just leads to an equivalentoptimisation problem of the original minimal olouring problem. It attempts to �nd theolour assignment in an integer {0, 1} vetor spae in aordane with Figure 9.12(b).Hene �nding a solution requires as muh e�ort as �nding a solution when the problemis stated in the original form. Karger et al. following the observation of an anglemaximisation, formulated a relaxed version of Eq. 9.41. This results in an e�ient wayto approximate the average of the optimal olouring matries. In the relaxed problem



92 Merge Strategiesthe {0, 1} integer-valued feature of the X̃ is not required. However with the onstraints,the edges must be ontained in the relaxed model as well, and a deomposition of thematrix no longer desribes unit vetors in an n−dimensional spae. Nevertheless, it isreasonable to retain their unit length. Karger et al. also provided a relaxed problem in[103℄. Their semi-de�nite optimisation program formulation is enapsulated by
θ̄ = min

t
{t : tX̃ − J � 0, x̃ii = 1, x̃e = 0 ∀e ∈ E} (9.42)where x̃ii = 0 guarantees the unit length of the vetors in the deomposition, x̃e = 0makes the appropriate edge onstraints onform to the adjaeny matrix 1−s and t isa real-valued number. Solving the optimisation problem of Eq. 9.42 here makes useof the Lovász-theta number θ̄ introdued by Lovász in [110℄. Setion 3.4 desribes animportant property of the θ̄ number, namely ω ≤ θ̄ ≤ χ. That is, the value is alwaysa lower bound for the hromati number, but an upper bound for the lique number.The optimum point, a semi-de�nite matrix, is the average of the optimal olouringmatries. A semi-de�nite optimisation solver an arbitrarily approah the optimum ofEq. 9.42, [103℄ providing an approximation for the average of the optimal olouringmatries. The standard semi-de�nite problem for Eq. 9.42 an be written down byintroduing the matrix Z = tX̃ − J :

θ̄ = min
t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E} (9.43)Let us denote the result of the optimum point of this Eq. 9.43 by Zopt. Notie that

Zopt matrix must ontain −1-s in the edge positions, where the adjaeny matrix has
1-s and the optimal olouring matries have 0-s.The row-pair probability funtion for CC Merge Frameworks. Take Zopt+1 toget zeros in the edge positions and set the main diagonal to zero, to get an appropriatebasis for the hoie probability matrix, i.e. Ẑ = (Zopt + 1) ◦ (1 − I), where (1 − I)entries are all ones exept along the main diagonal, where it has zeros. The author in[94; 102℄ applied the values of the normalised Ẑ matrix as a row-pair probability hoiematrix in the CC Merge Framework. The normalisation whih onforms to Eq. 9.2 is

X =
Ẑ −min Ẑ

max Ẑ −min Ẑ
(9.44)The values of the Ẑ matrix measure the olour similarity of the verties and the matrixmust ontain 0-s in the edge positions; that is, the 0-s express dissimilarities. In addition,there an be negative values, therefore it is reasonable to apply a Zykov onnetionstep for the appropriate verties whih orrespond to the smallest negative value orthe negative values leading to two sub-types of the strategy. Hene, the author addededges to eah suessive Binary Merge Square that is generated by a merge step in thefollowing way. Take those (i, j) row-pairs for whih Ẑij < 0 is minimal (or Ẑij < 0)and onnet them by an edge. That is, plae a 1 in the relevant position of the



9.10 Merge Paths 93adjaeny matrix. Moreover, merge those two rows for whih Xij and hene Ẑij ismaximal. These operations are repeated for eah intermediate Merge Square; that is,the adjaeny matrix for eah suessive quotient graph. However, sine Eq. 9.44 is asuitable hoie probability matrix, Ẑ ontains some more information to speed up therunning time. Ẑii approximates θ̄ at the end of the optimisation. Learning somethinguseful from the sum matrix struture of Figure 9.10, it is reasonable to merge not onlythe largest, but other rows as well whih have large hoie probability values. It meansthat one optimisation of Eq. 9.43 an result in more than one merge. That is, duringa merge sequene, fewer semi-de�nite optimisations are required. Based on preliminaryresults, the author applied Ẑij > 0.5θ̄ in [94; 102℄.Parallel rows. In an optimal olouring matrix, those verties whih have parallelrows in the olouring matrix must be get the same olour. A row of a olouring matrixdesribes an exat olour similarity of the relevant vertex with the other verties. A rowof the average olouring matrix, and hene the hoie probability matrix of Eq. 9.44,desribes only an approximated olour similarity with the other verties. If two rows ofthe hoie probability matrix are parallel, then the two relevant verties have the samerelation to the others and they should be in the same olour lass. Therefore osinemaximisation is a reasonable strategy for merging two rows. Moreover, the −Zoptmatrix has 1-s in the same positions as the adjaeny matrix, hene this observation isin agreement with the Cosine strategy of Setion 9.8.Improvement. Karger et al. [103℄ showed that in general, the average of the optimalolouring matries is not a suitable way to get an optimal olouring. However, theywere able to design a lustering algorithm whih produes a semi-olouring where atmost the quarter of the edges are oloured improperly. Based on the semi-olouringalgorithm design in Lemma 3.1.1, they obtained the best known worst ase inludingthe �rst non-trivial bound. They were able to olour k−olourable graphs with at most
min{O(n1−3/(k+1)),O(∆1−2/k)} olours, where n = |VG| and ∆ is the largest degree.During the merges n dereases and, in aordane with Setion 9.4.1, ∆ may dereaseas well. Therefore it is reasonable to apply the average of the optimal olouring matrieswith the merge approah.9.10 Merge PathsCertain graph properties are evaluated during the seletion of two rows for a MergeOperation, impliitly or expliitly. E.g. an expliit dot produt maximisation strategymeans an impliit norm minimisation. The author de�ned a general Merge Strategyusing these properties (see Juhos et al. [101℄). Here, an analysis of a supposed mergee�et is performed. First, gather those graph properties into a vetor whih form thebasis of the deision (e.g. spetral norm, i.e. the largest eigenvalue). One an takeother eigenvalues as well to examine their evolution in the intermediate merge matriesduring a merge sequene. Denote this vetor by ξ. Determine whih values are knownin advane for the �nal merged graph. It is important to know these values beausethey will be the goal of this reformulated problem. Next, ompute ξM [0] and ξM [n−k],



94 Merge Strategieswhere M [0] = AG and M [n−k] = AKk
, the adjaeny matrix of G and Kk, respetively,in the ase of Binary Merge Squares. Now the �only� task left is to �nd an appropriatemerge sequene whih orresponds to a path, a Merge Path from ξM [0] to ξM [n−k] inthe vetor spae indued by ξM [t], where M [t] is an intermediate Merge Matrix in the

t-th step. A Merge Path may be haraterised by the sequene
ξM [0], ξM [1], ξM [2] , . . . , ξM [n−k] (9.45)Figure 9.14(b) below shows an example of how the three largest eigenvalues (λ1 ≥ λ2 ≥

λ3) of M [t] form di�erent paths of 20- and 37-olourings in a three dimensional vetorspae. The start of the path is (λ1, λ2, λ3)M [0]. The path ends at (λ1, λ2, λ3)M [n−k],whih are known values in the ase of Binary Merge Squares. The �rst value is trivial,beauseM [0] = AG is given and the last is (k−1,−1,−1), sine the �nal merged graph
Gn−k is aKk omplete graph on k verties, where k is the number of olours used in theolouring11. Hene the goal is to get (χ− 1,−1,−1), whih orresponds to a solution.An analysis of the paths helps us in the olouring proess beause we an identify andfollow the optimal path. Now let us onsider a simpli�ed example in one dimensionalspae. Take the Binary Merge Square representation A[t] and let ξA[t] = λ1(A

[t]), i.e.the spetral norm of A[t]. If we examine the initial Merge Square, we an see that
λ1(AG) is greater or equal than λ1(A

n−χ) = χ − 1 (see [153℄). Due to this fat thevalue of λ1(A
t) always dereases with eah step, as shown in Figure 9.14(a).
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(a) Spetral norm steepest desent min-imisation. The ends of the urves havebeen extended (horizontal lines). (b) An example 3D Merge Path of the three largesteigenvalues of a graph during a olouring.Figure 9.14: Evolution of the eigenvalues along a merge sequene. The graph is a
20−hromati, equi-partite graph having 200 verties with a 0.64 edge density fromthe peak of the phase transition. The spetral norm value of the �nal Binary MergeSquare is χ− 1 = 19 in the optimal ase, otherwise it is bigger.This path is responsible for determining the olouring and the end of the path k − 1de�nes the quality of the olouring. Unfortunately, the ideal path (between λ1(A

[0])and χ− 1) is of ourse unknown; the task of olouring is to �nd this path. A olouringpath takes n−k olouring steps, that is n−k merges. An optimal olouring needs n−χsteps,resulting in the longest step-series, while non-optimal olourings have shorter onesas they get stuk when no more merge are possible, i.e., k > χ. If we onsider the11The minimum k is χ.



9.11 Learning and lustering Merge Paths 95ideal path, whih has the lowest bound and requires the most steps, then it should bebelow every possible non-optimal olouring path after a ertain point. We an de�nea path in advane that has this property. A trivial path between the initial point andthe end is a linear path, where λ1(A
[t+1]) is derived from λ1(A

[t]). The di�erene
λ1(A

[t+1]) − λ1(A
[t]) should approximate λ1(A[0])−λ1(A[n−χ]))

n−χ
. Non-linear paths an bede�ned by an analysis of more ompliated graph properties and their behaviour. Thisapproah an be applied to the row-pair hoie probability values as well where a MergePath may be de�ned by the maximal values of several hoie probability funtions. Inthis ase it is not neessary to know the end of the path; the only requirement mightbe the omponent-wise inrease of the path onstituents. Sine eah merge brings aMerge Matrix loser to a andidate solution, the hoie probability values must providemore on�dent hoies.9.11 Learning and lustering Merge PathsThe Merge Path approah allows the appliation of arti�ial intelligene methods ingraph olouring, suh as instane-based learning or lustering. Using a training setof graphs a learning algorithm (see Juhos et al. [95℄) an learn ertain Merge Pathsthat are assoiated with olouring steps (see Figure 9.14(b) or 9.14(a)). Atually, itis an approximation task, a urve �tting. First take a large set of generated graphsas training graphs with similar properties, e.g. 3−hromati equipartite graphs with aonstant size (see Setion 4.1). The approximation12 of their optimal Merge Paths, i.e.that orresponds to an optimal merge sequene, may provide some useful information.Then this information an be used in the algorithm design. Take an unknown graphfrom the same ategory, e.g. a 3−hromati and equipartite graph with similar asize. The merges an be driven by the approximated learnt urve, where we generatethat merge sequene whih produes the losest path to the learnt Merge Path urve.Another possibility might be when an arbitrary merge sequene is performed and thedistane is measured between the learnt Merge Path and the Merge Paths generatedby the merge sequene. If a distane beomes ritial, baktraking may be required.When the graph is derived from an unknown soure, we do not know its ategory. Aategorisation an be supported by lustering. Here, several training graph sets mustbe used as the basis for lustering. An arbitrary merge sequene of the unknown graphmay have a harateristi shape. Hene, ategorise this Merge Path derived fromone or more arbitrary merge sequenes using the training graph sets and a lusteringalgorithm. Based on the results of the lustering, the graph an be haraterised e.g.by its hromati number. Then like the above-mentioned learning task a olouring ofthe graph may be performed.9.12 Evolutionary strategiesThis setion details unoloured row-hoie strategies for Merge Tables based on theevolutionary algorithm desribed in Setion 4.2.712E.g. their average.



96 Merge Strategies9.12.1 Finegrained �tness � the ζ �tnessAn intuitive way of assessing the quality of a permutation of the verties π as anunoloured row hoie strategy is by ounting the number of rows remaining in the�nal Merge Table M . This is the same as the number of olours kM used in theolouring of the graph whih needs to be minimised. If we know that the optimalolouring is χ then we may normalise this �tness funtion suh that g(π) = k(π)− χor we an use a lower bound value of χ. This funtion gives a rather low diversityin the �tnesses of permutations beause it annot distinguish between two individualsthat use the same number of olours. The author in [96℄ addressed this problem byintroduing a new multiplier. This multiplier is based on the heuristi that we wantto eliminate highly onstrained rows in order to have a better hane of suessfulmerges later on. This involves the merging of rows where many 1−s are merged. Let
ζM(π) denote the number of non-zeros in a �nal Merge Table, then the �tness funtionbeomes f(π) = (kM(π)−χ)ζM(π), whereM(π) is the �nal Merge Table orrespondingto the π permutation and a greedy merge/olouring sheme (see Setion 10.1.1). Thisapproah follows the entrywise norm optimisation of a Merge Table de�ned in Setion9.7.9.12.2 Di�ulty guided mutationThe evolutionary algorithm of Setion 4.2.7 applies swap mutation as one of its varia-tional operations. The author in [96℄ introdued a modi�ed swap mutation. It alwayshooses the last merged row, whih has few zero elements, and fores it to have anearlier position in the permutation in order to get a olour earlier. To aomplish this,it hooses at random a previous row identi�er for a swap. The idea behind it is thatthese last merged rows are the most di�ult to merge. The last rows are usually sparseones, whih have few non-zero elements. Though this strategy is simple, it atuallyproved quite useful in our experimental analysis in Setion 10.2.2.9.13 SummaryIn this hapter we introdued several Merge Strategies whih may be ombined with aMerge Framework based on a Merge Model (see hapters 8 and 7). These strategiesde�ne the merging/olouring steps in an algorithm. Their motivation and analysis areprovided, and a onnetion between them was also disussed. Due to the matrix-basedMerge Models the strategies whih apply them an be interpreted via di�erent matrixproperties suh as matrix norms. Taking various matrix properties into aount, weprovided a new approah for the algorithm design, namely the Merge Path approah.We also showed that this approah allows one to apply mahine learning and lusteringmethods for graph olouring.Merge Strategies with di�erent Merge Models and Merge Frameworks may result indi�erent olouring algorithms. The next setion desribes possible ombinations withexperimental studies.



Chapter 10
Merge AlgorithmsThis hapter ombines Merge Frameworks of Chapter 8 with the Merge Strategies ofChapter 9 to form a Merge Algorithm. The 'suitable models' setion will desribewhih Merge Model supports the implementation of the algorithm in question. M willstand for a suitable Merge Model in the desription, where Munc is the unoloured partof the Merge Matrix onsisting the unoloured rows, while M col ontains the olouredrows, as outlined in Setion 7.2.Existing algorithms an be expressed in a Merge Framework using one of the MergeModels. Benhmark algorithms of Setion 4.2 as well as novel algorithms based onthe strategies de�ned in Chapter 9 will be also desribed in this hapter. Desriptionin a ommon way supports a strutural analysis, and a fair performane omparison.Setion 4.1 de�nes various benhmark graphs whih form the basis of the omparisonof the novel algorithms of the author [94; 96�102℄ with the benhmark versions. Sinethe hoies in the detailed algorithms are deterministi, just the unnormalised values ofthe hoie probability funtions will be onsidered.The following tokens will be used as abbreviations: bmt, imt, bms and ims, wherethe b means 'binary', the i means 'integer'; the m is assoiated with 'merge', t and sstand for 'table' and 'square', respetively. Thus bmt means the 'Binary Merge Table'model. If a Merge Model should be emphasised in the notation of a framework, thenthe appropriate token appears on the top of the UC, CU or CC framework identi�ers,e.g. bmt

UC. Similar to Setion 4.2, the [.] operation makes a vetor from the elements of aset, taking a natural order. Reall the sub and o-strutures introdued in Setion 7.2,whih are the appropriate sums of the rows or olumns of the relevant merge matriesdenoted by µ. In the UC and CU Merge Frameworks the unoloured and oloured partsof µ should be distinguished by the unoloured and oloured sub-merge matries: µuncand µcol. Without unc or col indies, it belongs the whole Merge Matrix. There arefour µ−s for eah submatrix: left, right, top and bottom. Right µr and bottom µbo-strutures ount the non-zero elements of a row or olumn, respetively. Top µt andbottom µl are similar, but they ontain the sum of eah row and olumn, respetively.The sum of µt (or µl) o-strutures is denoted by ζt and the sum of the bottom (or
µr) o-strutures are denoted by ζb. ζt is the sum of the entries of the relevant MergeMatrix, while ζb ounts the non-zero elements of the Merge Matrix.97



98 Merge Algorithms10.1 Benhmark algorithms in Merge FrameworksThis setion desribes the embedding of well-known benhmark algorithms of Setion4.2 into a suitable Merge Framework using an appropriate Merge Model by the author.A desription of the algorithms in the ommon way supports their strutural analysis.10.1.1 Algorithms in the UC Merge FrameworkThe following benhmark methods an be desribed in the UC Merge Framework, wherean unoloured row is hosen followed by a oloured one for a merge. Hene it needstwo hoie funtions: choose−unc for the unoloured row hoie and choose−col forthe oloured row hoie. In order to denote an algorithm in the UC Merge Frameworklet us introdue the following notation: UCchoose−col
choose−unc, where the choose−unc denotesthe unoloured row hoie strategy, while the choose− col denotes the oloured one.Greedy merge shemeSuitable models: bmt, imt, ims, bmsThe greedy olouring sheme of Setion 4.2.2 �ts niely into the UC Merge Framework.Where the hoie probability vetor x is provided in advane by a strategy, then the�rst available olour c is assigned to the vertex hosen by the maximum value of x.For tie breaking, when the hoie is not exat, take the �rst vertex via a natural orderof the verties.

UC
(ext. strategy)
greedy (A adjaeny matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of hoie prob. vetor x4 c← arg mini{i : M col

ui = 0} // Choose a oloured row greedily5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu omponent7 until Munc is empty8 return MThe greedy olouring sheme does not require any additional information during theolouring proess. It performs the olouring using a predetermined order of the vertiesby x, whih is provided by an external strategy. Therefore eah Merge Model is suitablefor making a olouring. One bene�t of the appliation of the Merge Model is thedereased omputational e�ort, whih will be desribed later in Setion 11.4.Welsh-PowellSuitable models: bmt, imt, ims, (bms)We saw in Setion 9.4.1 that the Integer Merge Models and the Binary Merge Tablesupport this heuristi if it is de�ned in a dynamially varying merge environment. How-ever, Welsh-Powell does not need to onsider the varying onditions. The row-hoie



10.1 Benhmark algorithms in Merge Frameworks 99probability funtion an be determined in advane. It is just de�ned by the degrees ofthe verties. This an serve as an external strategy of the greedy merge sheme (seeSetion 10.1.1). Hene in this ase any Merge Model an be applied. For demonstra-tion purposes, we shall provide a Merge Algorithm whih is de�ned like that in Setion9.4.1. This determines the relevant degrees during the olouring proess.
UCWelsh−Powell

greedy (A adjaeny matrix )1 M ← A2 repeat3 u← [arg maxi{ µli }]1 // Choose by maximum row sum4 c← arg mini{i : M col
ui = 0} // Choose a oloured row greedily5 M ← merge(M, {u, c})6 until Munc is empty7 return MWhere µli is the i−th element of µunc
l = Munc e, whih gives the unoloured row sum;that is, the degree of the relevant vertex in the original graph; while mini{i : M col

ui = 0}hooses the �rst available oloured row where the merge ondition M col
ui = 0 holds.

[.]1 deides the tie breaking ases if more than one maximal elements is found. Itinvariably hooses the �rst element in a natural order. This seletion orrespondsto the appropriate olour lass represented by the oloured row. An unoloured rowmerging into a oloured one means putting the unoloured vertex into the appropriateolour lass in the traditional sense.HajnalSuitable models: bmt, bms, imt, imsThe Hajnal heuristi takes the verties in reverse order by the prinipal eigenvetor of theadjaeny matrix and then performs a greedy olouring. As mentioned in Setion 10.1.1,any Merge Model an be used as a basis for these algorithms, whih does not take intoaount the varying environment during the olouring proess. The Hajnal heuristirelies on a prede�ned hoie probability vetor, determined by the prinipal eigenvetor
x̂ (see Setion 9.4.2) 1; it does not hange the strategy during the olouring. It requiresa preliminary omputation of the prinipal eigenvetor as in the original de�nition inSetion 4.2.4. The [.]1 also deides the tie breaking ases here as it did (see Setion10.1.1), always hoosing the �rst element. Similar to the greedy sheme in Setion10.1.1, it an be used with any of the Merge Models. It serves as an external strategyof the greedy merge sheme de�ned in Setion 10.1.1 hene it is denoted by UCHajnal

greedy .DSatur of BrèlazSuitable models: imt, ims, (bmt, bms)DSatur uses the maximum saturation degree to hoose an unoloured vertex. Thesaturation degree is equal to the number of neighbour olours. For tie breaking ituses the degree of the verties. After an unoloured vertex is hosen, a greedy olour1M x̂ = λmaxx̂



100 Merge Algorithmsassignment is applied (see Setion 4.2.5). This heuristi takes into aount varyingstate of the unoloured verties during the olouring proess. Hene it an happilyexploit the bene�ts of the Merge Models.
ims

UCdsatur
greedy(A adjaeny matrix )1 M ← A // Let M be an Integer Merge Square2 repeat3 u← arg maxi{ (µcol

b ◦ eunc)i } // Choose by the max. unol. top o-struture .4 u← [arg maxi{ (µt ◦ eu)i }]1 // Choose by the max. top o-struture.5 c← arg mini{i : M col
ui = 0} // Choose a oloured row greedily6 M ← merge(M, {u, c})7 until Munc is empty8 return MHere u ontains the vetor of the hosen unoloured row indies aording to the bottomo-struture of the oloured sub Merge Matrix µcol

b , whih de�nes the saturation degreeof the verties. It gives the number of neighbouring olours for eah vertex sine onlythe unoloured rows/verties are onsidered in the hoie. The irrelevant part of thevetor µcol
b must be set to zero by µcol

b ◦ eunc beause u may ontain more than oneomponent, i.e. referenes for unoloured rows. DSatur applies a tie breaking by thevertex degrees. A olumn sum of the whole Integer Merge Table or Square M givesthe relevant degree of an unoloured vertex. Eah olumn sum is plaed in the top o-struture µt. Only the tie breaking positions of this vetor are interesting; that is, thehosen unoloured row indies u. Therefore the irrelevant values of µt are set to zeroby using the eu harateristi vetor, where eu ontains ones in the u positions, andzeros otherwise. Hene the entrywise produt µt ◦ eu provides the neessary deisionvetor. Sine the hoie by this deision vetor may still result in multiple unolouredrows, the �nal tie breaking hooses the �rst element [.]1. Keeping just the last tiebreaking, the algorithm an use the Binary Merge Models as well. In the ase of BinaryMerge Tables or Squares, the bottom and top o-strutures are the same (µcol
b = µcol

t )and an be alulated in the following way µcol
b = (M col)T e whih is the sum of theolumns of the oloured sub Merge Matrix M col. In order to restrit the alulationjust for the unoloured verties, the o-struture must be multiplied2 by eunc, whihonsists of ones only in the unoloured vertex positions; that is, µcol

b ◦ eunc. In the aseof a Binary Merge Square it an be expressed by the equation
µcol

b ◦ eunc = (M col)T euncFurthermore, the top o-struture (the sum of the whole Integer Merge Matrix) givesthe degree of the vertex in the original graph: µt = MT e. It should be also restrited tounoloured verties so as to get a suitable hoie probability vetor3 for the tie breakingases; that is, µt ◦ eunc. For an Integer Merge Square it will be µt ◦ eunc = MT eunc.2Using elementwise produt.3Not normalised hoie probability vetor.



10.1 Benhmark algorithms in Merge Frameworks 101Evolutionary algorithm � standard �tnessSuitable models: bmt, bms, imt, imsThe evolutionary algorithms of Setion 4.2.7 an serve as an external unoloured rowhoie strategy for the greedy algorithm sheme de�ned in the UC Merge Framework inSetion 10.1.1. Then kM ounts the number of rows of the �nal Merge Matrix M gotin the greedy olouring proess. This metaheuristis approah maintains a set of vertexpermutations Π (population) via its swap mutation and order based rossover operatorsmodifying the andidate solutions of Π or reating new ones. The seletion operatoris a 2−tournament seletion, whih keeps the population in a steady-state; that is,the number of elements remains onstant while the algorithm is running. In orderto measure the goodness of a andidate solution (i.e. a permutation), it performs asimple measurement; it ounts the number of olours used in the greedy olouring. Thenumber of olours is equal to the number of rows that remain in the �nal Merge Matrixof the UCgreedy sheme desribed in Setion 10.1.1. Furthermore, χ̂ is a normalisationonstant, whih is a lower bound of the hromati number. In an experimental study
χ̂ may be the χ, and hene the zero value of a �tness f an terminate the runningalgorithm, when an optimal solution is found. Otherwise, the stop ondition dependson a ertain time limit, whih an be determined in various ways, e.g. by ounting thenumber of �tness evaluations.

UCEA
greedy(A adjaeny matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate eah permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← kM − χ̂ // Fitness a8 Π = Π ∪ swap(Π, pmut) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.Sine this evolutionary algorithm uses the UCgreedy for olour assignment and it doesnot exploit any additional feature of the Merge Models, all Merge Models will be suitablefor the implementation.Evolutionary algorithm � Stepwise adaptation of weights (SAW)Suitable models: extensions of the imt or imsHere it applies an improper olouring sheme, so Merge Models annot desribe thissheme. The models may be extended to handle improper olourings as well by allowing



102 Merge Algorithmsthe merges for the rows where the merge ondition is not satis�ed. The SAW algorithmrequires the number of violated onstraints at the end of a olouring. Integer MergeModels do not lose any edges.10.1.2 Algorithms in the CU Merge FrameworkThis Merge Framework supports the so-alled independent set approah, desribed inSetion 4.2.1. Only the Erd®s heuristi apply this approah among the benhmarkalgorithms. In the CU Merge Framework, a oloured row is hosen followed by anunoloured one for a merge. It requires the same two hoie funtions as the UCMerge Framework: choose− col for the oloured row hoie and choose− unc for theunoloured row hoie. However, here they are applied in reverse order. In order tode�ne an algorithm in the CU Merge Framework let us introdue the following notation:
CU choose−col

choose−unc, where the choose− col denotes the oloured row hoie strategy, whilethe choose− unc denotes the unoloured one.Erd®sSuitable models: imt, ims (bmt, bms)The Erd®s heuristi takes the �rst olour and assigns it to the vertex v that has theminimum degree. Vertex v and its neighbours are then removed from the graph. Weapply the algorithm in the remaining sub-graph in the same fashion until the sub-graphbeomes empty, then take the next olour and use the algorithm for the non-olouredverties and so on until eah vertex is assigned a olour.
ims

CUgreedy
Erdös (A adjaeny matrix )1 M ← A2 u← [ ] // Empty hoie of an unoloured row index3 repeat4 c← arg mini{i : M col

ui = 0} // Choose the earliest available oloured row5 u← [arg mini{ (µunc
b ◦ eunc)i : M col

ci = 0 }]1 //Choose by min. unol. degree6 M ← merge(M, {u, c})7 until Munc is empty8 return MWhere µunc
b ontains the unoloured degrees. Similar to the Setion 10.1.1, µunc

b an bede�ned by µunc
b = (Munc)Te. Moreover, if we hoose just the values for the unolouredverties further proessing is required:

µunc
b ◦ eunc = (Munc)TeuncIn the ase of Merge Tables eunc
G must be used, the harateristi vetor of the un-oloured verties in the original graph, whih ontain ones only in the unoloured po-sitions and zeros elsewhere. Here mini{i : M col

ui = 0} always hooses the last oloured



10.2 Novel Merge Algorithms 103row index. When c = [ ], (i.e. there an be no more mergeable unoloured row withthis oloured row), the merge is a simple marking of the hosen unoloured row Mu inthe oloured rows; that is, it plaes it into the oloured sub Merge Matrix.10.2 Novel Merge AlgorithmsThis setion desribes algorithms whih arise from a ombination of a Merge Frameworkof Chapter 8 and a Merge Strategy of Chapter 9. They were introdued by the authorin [94; 96�102℄. Sine the benhmark algorithms are de�ned in a Merge Framework inSetion 10.1, their strutural analysis and omparison with these novel methods an beperformed in the same way. Strutural analysis will be desribed in Chapter 11, while anexperimental omparison will be provided in this setion. The experimental omparisonsare based on well-known benhmark graphs and generated random equipartite graphson 200 verties aording to Setion 4.1 in the phase transition region (see Setion 3.8)where the problems beome hard.10.2.1 Algorithm in the UC Merge Framework � unolouredrow hoie strategiesThis setion desribes two novel algorithms introdued by the author in [96℄. These areevolutionary algorithms based on the strategies de�ned in setions 9.12.1 and 9.12.2.The algorithms are ombined with the greedy merge sheme of Setion 10.1.1. Theyattempt to �nd a suitable permutation of the rows to ahieve a minimal olouring bythe greedy merge sheme. The permutations de�ne the appropriate row hoie vetorthat will be given to the greedy Merge Algorithm. An experimental omparison will beprovided with two well-known benhmark algorithms whih were desribed in Setion4.2.Evolutionary algorithm � the ζ �tnessSuitable Merge Models: bmt, imtThis algorithm is based on a standard evolutionary algorithm (see Setion 4.2.7) thatintrodues a new �tness alulation, namely the ζ �tness, based on a Merge TableModel as desribed in Setion 9.12.1. In order to ahieve this goal a Merge Algorithmis neessary to provide a �nal Merge Table; it is a simple greedy merge based onSetion 10.1.1. The evolutionary algorithm applies a swap mutation and 2−pointorder based rossover to hange the permutations. A 2−tournament seletion is thenapplied to keep the number of permutations ontant. Similar to the Setion 10.1.1,the evolutionary algorithms serve as an external unoloured row hoie strategy in aUC Merge Framework.
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UCEAζ

greedy(A adjaeny matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate eah permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← (kM − χ̂)ζM // Fitness a8 Π = Π ∪ swap(Π, pmut) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.Evolutionary algorithm � di�ulty guided mutationSuitable Merge Models: bmt, imtHere, a modi�ation of the evolutionary algorithm of Setion 10.2.1 is provided byaltering the swap mutation to the di�ulty guided mutation of Setion 9.12.2.
UCEAζ,dgs

greedy (A adjaeny matrix )1 Π← random permutations(population size)2 while termination condition3 do4 for π ∈ Π // Evaluate eah permutation5 do6 M ← UCgreedy(A,π) // M is a �nal Merge Matrix7 f(π)← (kM − χ̂)ζM // Fitness a8 Π = Π ∪ dgs(Π,pmut,M) ∪ ox2(Π, pxover)9 Π = tour2(Π, f)10 π ← best(Π, f)11 return UCgreedy(A,π)aχ̂ is a lower bound of χ.10.2.2 ExperimentsThis setion details the experimental results obtained from running two Merge Algo-rithms whih apply unoloured row hoie strategies introdued by the author in [96℄.Row hoie vetors are enoded in permutations of the verties. These permutationsare hanged by applying following evolutionary algorithms.



10.2 Novel Merge Algorithms 105Algorithms introdued by the author in [96℄
UCEAζ

greedy � ζ �tness: the algorithm is based on the Binary Merge Table Model thatutilises the greedy merge sheme UCgreedy. For a �tness alulation of a πpermutation it uses the ζ �tness f(π) = (kM − χ)ζM , as desribed in Setion9.12.1. It applies a Binary Merge Table Model.
UCEAζ,dgs

greedy � ζ �tness and di�ulty guided mutation. This variant applies ox2 witha probability of 0.3 and then always applies a heuristi mutation operator thatis similar to the simple swap mutation; but it always hooses a vertex related tothe last merged row and fores it take earlier position in the permutation. Toaomplish this, it hooses at random a previous row identi�er for a swap. Theidea is that these last merged rows are the most di�ult to merge. It then appliesa Binary Merge Table Model.Benhmark algorithmsThe following algorithms served as a referene in our experimental omparison.
UCbt−dsatur

greedy : the DSatur heuristi embedded into the UC Merge Framework, as de-sribed in Setion 10.1.1 using, a baktraking for exhaustive searh of the per-mutation spae (see Setion 4.3 and 3.6). It utilises an Integer Merge TableModel.
EAsaw: an evolutionary algorithm that applies a stepwise adaptation of weights heuris-ti de�ned in Setion 4.2.8. It does not use any Merge Model.An evolutionary algorithm with standard �tness (see Setion 4.2.7) was not inluded inthe benhmark set of the algorithms, beause experiments by Juhos et al. in [99℄ showedthat an evolutionary algorithm with the ζ �tness learly outperforms this one, whih hasa standard �tness. Furthermore, for a fair omparison we used that variant of DSaturwhih is embedded into the UC Merge Framework, otherwise its results are muh worseas desribed in Setion 11.4. EAsaw uses improper olouring so the urrent MergeModels are unsuitable for them, but their partiipation in the test is useful beausethe EAsaw method proved very e�ient on random 3−hromati equipartite graphs in[52; 145℄.Means of ComparisonsThe performane of an algorithm an be haraterised by its e�etiveness and e�ienyin solving a problem instane. The �rst is measured using the suess ratio, whih is theamount of runs where an algorithm has found the optimum divided by the total numberof runs. The seond is measured by keeping trak of how many onstraint heks arebeing performed on average for a suessful run. This measure is independent of hard-ware and programming language as it ounts the number of times an algorithm requestsinformation about the problem instane, e.g. it heks whether an edge exists between



106 Merge Algorithmstwo verties in the graph. This hek, or rather the number of times it is performed,omprises the largest amount of time spent by these onstraint solvers [52; 145℄. Aonstraint hek is de�ned, for an algorithm, as a hek of whether the olouring of twoverties is allowed (satis�ed) or not allowed (violated). The evolutionary algorithms areall stohasti algorithms. Therefore we performed 10 independent runs with di�erentrandom seeds for eah problem instane. The number of onstraint heks were thenaveraged over these 10 runs. The exhaustive searh method, UCbt−dsatur
greedy needs justone run.Algorithm settingsThe stop ondition for an algorithm is that either an optimum has been found or thatthe 1 500 000 limit of onstraint heks has been reahed. The latter means that the runwas unsuessful, i.e. an optimal olouring was not found. For evolutionary algorithmsit means that a permutation π exists with f(π) = 0 �tness. Furthermore, for theevolutionary algorithms the population size is set to 100 for graphs having at least

150 verties, otherwise it is set to 20. The evolutionary algorithms performs the ox21-point order based rossover with a pxover = 0.6 probability and with a probability of
pmut = 0.3 for the simple swap mutation. These probability values were determined bypreliminary tests on random graphs.Benhmark graphsThere are two sets: the standard benhmark set of the DIMACS Challenge was intro-dued in Setion 4.1 and the lass of random 3−hromati equipartite graphs on 200verties Geq,n=200,0.02≤pe≤0.06,k=3 generated by using Culberson's generator [44℄ in thephase transition region (see Setion 3.8). It onsists of 9 groups of graphs with di�erentedge probabilities pe, where eah group has 25 instanes. The edge probability pe ishanged from 0.020 to 0.060 in steps of 0.005, resulting in 9 groups. Further detailsabout these graphs and about the phase transition an be found in setions 3.8, 4.1and 3.7.ResultsAnalysing Table 10.1, for large graphs the novel algorithms, the UCEAζ

greedy and the
UCEAζ,dgs

greedy are muh faster than the benhmark algorithms. Note that the Merge Modelsredue the number of onstraint heks quite onsiderably (see Setion 11.4) for themiles and queens graphs, where the di�ulty guided mutation outperforms the simpleswap mutation. Moreover, the latter is not always able to �nd a solution for two of thequeen graphs as the suess ratio of this algorithm is less than one. In Figure 10.1 wean learly see that UCbt−dsatur
greedy is the best algorithm here as it always �nds a solutionand it uses almost the minimum number of onstraint heks to ahieve it. The resultsfor the four algorithms in Figure 10.1(b) are signi�antly di�erent and allow us to givea lear ranking on the e�ieny for the three algorithms. All evolutionary algorithms
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Table 10.1: Average number of onstraint heks required for solving various probleminstanes. Entries with ��� refer to where the algorithm never found the hromatinumber, while in every other ase the suess ratio is one. The last three entries areused to highlight the di�erenes between the two mutation operators for the swap andthe di�ulty guided (dgs) mutations.Graph |V | |E| χ UCbt−dsatur
greedy EAsaw UCEAζ

greedy UCEAζ,dgs

greedymulsol.i.1 197 3 925 49 811 595 6 265 5 964 8 525mulsol.i.2 188 3 885 31 485 644 21 707 4 110 5 667mulsol.i.3 184 3 916 31 461 953 51 042 4 874 5 619mulsol.i.4 185 3 946 31 467 398 128 130 4 084 5 606mulsol.i.5 186 3 973 31 472 872 11 120 4 141 5 536zeroin.i.1 211 4 100 49 1 056 595 13 165 6 670 8 040zeroin.i.2 211 3 541 30 641 583 65 053 11 870 4 942zeroin.i.3 206 3 540 30 603 978 52 493 22 556 11 197anna 138 493 11 105 811 15 579 2 903 1 242david 87 406 11 40 772 56 872 9 957 2 493huk 74 301 11 27 122 1 210 788 1 015jean 80 254 10 29 101 11 390 746 949miles500 128 1 170 20 147 922 9 724 950 191 011 20 398miles750 128 2 113 31 204 871 7 922 930 946 683 103 376miles1000 128 3 216 42 244 886 15 476 000 1 551 235 164 312miles1500 128 5 198 73 329 361 886 155 167 487 67 721myiel6 95 755 7 27 807 5 920 708 955myiel7 191 2 360 8 134 956 52 997 4 074 3 245games120 120 638 9 60 777 3 227 1 492 1 926queen5_5 25 160 5 1 665 8 835 4 630 2 000queen6_6 36 290 7 320 063 � 740 550 139 711queen7_7 49 476 7 1 176 441 3 195 320 6 326 9121 744 273queen8_8 64 728 9 150 000 150 � 30 412 7792 9 558 255

1 A suess ratio of 0.9
2 A suess ratio of 0.4
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greedy(b) Average number of onstraint heks with 95%on�dene intervalsFigure 10.1: Results for 225 random equipartite graph 3−hromati problems of size200, where for eah problem instane 10 independent runs are performed.show a sharp dip in the suess ratio in the phase transition (see Figure 10.1(a)), whihis aompanied by a rise in the average number of onstraint heks. UCEAζ,dgs,

greedy startsout over 34 times faster than the EAsaw benhmark algorithm. When the number ofedges inreases this di�erene dereases to 7 times as fast. UCbt−dsatur
greedy seems to havethe least problems with this problem set. It performs well on 3−hromati graphs, butits performane degrades if the hromati number of the graph instanes inrease asshown in Setion 10.2.9 later on.10.2.3 ConlusionsWe veri�ed the e�ieny of the two new olouring algorithms of the author [96℄ byperforming an empirial omparison on two test suites. The results from the DIMACStest suite show a performane in speed and auray that is quite favourable, espeiallyon large real-world problem instanes with 400 verties. For larger problem instanesit is muh faster than EAsaw and UCbt−dsatur

greedy . However in the seond test, where welooked at equipartite graphs during the phase transition, the suess ratio shows thetypial dip we often observe for stohasti algorithms, but the new algorithms yieldedbetter results. For di�ult equipartite graphs, i.e. those that lie near the peak of thephase transition, it is less e�etive than UCbt−dsatur
greedy , but it is faster than EAsaw.10.2.4 Experiments done in the UC Merge Framework �oloured row hoie strategiesIn Setion 10.2.2 two novel e�ient Merge Algorithms were given. These algorithmsapplied the greedy merge sheme to perform olouring. In this setion we will presentnon-greedy olour assignments. In the UC Merge Framework it orresponds to hangingof the greedy oloured row hoie sheme to another one. Two novel oloured rowhoie strategies of the author [97℄ will be examined here and ompared with the



10.2 Novel Merge Algorithms 109greedy row hoie sheme.Dot Produt and Cosine strategies in the UC Merge FrameworkSetions 9.7 and 9.8 desribed two novel strategies alled the Dot Produt and Cosinestrategies. These strategies support row-pair hoies; that is, algorithms in the CCMerge Framework. However they an be work as a seond row hoie strategies, if oneis seleted by another row hoie strategy. In the UC Merge Framework the �rst hoieis the unoloured row hoie and the seond is the oloured one. Hene, they willhoose oloured rows. The unoloured row hoie will be takled by an evolutionaryalgorithm with ζ �tness (see Setion 10.2.1).
UCext. strat.

dotprod (A adjaeny matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of x4 c← arg maxi{〈Mi,Mu〉 : M col
ui = 0} //Choose a ol. row by max. dot prod.5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu omponent7 until Munc is empty8 return M

UCext. strat.
cos (A adjaeny matrix ,x })1 M ← A2 repeat3 u← [arg maxi{ xi }]1 // Choose by the maximum of x4 c← arg maxi

{

〈Mi,Mu〉
‖Mi‖‖Mu‖ : M col

ui = 0
} //Choose a oloured row by max. os.5 M ← merge(M, {u, c})6 remove− component(x, u) //Remove the xu omponent7 until Munc is empty8 return MAn external strategy provides x as a hoie probability vetor, whih may be unnor-malised too. The unoloured row is hosen by this taking the position of its maximumvalue. Then either the Dot Produt strategy or the Cosine strategy selets a olouredrow to merge with this unoloured row. In the oloured row hoie alulation the

‖Mu‖ in the denominator is a onstant, hene it an be removed and the following anbe applied instead: c← arg mini

{

〈Mi,Mu〉
‖Mi‖

}.10.2.5 ExperimentsFirstly, the novel oloured row hoie strategies are ompared with the greedy olouredrow hoie strategy. Here the evolutionary algorithm of Setion 10.2.1 selets theunoloured rows. The experimental setup is the same as that outlined in Setion 10.2.2.



110 Merge AlgorithmsThen an extended experiment will be provided, where other benhmark algorithms arealso inluded in the omparison. In addition, it ontains other graph types and othertest run results of the algorithms. The evolutionary algorithms all orrespond to thatdesribed in Setion 10.2.1. They use the ζ �tness funtion based on a Binary MergeTable.Algorithms introdued by the author in [97℄
UCEAζ

dotprod: the evolutionary algorithm of Setion 10.2.1, provides the external strategyfor UCext. strat.
dotprod . It applies a Binary Merge Table Model.

UCEAζ

cos the evolutionary algorithm of Setion 10.2.1, provides the external strategyfor UCcos. It applies a Binary Merge Table Model.Benhmark algorithms
UCEAζ

greedy: the evolutionary algorithm provides the external strategy for UCext. strat.
greedy(see Setion 10.2.1). It applies a Binary Merge Table Model.The basis of the omparison made here, is the same 3−hromati benhmark graphset as that given in the Setion 10.2.1. The algorithm settings and the mean of theomparison are also similar to those stated in Setion 10.2.1.ResultsThe two novel strategies that utilise details about the olouring of the graph made sofar are shown in Figure 10.2 together with the simple greedy strategy. Here we no-tie a lear improvement in both the e�ieny and e�etiveness relative to the simplegreedy strategy. In partiular, the searh e�ort needed for denser graphs is less. Fur-thermore, the on�dene intervals for this range are small and non-overlapping. Thesetwo approahes furnish a muh more robust algorithm for solving graph k-olouringproblems.10.2.6 Extended experimentsJuhos et al. in [100; 101℄ arried out other investigations of these strategies. They om-pared the methods with the baktraking version of the DSatur algorithm UCbt−dsatur
greedy ,in aordane with Setion 10.2.2, using various random equipartite graphs. The algo-rithms settings were the same as those in the experiments desribed in Setion 10.2.2.Benhmark graphsThe test set onsists of k−olourable equipartite graphs with 200 verties, where kis set to 3, 5, 10 and 20 (Geq,n=200,0.02≤pe≤0.98,k∈{3,5,10,20}) using Culberson's generator[44℄. For k = 20, ten verties will form a olour set, hene we will not use any larger
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200, where for eah problem instane 10 independent runs were performed.number. The edge probability of the graphs is varied in a region alled the phasetransition. Using this test set we an ensure a fair omparison of the algorithms, sinethis set ontains problems ranging from the easy to the most di�ult. Moreover,we would like to avoid any omparison on some hosen real-life problems where theseletion method an determine the outome of the omparison of the performane(see [41℄). The set onsists of groups where eah group is a k−hromati with 20unique instanes.Means of ComparisonsOn eah instane we performed ten independent runs and alulated averages of thenumber of olours used. These averages were further averaged over eah graph in-stanes whih had the same edge probability, i.e. over the edge probability groups.Con�dene intervals were also alulated, but they just on�rmed our antiipated re-sults, hene they were not plotted in the �gures here for the sake of larity.ResultsFigure 10.3 shows that the Cos heuristi performs well, espeially for larger k, whilethe Dot Produt is a lose seond. DSatur is the strongest algorithm on 3-olourablegraphs, where it always �nds the optimum number of olours. However, baktrakingan help on very sparse graphs, DSatur quikly gets the last position as the hromatinumber and hene the edge density grows.10.2.7 ConlusionsBy omparing the di�erent strategies on several hard-to-solve problems, we showedhow employing oloured-row hoie strategies an improve the onvergene speed ofthe evolutionary algorithm. Furthermore, the two novel strategies, i.e. the Dot Produt
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10.2 Novel Merge Algorithms 113Similar to the Erd®s heuristi (see Setion 10.1.2) whih is also a CU type algorithm,the olour hoie is greedy and the Dot Prod and Cosine row-pair hoie strategiesare applied as a seond row hoie strategies. Here they hoose unoloured row fora greedily seleted oloured row, i.e. always on the last oloured row. This shemeis the so-alled independent set approah in aordane with it traditional name (seeSetion 4.2.1), where the olour seletion is greedy. However not just a greedy olouredrow hoie an be applied. Hene a learer haraterisation is given by the CU MergeFramework, where not only a greedy oloured row/olour lass hoie an be applied.An experimental omparison is provided below with well-known benhmark algorithms,whih are desribed in Setion 4.2.
CUgreedy

dotprod(A adjaeny matrix )1 M ← A2 u← [ ] // Empty hoie of an unoloured row index3 repeat4 c← arg mini{i : M col
ui = 0} // Choose the �rst available oloured row5 if c = [ ]6 then r = 17 else r = Mc8 u←

[

arg maxi

{

〈r,Mi〉 : M col
ci = 0

}]

1
//Choose by max. dot prod.9 M ← merge(M, {u, c})10 until Munc is empty11 return M

CUgreedy
cos (A adjaeny matrix )1 M ← A2 u← [ ] // Empty hoie of an unoloured row index3 repeat4 c← arg mini{i : M col

ui = 0} // Choose the earliest available oloured row5 if c = [ ]6 then r = e7 else r = Mc8 u←
[

arg maxi

{

〈r,Mi〉
‖r‖‖Mi‖ : M col

ci = 0
}]

1
//Choose ol. row by max. osine9 M ← merge(M, {u, c})10 until Munc is empty11 return MIt always hooses the last oloured row index c. When it is empty, i.e. c = [ ], theninstead of the row r = Mc the e vetor (the vetor with all one entries) are seleted.Hene the maximisation proess in the unoloured row searh an be performed. Henethe Dot Produt strategy takes the maximum row sum and provides the 'maximal degreevertex'. Similar to the Erd®s algorithm (see Setion 10.1.2), when c = [ ], the mergeis a simple reord of the hosen unoloured row Mu in the oloured row; that is, it



114 Merge Algorithmsputs it into the oloured sub Merge Matrix. When u 6= [ ], the oloured row hoie isperformed by either the maximal Dot Produt strategy or Cosine strategy (see setions9.7 and 9.8). The r is a onstant in the osine maximisation, so it an be left out fromthe expression; hene only the 〈r,Mi〉
‖Mi‖ is onsidered, i.e. the length of the orthogonalprojetion of r onto Mi.10.2.9 ExperimentsHere we desribe the experimental results of two Merge Algorithms whih apply olouredrow hoie strategies introdued by the author in [100℄.Algorithms introdued by the author in [100℄These algorithms were presented in Setion 10.2.8.The CUgreedy

dotprod algorithm takes the last available oloured row and merges as manyunoloured rows with it as possible, using a maximum Dot Produt strategy. Itapplies the Binary Merge Square (see Setion 9.7).The CUgreedy
cos algorithm uses the same priniple as CUgreedy

dotprod, but the oloured rowhoie is based on the Cosine strategy (see Setion 9.8).Benhmark algorithmsBenhmark algorithms were implemented in a suitable Merge Framework, so as tohave a ommon basis for a omparison. Hene their running times di�er slightly. Theexperiments fouses on their e�etiveness; that is, how many olours they used in theirolouring.
CUgreedy

Erdös : It is based on the Integer Merge Square Model in the CU Merge Framework.It takes the last available oloured row and merges as many unoloured rows withit as possible, using a minimum unoloured degree strategy detailed in Setion10.1.2.
UCgreedy

dsatur : A non-baktrak version of the DSatur algorithm, it performs only oneolour assignment applying the saturation degree heuristi based on the IntegerMerge Table Model and UC Merge Framework (see Setion 10.1.1).Benhmark graphsThe benhmark graph set is the same k−hromati (k ∈ {3, 5, 10, 20}) equipartitegraph set in the phase transition as that in the experiments desribed in Setion 10.2.6.But here 20 unique instanes were generated per probability group, exept for k = 30,where 30 instanes were examined to get a better on�dene limit here beause thetwo algorithms had a similar performane.



10.2 Novel Merge Algorithms 115Means of ComparisonsThe ompared algorithms perform only one olour assignment without any baktrakingor other spae exploration. Hene, the experiments just ompared their e�ienyonsidering single olour assignments. Therefore only one run was neessary. On eahinstane we performed one run. The number of olours obtained in the runs wereaveraged over the edge probability groups, i.e. graphs having the same same edgeprobabilities. The on�dene intervals were also alulated, but they just on�rmedour antiipated results, hene they were not plotted here.ResultsFigure 10.4 shows the results for eah algorithms. The Cosine strategy performedlearly better than the others exept for the 3−olouring where DSatur performedequally well. The Dot Produt strategy was ranked seond, while DSatur performs wellon sparse graphs having small hromati number, the Erd®s heuristi performs well ongraphs that require more olours, espeially on dense graphs, i.e. that have a highaverage number of edges (high edge density). What is interesting is the loation of theregion of the phase transitions. Figure 10.4 shows that it depends not just on the edgedensity of the graphs but also on the applied algorithm, espeially the graph densitywhere DSatur exhibits its worst performane when it moves away from the others withinreasing k. DSatur and Erd®s heuristis apply just seond order information, asopposed to the other two algorithms, where �rst order information is used (see �rstand seond o-strutures in Setion 7.2). The Erd®s heuristi uses the seondary orderstrutures in the opposite way to that of DSatur and our results show how this a�etsthe performane, sine their e�etiveness are opposite as well.10.2.10 ConlusionsIn the UC experiments in Setion 10.2.5, where Dot Produt and Cosine strategies wereapplied for oloured row hoies, here these strategies performs well too as unolouredrow hoie strategies. The onnetion between the performane and the struture ofthe DSatur and the Erd®s heuristi were haraterised well in the Merge Frameworks.They use the same merge o-struture but in opposite way, hene their performanegoes in the opposite diretion when the hromati number of the graphs in questionhange.10.2.11 Algorithms in the CC Merge FrameworkIn the CC Merge Framework, oloured and unoloured rows are not distinguished. Astrategy always takes every row into aount. Only one, a row-pair hoie strategy mustbe de�ned to perform a merge sequene until a �nal Merge Matrix is obtained. In orderto represent an algorithm in the CC Merge Framework let us introdue the followingnotation: CC −hoose, where hoose stands for the only row-pair hoie strategy.
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10.2 Novel Merge Algorithms 117Dot Produt (CC − dotprod)

{i, j} = arg max
{i,j}
{〈Mi,Mj〉(1−Mij) : i 6= j}Two rows are hosen for a merge if they have maximal dot produts among the possiblerow pairs. The Mij = 0 merge ondition an be given by using the (1−Mij) term inthe ase of Binary Merge Squares.Cosine (CC − cos)

{i, j} = arg max
{i,j}

{ 〈Mi,Mj〉
‖Mi‖‖Mj‖

: i 6= j, Mij = 0

}Two rows are hosen for a merge if they have a maximal osine among the possiblerow pairs.Approximated spetral norm (CC − σ̃)

{i, j} = arg min
{i,j}







√

√

√

√

l
∑

r=1

〈(M/ij)r, (M/ij)r〉2 : i 6= j, Mij = 0





Two rows are hosen for a merge if they have a minimal approximated spetral normamong the possible row pairs. M/ij is the Merge Square after merging i and j rows,where (M/ij)r is the r-th row of the merged matrix and l is the number of rows/olumnsin the merged matrix. This de�nition follows from Eq. 9.27, where 〈(M/ij)r, (M/ij)r〉 =

〈(M/ij)r, e〉 is the r-th row sum, due to the Binary Merge Matrix representation, andthe onstant term l is left out of the denominator. This strategy an be de�ned without
M/ij trial merges by an e�ient diret alulation and an update tehnique (see setions9.6 and 9.6 for details).Zykov-tree+Lovász-theta (CC−Zykovθ̄)

min
t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E}Let the approximated solution of this semi-de�nite optimisation problem be Z̃opt inaordane with Eq. 9.43. Two solvers were applied for this optimisation. In orderto get a faster exeution the ombination of a boundary point method [134℄ and aninterior point method [142℄ is applied. Later it was applied for very dense graphs(edge density>0.89) 4, when the andidate solution approahed, the �nal Merge Ma-trix. Otherwise the alulation was done by a boundary point method. The row-pairhoie strategy for a merge was de�ned by the and Ẑ = (Z̃opt+1)◦(1−I) (see Setion9.9) as follows:
{i, j} = arg max

{i,j}

{

Ẑij(1−Mij) : i 6= j
}



118 Merge AlgorithmsIn order to further improve the speed and the deision auray, an (i, j) edge additionwas introdued for eah step using the following
{i, j} = arg min

{i,j}

{

Ẑij(1−Mij) : Ẑij < 0
}Further details an be found in Setion 9.9. CC − Zykov+

θ̄
will stand for the variantwhen not only one edge, but all edges are added whih satisfy the following ondition5

{

Ẑij(1−Mij) : Ẑij < 0
}10.2.12 ExperimentsThe experimental setup was the same as that outlined in Setion 10.2.9.ResultsFigure 10.5 shows the results of every ombination for di�erent values of χ. Hene thespetral norm approximation performs the best exept for very sparse graphs, when theDot Produt strategy and DSatur with loal deisions perform better. The reason forthe worse performane of CC − σ̃ on sparse graphs is the small number of hangesin the norm in the seletion of andidate verties pairs for a merge. Beause of theapproximation used, several di�erent values beome the same, hene too many an-didates are seleted for tie breaking. The ombination of the CC framework with theCosine does not always perform well, espeially for smaller hromati numbers; how-ever, it an outperform baseline methods for dense graphs. As the hromati numberand the edge density inrease Cosine strategy inreases its performane and it an beatevery other. Dot Produt's performane lies between that of Cos and the CC − σ̃algorithms; its strength lies with smaller hromati numbers and sparse graphs. Fig-ure 10.6 gives the best and the benhmark results of Figure 10.5. Furthermore, Figure10.6 shows the (CC − Zykovθ̄) and (CC − Zykov+

θ̄
) results as well. Both the novel

(CC−Zykovθ̄) strategy and the (CC−Zykov+
θ̄
) strategy perform very well espeiallyfor denser graphs. The phase transition is shifted for these algorithms, where otheralgorithms an outperform their impressive results. Where more edges are added inthe (CC −Zykov+

θ̄
) strategy it has slight in�uene on the results of the 3−hromatiexperiments, but its performane worsen in the higher hromati region.10.2.13 ConlusionsAll the novel strategies presented here perform well in the CC Merge Frameworks,and most ases they outperform the benhmark algorithms. Though there is no learwinner, the (CC − Zykovθ̄) algorithms ahieve quite impressive results, but the otheralgorithms an outperform their results in their phase transition region. Furthermore,5Not only that edge, whih orresponds to the minimum value.
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120 Merge Algorithmsthe (CC− σ̃) has also good results espeially for graphs whih have a higher hromatinumber. Nevertheless, (CC − Zykovθ̄) olours e�iently these graphs and they usemuh more omputational e�ort than the others. They have to perform several semi-de�nite optimisations to ahieve these good results. These optimisations make themslower than the others, whih use only a ouple of elementary operations for theirstrategies, hene they are suitable for solving larger graph instanes.10.3 SummaryIn this hapter we demonstrated the e�ieny of the strategies desribed in Chapter 9when embedded into one of the Merge Frameworks. Our experiments showed that theyperform well when applied as unoloured or oloured row hoie strategies, or row-pairhoie strategies. Benhmark algorithms were de�ned in a suitable Merge Framework,and these de�nitions allowed us to make a strutural omparison. In addition, ourexperimental results and the strutural analysis revealed a orrelation in the ase ofDSatur and Erd®s heuristis.In the next setion we will look at the Merge Models and Algorithms in more detail.



Chapter 11Analysis11.1 IntrodutionIn hapters 7, 8 and 9 a new general olouring approah was onstruted based ona speial graph homomorphism. Chapter 10 showed the pratial bene�ts of theseapproahes by an experimental investigation. This hapter shows the result of a theo-retial analysis of the approahes and disusses software and hardware implementationaspets, as desribed by the author in [94; 96�102℄.11.2 Whih Merge Model is better?This setion brie�y disusses the bene�ts and drawbaks of the Merge Models intro-dued in Chapter 7.Integer or Binary Merge Matries Integer Merge Matries supports baktrakingbeause they retain all the edges of the original graph, and hene a merge is reversible.Instead of row addition, a row subtration an provide an unmerge operation, supportingbaktraking. In Chapter 10 we presented algorithms whih exploit the o-strutureproperties of these models, suh as the Erd®s and DSatur heuristi use them for tiebreaking. Furthermore, they support the extension of the Merge Models for improperolouring shemes, as outlined in Setion 10.1.1. However, retaining all the edgesan support some strategies, but there may be drawbaks as well. The edge retainingintrodues redundanies hene the �nal Integer Merge Matrix is not preditable. The�nal Merge Matrix is de�ned exatly for the Binary Merge Squares it is the adjaenymatrix of the Kk omplete graph. This is useful in algorithm design (see Setion 9.10).Sine a Merge Square is an adjaeny matrix, strategies an always be repeated inthese merged matries, but several strategies an work with the other merge matriesas well. Unfortunately, it does not support baktraking, as it loses some of the originaledges. An implementation of a Binary Merge Matrix an be e�etive beause the binaryoperations and strutures are supported by the omputer hardware and software.Merge Squares or Merge Tables The implementation of the Merge Tables an bedone more e�iently, sine the merges a�ets only the rows, while in the ase of MergeSquare the two dimensional hanging, i.e. the number of rows and olumns, requires121



122 Analysismore omputation and ause implementation problems. Nevertheless, the Merge Squarestruture better supports an analysis, hene their struture and the dimensions aresimilar to the original problem and are desribed by similar graphs. But a Merge Tablealways makes available the original graph strutures, as their olumns represents theverties of the original graphs.11.3 Enhaned algorithmsIn setions 9.4.1 and 9.4.2 two novel algorithms of the author were introdued basedon two urrent non-merge based algorithms, namely the Welsh-Powell heuristi and theHajnal heuristi (see Setion 4.2.3 and 4.2.4). The extended version of these in the UCMerge Framework brings an improvement in the performane of the original algorithms(see Juhos et al. [97℄). Setions 9.4.1 and 9.4.2 detailed the improvements in atheoretial point of view and here several experimental results demonstrate our �ndingsin a standard benhmark set of graphs (see Setion 4.1). Table 11.1 learly showsthe di�erene in performane between the original version and the extended version ofthe algorithms. The bias was set to ν = 0.9 in eah experiment performed (see Eq.9.4). The novel extended version of the algorithms learly outperforms the originalGraph |V | |E| χ UCWP
greedy UCext−WP

greedy UCH
greedy UCext−H

greedyqueen10_10 100 2940 ? 17 15 16 14queen11_11 121 3960 ? 17 15 20 15queen12_12 144 5192 ? 19 17 22 17queen13_13 169 6656 13 23 18 23 18DSJC125.1 125 1472 ? 7 6 9 7DSJC125.5 125 7782 ? 23 22 26 22DSJC125.9 125 13922 ? 53 52 62 54DSJC250.1 250 6436 ? 11 10 14 11DSJC250.9 250 31366 ? 93 88 97 89DSJC500.1 500 24916 ? 18 16 22 16DSJC500.5 500 125249 ? 71 66 76 67DSJC500.9 500 125249 ? 169 165 185 166�at300_20_0 300 21375 20 44 42 46 43�at300_26_0 300 21633 26 47 44 50 43�at300_28_0 300 21695 28 44 43 48 44latin_square_10 900 307350 ? 213 148 148 145le450_5 450 9803 5 12 8 19 10le450_5d 450 9757 5 14 9 19 11le450_15a 450 8168 15 18 17 26 18le450_15 450 16680 15 26 25 36 25le450_25a 450 8260 25 26 25 34 25Table 11.1: Results of extended algorithms. The number of olours used by the Welsh-Powell (WP) and the Hajnal (H) algorithms and their extensions. The extended algo-rithms are denoted by 'ext-' pre�xes.



11.4 Redued omputational ost 123two algorithms. These experiments are based on the graphs of the DIMACS benhmarkrepository (see Setion 4.1). The experiments were performed on the same graph set asthose applied in the experiments desribed in Setion 10.2.2. The extended algorithmsprodued muh the same results, outperforming the original ones. Here some otherdi�ult-to-solve instanes are presented in order to demonstrate the e�ieny of thenovel algorithms.11.4 Redued omputational ostIn [52; 145℄, Eiben and van Hemert et al. pointed out that the number of onstraintheks is the key fator in the omputational ost in olouring algorithms. However,there an be other fators whih a�et the running time; onstraint heks haraterisewell the omputational e�orts several times. Merge Models provide onsiderable de-rease in running time for those algorithms whih performane strongly orrelated withthe onstraint heking (see Juhos et al. [99℄). This setion introdue the results of theauthor. Our benhmark algorithms in Setion 4.2 are typial examples for suh grapholouring solvers. When solving a graph olouring problem as a sequential olouringwhile using the original graph representation to hek for violations, approximately n2(= |V |2) onstraint heks are required to get to a valid olouring. In ontrast, a MergeModel (MM) supported sheme uses at most n · k number of heks ( |V | ≥ k ≥2 χ).This is possible beause eah vertex will be ompared with at most the existing olourlasses, of whih there are no more than k or χ if a solution exists. Hene, theirquotient determines the improvement of a Merge Model supported olouring, whihis proportional to the n/k ratio. We verify this laim theoretially and empirially aswell. In traditional shemes, adjaeny matrix representation plays the key role in theGCP 1. We have two hoies when olouring a vertex for onstraint heking; eitheralong the already oloured verties (Acol), or along all the neighbours of the vertexonsidered (Aneigh). In the following, we show how to onsiderably redue the numberof onstraint heks by applying our proposed Merge Models (Amm). Let π is thesequene of the verties our in the olouring proess. De�ne x

d (x) as the oloured-degree of the vertex x being urrently oloured, whih refers bakwards to the alreadyoloured verties and y

d (x) of the unoloured-degree refers forwards to the unolouredvertex. Furthermore, denote kπ(x) the number of olours used before x would havebeen oloured aording to π. Notation ∑ is always ∑n
i=1 in this setion.Corollary 11.1 ([99℄) Given a random graph Gn,p with �xed p edge probability andgiven a olouring algorithm A, then the following performane is expeted on averagebased on ounting onstraint heks #(.):1. heking the oloured verties: #(Aol) = O(n2)2. heking the neighbours: #(Aneigh) = O(n2)3. heking the merged-verties/olour lasses: #(Amm) ≤ O

(

n2

log n

)



124 AnalysisProof1. Cheking the already oloured verties requires as many neighbour heks as thenumber of the edges, beause we have to hek the t number of oloured vertiesif the t+ 1. vertex omes to olour, that is,
#(Aol) =

∑

i =
1

2
n(n− 1) = O(n2) (11.1)2. When the neighbours of the vertex urrently being oloured are heked for on-straint violation, the number of performed onstraint heks are equal to the sumof the degrees, i.e., twie the number of edges

#(Aneigh) =
∑

di = 2|E| ∝ pn(n− 1) = O(n2) (11.2)3. Using a Merge Model representation, Merge Operations provide merged-verties,whih represent olour lasses, thus heking along them, requires at most asmany heks as the number of olours used at that moment. The worst ase iswhen the olouring is tight, meaning vertex x is in position π(x) oloured by atleast the olour kπ(x).
#(Amm) ≤

∑

ki = n
P

ki

n
∝ nrχ ∝ n rn

2 log n
(11.3)

= O(n2/ logn)

n
rn

2 log n
∝ rp

2p
n(n−1)

log(n−1)
= pn(n−1)

log(n−1)2p/r (11.4)where r is onstant2 and χ ≈ n
2 log n

aording3 to [13℄. For further details seeSetion 3.7 and 4.2.2. 2As the theorem above tells us the asymptoti behaviour of the algorithms, we anhek the worst ase behaviour of the A using these di�erent approahes. It is learthat the appliation of the Aol for dense graphs are better against the #(Aneigh), andonversely, Aol has worse properties in sparse graphs ompared to #(Aneigh). Thefollowing theorem states that using our Merge Model approah, #(Amm) will alwaysoutperform the other tehniques mentioned previously.Corollary 11.2 ([99℄) Let G be an arbitrary graph, then the following relations hold1. #(Amm) ≤ #(Aol)2. #(Amm) ≤ #(Aneigh)Proof1. The number of olours is less than the number of oloured verties, i.e.
#(Amm(x)) ≤ kπ(x) ≤ π(x), and #(Amm) ≤∑

ki ≤
∑

i.2 This is true in the ontext of the naturally de�ned greedy algorithms r ≈ 2 [44; 71; 117℄, butother algorithms have been designed to perform better.3Note that the logarithmi base here is 1

1−p .



11.4 Redued omputational ost 1252. If x

d (x) refers to distintly oloured verties then #(Amm(x)) =
x

d (x). Oth-erwise, if x

d (x) refers to the same oloured verties as well as distint onesthen #(Amm(x)) =
x

d (x), sine merged-verties enompass the same olouredverties. Consequently,
#(Amm(x)) ≤ d(x) due to d(x) =

x

d (x) +
y

d (x), and
#(Amm) ≤∑

x

d (x) ≤∑

d(x). 2One onsequene of Corollary 11.2 tells us more. Namely, an MM based algorithm ouldperform better than that whih ould just hek the oloured neighbours. However, toimplement suh an algorithm, whih just heks the oloured neighbours, we have touse additional omputation e�orts. Thus an MM algorithm performs even better.In Figure 11.1(a), we show how muh the speed of DSatur and the evolutionary algo-rithm (see Setion 10.1.1) inreases when measured as the ratio of onstraint heksused to solve the problem when without using Merge Models and when using MergeModels on a standard test benhmark set of graphs (see DIMACS problems in Setion4.1). For DSatur, the lowest speed inrease is 4.56, while the largest speed-up is 36.1.For the evolutionary algorithm, the lowest speed inrease is 1.81, and the largest speed-up is 41.4. Depited in Figure 11.1(b) is the orrelation of the speed-up ratios of thetwo algorithms with the ratio n/χ, i.e., the number of verties divided by the hromatinumber. DSatur has a onstant of proportionality of 0.948 and an asymptoti errorof 10.0%, while the evolutionary algorithm has a onstant of proportionality of 0.695,and an asymptoti error of 9.8%. We predited this speed-up in Setion 11.4, and ourtheory agrees well with the observed orrelation, espeially for DSatur.

 1

 10

 100

homer fpsol2.i.3 zeroin.i.2 mulsol.i.3  miles1500

S
pe

ed
-u

p 
ra

tio
 (

pu
re

/M
M

)

Graphs ordered by |V|/χ

DSatur
EA
|V|/χ

(a) Speed inrease ratios whih are ordered by
|V |/χ in dereasing order.  0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

S
pe

ed
-u

ps
 fo

r 
D

S
at

ur
 a

nd
 E

A

|V|/χ

Linear fit of DSatur speed-ups
Linear fit of EA speed-ups

(b) The linear orrelation seen between the |V |/χratio and the speed-up ratios.Figure 11.1: Speed inrease of DSatur and the evolutionary algorithm (EA) for theDIMACS problems after embedding them into a Merge Model (MM). 'Pure' orrespondswith the algorithms without using a Merge Model.



126 Analysis11.5 ImplementationsIn a k-olouring, we need just |V | − k ontration steps to get a solution instead ofthe n required by the traditional olouring methods, e.g. in a olour assignment. Alot of hardware nowadays provides CPUs with vetor operations, whih opens up thepossibility of performing the atomi Merge Operations in one CPU operation, therebyraising the overall e�ieny. Sine nowadays omputer proessing units (CPUs) supportparallel operations, e.g. vetor addition operations (VADD) or vetor OR operations(VOR). Hene, a Merge Operation may be only one instrution instead of n = |V | or
d(xi) instrutions. In this ase at most n − k number of VADD or VOR operationsare needed for a valid olouring. The order of real-life graphs an vary from a hundredverties to thousands of verties. Using speial hardware instrutions available onmodern omputers, Merge Operations an be redued to one omputer instrution.For example, a Merge Operation an be performed as one VADD or VOR operation ona vetor mahine, suh as the Xbox game station [32℄. The IBM PowerPC CPU usedin an Xbox [32℄ has 49 152 (3 · 128 · 128) bits for this operation. Thus we an useone binary Merge Operation for graphs having at most 49 152 or one integer MergeOperation for graphs having at most 4 000 number of verties. The latter is due tothe fat, a ell value of an Integer Merge Matrix is always being less than n. Henein the Integer ase the n is alulated by n ⌈log2 n⌉ = 49 152, beause ⌈log2 n⌉ bitsare required for eah of the n integer-valued ell of a row. Note that in the ase ofMerge Squares the dimension of the rows dereases, hene after a ertain number ofmerges the further Merge Operations will require only one VADD or VOR operation.Nevertheless, having a smaller VADD of VOR size, say l, the neessary VADD or VORoperations are ⌈n/l⌉ (n − k), whih an still signi�antly redue the omputationale�orts for a merge. In partiular, if l ≥ n, then we get bak the n − k as mentionedpreviously. Examples that show how suh hardware an speed up omputation anbe found in surveys in [34; 141℄. In reent years, we have witnessed a surge inlow-ost hardware that is apable of e�iently performing spei� operations. Animportant reason behind this surge is the extensive use of Graphis Proessing Units(GPU) in omputer games and reently, in omputer onsoles. This in turn has ledto general-purpose omputation on GPUs, whih an provide a number of advantagesover traditional high-performane omputing failities. Spei�ally, in the ontext ofGeneral-Purpose omputation on Graphis Proessing Units (GPGPU), the advantage isthat aelerated graphis ards are now heap, and most desktop and laptop mahinesontain one with a large number of GPUs. Their energy onsumption is onsiderablylower than that of Central Proessing Units (CPUs). By making use of them in aomputational sense, we bring parallel omputing hardware as lose to the end-user aswe wish. We an ompute on their desktop or provide remote aess to GPUs installedelsewhere. Also, reent advanements in speed seem to be in favour of the GPU, notthe CPU [38℄. Besides hardware implementations, parallelism an be ahieved via asoftware implementation as well [3℄. Parallel omputing on one mahine or distributedomputing on several mahines may be also options for a software implementation.In analogy to the hardware implementations, a Merge Operation an be distributed



11.6 Summary 127using an appropriate software pakage whih an support either parallel or distributedomputation. However, software pakages may have omputational overheads but forextremely large graphs their usage an be worthwhile.11.6 SummaryIn this hapter we analysed the appliation of the Merge Models from various aspets.We demonstrated improvements in the performane of an algorithm after embedding itinto a suitable Merge Model. Without any hange in the algorithm steps, the represen-tation of the problem in a Merge Model provides a derease in the omputational e�ort.However, the embedding permits a natural enhanement of the algorithm as well. Itmay bring signi�ant improvements in the performane of an existing algorithm. After,pratial implementations issues were disused, whih an further improve the e�ienyof a onrete implementation of a Merge Model on a partiular hardware or softwareplatform.





Appendix11.7 Symmetry in the olour assignment
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Figure 11.2: Di�erent optimal olourings for the graph shown in Figure 3.1Serial v1 v2 v3 v4 v5 v6No. 1: 1 2 3 1 3 2No. 2: 1 2 3 2 1 2No. 3: 1 2 3 2 3 2No. 4: 1 3 2 1 2 3No. 5: 1 3 2 3 1 3No. 6: 1 3 2 3 2 3No. 7: 2 1 3 1 2 1No. 8: 2 1 3 1 3 1No. 9: 2 1 3 2 3 1No. 10: 2 3 1 2 1 3No. 11: 2 3 1 3 1 3No. 12: 2 3 1 3 2 3No. 13: 3 1 2 1 2 1No. 14: 3 1 2 1 3 1No. 15: 3 1 2 3 2 1No. 16: 3 2 1 2 1 2No. 17: 3 2 1 2 3 2No. 18: 3 2 1 3 1 2Table 11.2: The all optimal olourings for the graph shown in Figure 3.1. Inludingequivalent olourings, whih ause symmetri solutions. A serial number shows theappropriate olouring. Numbers below the header vi−s are the olour assignments e.g.
No.1 : c(v1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = 1, c(v5) = 3, c(v6) = 2 where c(v)is the olour identi�er assigned to the vertex v. Some solutions generate the samesolutions. E.g. No.1 olouring is equivalent with No.4.129



130 Analysis11.8 Charateristi and hromati polynomials
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SummaryThis thesis summarises the results obtained by the author over the past few years. Theauthor developed a general framework for graph olouring methods, where the tradi-tional olouring sheme is de�ned via speial graph homomorphisms motivated by theZykov theorem [161; 162℄. These speial homomorphisms proved useful in the designof algorithms by the author ([94; 96�102℄). This summary is strutured in a similarway to the thesis itself. The results an be separated into di�erent groups aording tothe parts of the graph olouring framework. The author de�ned the problem via er-tain graph homomorphisms using quotient and power graphs. The author alled theseQuotient and Power methods. Then he desribed these graphs and homomorphisms bymatrix representations with suitable operations, resulting in his Merge Models with hisnomenlature. Merge Models provide a novel desription of the olouring problem. Theoperations (i.e. the Merge Operations) subsequently hange the state of the modeland diret it to a possible solution of the original graph olouring problem. The authordeveloped strategies in the model alled Merge Strategies whih de�ne possible dire-tions to a solution. Furthermore, the author onstruted general frameworks (MergeFrameworks) in whih strategies an be embedded. These frameworks in onjuntionwith the strategies form olouring algorithms (Merge Algorithms). Suh algorithmsgenerate a sequene of model operations aording to the strategy. The end of thesequene is a andidate solution for the original problem.Quotient and Power MethodsThe author de�ned graph olouring proesses as a series of homomorphisms usingquotient or power graphs and multigraphs, where the verties whih get the sameolour will be 'glued' or 'grouped' together to form new vertex sets (see Juhos etal. [96; 100℄). The author alled the new olouring methods whih are based onthese priniples Quotient and Power methods. The goal of a Quotient and Powermethod is to �nd a homomorphism whih maps the original graph into a ompletegraph or homomorphi with a omplete graph. The homomorphism obtained de�nes aolouring of the original graph. In order to support the design of sequential olouringalgorithms suh a homomorphism is reated as a omposition of series of intermediatehomomorphisms. These homomorphisms produe helpful intermediate graph strutureswhih an be exploited for an e�ient olouring and also help provide a deeper insightinto the olouring proedure. Moreover, they allow us to design e�ient new or redesignexisting graph olouring algorithms in a framework supported by quotient or powergraphs (see Juhos et al. [96�102℄). 131



132 AnalysisMerge ModelsThe relation between the original graph 4 and a quotient or power graph/multigraphis de�ned by a graph homomorphism. The author introdued four kinds of matrixoperations, alled Merge Operations (or 'merges' for short) to map the adjaeny matrixof the original graph to its four di�erent homomorphi images: alled Binary/IntegerMerge Square/Table Matries or put brie�y Merge Matries), respetively, and thensubsequent Merge Operations will produe vertex olouring [96; 100℄. The authorshowed that Merge Operations produe appropriate homomorphi images of the originalproblem, modelling the original graph olouring problem. Eah row of a Merge Matrixorresponds with an independent set in the original graph. Note that olour lassesare independent sets, and eah vertex onstitutes a one-element independent set in theoriginal graph. All the models have their own strong points, and they an assist eahother indi�erent ways. The author obtained signi�ant improvements both theoretiallyand via experiments when an algorithm applied one of these models [99℄. Exploitingtheir good performane, the author designed powerful graph olouring algorithms in[94; 97�99; 101; 102℄.Merge FrameworksMerge Models provide a model for the graph olouring problem via matrix representa-tions and operations. The author introdued three general frameworks for graph olour-ing algorithms supported by Merge Models in [100; 101℄. These are generalisations ofthe traditional sequential olouring shemes. Merge Models replae the olour assign-ment operation with a Merge Operation, and this eliminates the di�erene between theolour seletion and the vertex seletion strategies. Merge Models de�ne these di�erentseletion strategies in a ommon way as a ommon row seletion strategy. Therefore,a general row seletion strategy an operate as a oloured or unoloured row seletionwhen we would like to model the traditional seletion strategies. Here the olours onlyindiate whether a row has already been taken into aount in the merge proess. De-pending on the order of the seletion of the di�erent state (oloured/unoloured) rowstwo general framework an be de�ned: either we hoose an unoloured row �rst andthen hoose a suitable oloured one (UC Merge Framework) or, onversely, we anhoose a oloured �rst and then �nd an appropriate unoloured row for the merge (CUMerge Framework) [100℄. The UC and the CU frameworks provide a generalisation ofthe sequential olouring shemes. In fat there is no need to distinguish between theoloured or unoloured states of the rows; just take the set of rows and apply a ommon
choose strategy suitable for all of them. After, selet an arbitrary row-pair from theMerge Matrix by a strategy and merge them. This approah is formulated in the CCMerge Framework [96℄. The rows of the Merge Matrix orrespond to olour lasses,i.e. independent sets. An algorithm in a CC Merge Framework selets two olourlasses/independent sets and reates the union of them in the traditional sense. These4Or an equivalent reformulation of the original graph.



Summary 133general frameworks with the new Merge Models support a ommon strutural analysisof the existing and novel graph olouring methods, as shown in [97; 99; 101; 102℄. Allof these frameworks are de�ned in a uni�ed manner using the Merge Model sheme.An algorithm in one of these frameworks applies a subsequent seletion of rows of themerge matries and merges them to ahieve a olouring. None of these frameworks hasa onrete strategy for the hoie of rows for merging. A framework with a onretehoie strategy, i.e. Merge Strategy, forms a partiular algorithm.Merge StrategiesIn order to get a olouring algorithm, the algorithm steps must be de�ned; that is, asequene of the Merge Operations. A Merge Operation takes two rows/olumns of aMerge Matrix and produes a new Merge Matrix if the merge ondition allows it. Byrepeating Merge Operations we will end up with a �nal Merge Matrix where a MergeOperation is no longer possible. The sequene of the Merge Operations is ruial. Itdetermines the quality of the solution, i.e. the number of olours used in the olouring ofthe original graph. The author desribed various Merge Strategies in order to generatee�ient merge sequenes, as desribed in [94; 96�102℄. These strategies proved usefulin the theoretial and experimental parts of our analysis. The novel desription of theolouring proess provides new aspets whih an be exploited in the design and analysisof Merge Strategies, as desribed in the following. This strategies assume Binary MergeModels, but their integer extensions are also available. The importane of the IntegerModels are disussed separately. They support the algorithm design, e.g. baktrakingor tie breaking, as shown in [99℄.The longest merge sequene. Sine the Merge Matrix rows orrespond to olourlasses, the main aim is to redue the number of rows by onseutive merges. Thelongest merge sequene produes the fewest rows. The author in [97℄ introdued twonovel strategies to generate the longest merge sequene. The Dot Produt Strategyfouses on the evolution of the number of non-zero elements during suessive mergesand attempts to keep them as low as possible. Though the non-zero elements in aMerge Matrix frustrate the merges, the number of zeros assist them. Hene the CosineStrategy takes the number of non-zero elements into aount, but also onsiders thenumber of zeros present.Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matries.It is reasonable beause the rows of the adjaeny matrix whih orrespond to the sameoloured verties in an optimal solution are almost parallel. Their parallel behaviourbeomes learer with eah suessive merge. In the ase of Merge Square Model, thereis a ertain modi�ation of the Merge Matries based on a semi-de�nite optimisationby Karger et al. [103℄, whih further supports the Cosine strategy. Exploiting this fat,the author in [94; 102℄ de�ned the Zykov-tree and Lovász-theta strategy.Colour similarities In fat a Zykov-tree and Lovász-theta strategy is based on theestimation of the olour similarities of the verties of the quotient graphs. The ad-jaeny matrix desribes an exat olour dissimilarity relation, where the verties in



134 Analysis(edge-)relation annot get the same olour. The opposite approah is the olour sim-ilarity relation. A partiular olouring an be de�ned via a olour similarity relationbetween the verties, where only the same oloured verties are inluded in the rela-tion. This relation an be represented by a {0, 1}-matrix, namely a olouring matrix.It desribes whether two verties are oloured with the same or di�erent olours. Al-though the optimal solutions an be represented in this form, they are unknown beausethey are the solutions of the problem. Despite this, their average an be approximatedby a solution of a semi-de�nite program (see Karger et al. [103℄), whih provides theLovász-theta. Hene, a non-exat, an approximated olour similarity relation beomesavailable between the verties. This an be desribed by a real-valued matrix, wherethe largest and the smallest values ontain valuable information. Using this informationand Zykov's work in [161; 162℄, the author reated the Zykov-tree and Lovász-thetastrategy in [94; 102℄, where quotient graph verties are onneted or merged aordingto their approximated similarities. The approximation beomes more exat with eahsuessive merge supporting more on�dent deisions of this strategy.Norm minimisation in the resulting state. The Dot Produt Strategy selets tworows whih produe the maximum dot produt, then merges them. This introdues aminimisation in the entrywise norms in the resulting Merge Matrix. A �nal Merge Ma-trix whih orresponds to an optimal solution has the smallest entrywise norm amongthe possible merge matries (homomorphi images). Hene, the entrywise norm min-imisation approah is reasonable. In addition suh a Merge Matrix has minimal induednorms as well. This observation led us to apply the steepest desent norm minimi-sation strategy, in partiular the steepest desent Spetral Norm Strategy, whih wasintrodued by the author in [101℄ and was found to be an e�ient strategy.The Spetral Norm Strategy must �rst make several trial merges. With the resultingtrial merge matries, this strategy makes spetral norm alulations to reate a seletionof a row-pair for merging. Calulating the spetral norm is omputationally expensive,but Merikoski and Kumar one introdued an e�ient spetral norm approximation in[123℄. Based on their results, the author adapted his Spetral Norm Strategy to anapproximated spetral norm strategy [101℄. Owing to this, this strategy an exploit anupdate mehanism where an investigation of the resulting Merge Matries is no longerneeded as it is just based on the urrent Merge Matrix. In addition this reformulationrevealed a onnetion with the Dot Produt strategy.Matrix properties � Merge Paths The author introdued the notion of Merge Paths[101℄. Certain graph properties like matrix norms may be evaluated during the seletionof two rows for a Merge Operation. Gathering these graph properties into a vetor(e.g. eigenvalues) they form the basis of the deision. The hanges of the propertyvetor during the merge proess desribe a path alled the Merge Path. This path isresponsible for determining the olouring and the end of the path de�nes the quality ofthe olouring.Unfortunately, the ideal path (whih results in an optimal solution) is of ourseunknown; the task of olouring is to �nd this path. The author introdued a generalstrategy whih approximates an optimal Merge Path [101℄. The start and the end



Summary 135points of the path are usually known and the urve of the path may be estimated byusing preliminary knowledge. In order to build the knowledge base the Merge Pathapproah an be ombined with arti�ial intelligene methods, suh as the instanebased learning or lustering in aordane with the results desribed in [95℄.Enhaned heuristis and meta-heuristis A non-merge based olour strategy anbe extended and enhaned by reformulating the strategy in a Merge Model. A BinaryMerge Square 5 is the adjaeny matrix of a quotient graph. Consequently, if a strategyan operate on the adjaeny matrix of the original graph, then the same strategy anooperate with an merged adjaeny matrix with an intermediate Merge Square as well.It introdues a dynami reonsideration proess where previous deisions of a strategyan be revised after eah Merge Operation by exploiting the additional informationontained in the intermediate matries. The author in [97℄ showed the e�ieny ofsuh an extension.The author in [96℄ applied the strutural properties of the Merge Table Models in themeta-heuristis design. The author introdued a better granular �tness funtion thanthe traditional one for the evolutionary solvers of the olouring problem. This resultedin a smoother landsape of the objetive funtion, whih inreased the e�ieny of theoptimisation proess. Moreover the author de�ned a mutation whih fores the di�ultverties by a Merge Table Model (for whih the olouring is problemati) in advanein the merge/olour assignment.Merge AlgorithmsThe author in [94; 96�102℄ ombined various novel Merge Strategies with di�erentMerge Frameworks and analysed their performane. The algorithms were omparedwith standard benhmark algorithms on various benhmark graphs. The experimentalanalysis showed that the novel Merge Algorithms perform well in the omparison. Theygenerally outperformed the benhmark algorithms espeially in the phase transitionregion where the problems beome hard.ConlusionsThe new olouring approah presented in this thesis demonstrates that graph olouringan be e�etively modelled by quotient or power graphs. It provides a potential redu-tion in omputational ost, as well as a uniform and ompat way in whih algorithmsan be de�ned. Embedding algorithms in the framework supports both their struturaland performane omparison in a ommon way, whih an be anyway problemati.The framework itself generalises a formal olouring approah. Due to this generalisa-tion suh an embedding an algorithm an be enhaned, resulting in new algorithms.The novel problem desription results in novel information that an help us to extratand support a new sheme of the olouring proess.5Usually this extension an be applied on the other Merge Models as well.



ÖsszefoglalásJelen értekezés összefoglalja a szerz® elmúlt évekbeli munkásságát a gráf színezés te-rületén. A szerz® kifejlesztett egy általános keretrendszert gráf színezési algoritmusokszámára, ahol a hagyományos színezés speiális gráf homomor�zmusokon keresztül ke-rült de�niálásra, Zykov munkássága nyomán [161; 162℄. Ezen homomor�zmusok hasz-nosnak bizonyultak az algoritmus tervezésben (lásd Juhos et al. ([94; 96�102℄). Ezenösszefoglaló az értekezés struktúráját követi.Kvóiens és Hatvány MódszerA szerz® a gráfszínezési folyamatot kvóiens és hatványgráfok segítségével, gráf homo-mor�zmusokon sorozatával de�niálta (lásd Juhos et al. [96; 100℄). A homomor�zmusokaz azonos szín¶ súsok következetes összehúzásából vagy soportba foglalásából szár-maznak. A szerz® Kvóiens és Hatvány Módszernek nevezte el az ezen elven alapulószínezési módszereit. Ezeknek élja egy olyan homomor�zmus megtalálása amely azeredeti gráfot egy megfelel® teljes gráfba vagy azzal homomorf gráfba képezi. Az ígykapott homomor�zmus meghatároz egy színezést az eredeti gráfra. A szekveniális szí-nezési eljárások támogatása végett a tekintett homomor�zmus további homomor�zmu-sok egymásutánjaként, kompozíiójaként kerül el®állításra, megadva egy ún. közbens®homomor�zmus sorozatot. Ezen homomor�zmusok hasznos közbens® gráf struktúrákathoznak létre, amelyek vizsgálata hatékony színezési eljárásokat eredményeztek valaminta színezési folyamatba egy alternatív betekintést nyújtanak (lásd Juhos et al. [96�102℄).Merge ModellekGráf homomor�zmusok de�niálják a kapsolatot az eredeti és a kvóiens vagy hatványgráf/multigráf között. A szerz® de�niált négy mátrix m¶veletet, amelyeket Merge M¶-veleteknek, vagy röviden Merge-nek nevezett el (lásd Juhos et al. [96; 100℄). EgyMerge M¶velet az eredeti gráf szomszédsági mátrixát képezi le egy mátrixba amely egykvóiens gráf/multigráfot vagy hatvány gráf/multigráfot határoz meg, ezeket a szerz®Bináris/Integer Merge Square-nek és Bináris/Integer Merge Table-nek, vagy összefog-laló nevükön Merge Mátrixoknak nevezte el. Egymást követ® Merge M¶veletek sorozatahoz létre egy hagyományos értelemben vett színezést. A Merge Mátrixok sorai függetlensús halmazokat határoznak meg. A színosztályok, valamint a súsok önmagukbanis független súshalmazokat alkotnak. A Merge M¶veletek hagyományos értelemben136



Összefoglalás 137ezek unióját jelentik. Ezen modelljét a színezésnek a szerz® Merge Modellnek nevezteel. A modell támogatja a párhuzamos szoftver és hardver implementáiót. Egy szek-veniális színezési algoritmus amely ezen modellre épül jelent®s teljesítménybeli javulástkönyvelhet el. A szerz® ezen javulást elméletileg és tapasztalatilag is alátámasztotta(lásd Juhos et al. [99℄) valamint hatékony új színezési eljárásokat dolgozott ki ezenmodellek segítségével [94; 97�99; 101; 102℄.Merge KeretrendszerA Merge Modellek a gráfszínezést mátrix reprezentáió és speiális m¶veletek útjánde�niálják. A szerz® kidolgozott három általános keretrendszert amelyek absztrakt szí-nezési algoritmusokat határoznak meg (lásd Juhos et al. [100; 101℄). Ezen absztrakiókaz általánosításai a tradiionális színezési sémáknak. A Merge M¶veletek helyettesítika hagyományos értelemben vett színezést. A Merge Modellekben elt¶nik a különbség aszín és a sús kiválasztási stratégiák között. Elegend® egy általános sorválasztási stra-tégiát meghatározni, amely alkalmas színezett vagy színezetlent sorok kiválasztására is,ha a tradiionális színezési sémákat akarjuk követni. Azonban itt a színek sak jelzésérték¶ek, jelzik, hogy egy sor érintett volt-e már a Merge M¶veletben. Attól függ®en,hogy milyen sorrendben választjuk ki a különböz® állapotú (színezett/színezetlen) soro-kat kaphatunk két eltér® keretrendszert: vagy el®ször egy színezetlen (Unoloured) sortválasztunk, majd egy színezettet (Coloured) a Merge M¶velethez (UC Merge Keretrend-szer) vagy fordítva (CU Merge Keretrendszer). Ezen keretrendszerek általánosításai ahagyományos színezési sémának (lásd Juhos et al. [100℄). Valójában nem szükségesmegkülönböztetni a színezett és színezetlen státuszokat, egy kiválasztási stratégia vá-laszthatna tetsz®leges két sort egy Merge Mátrixból, hogy végrehajtsa rajtuk a MergeM¶veletet. Ez a megközelítés a CC Merge Keretrendszerben lett de�niálva (lásd Juhoset al. [96℄). Egy sor a Merge Mátrixban egy színosztályt azonosít, azaz független sús-halmazt. Hagyományos értelemben a CC Merge Keretrendszerben egy algoritmus kétszínosztályt/független súshalmazt választ majd ezek unióját képezi. Ezen keretrend-szerek az új színezési modellel támogatják az egységes algoritmus analízist (lásd Juhoset al. [97; 99; 101; 102℄). Mindhárom keretrendszer egy egységes szerkezetet tükröz.Az algoritmusok ezen keretrendszerekben Merge Mátrix sorok sorozatos kiválasztásátvégzik, majd végrehajtanak rajtuk egy Merge M¶veletet, mely eredményeképpen el®állegy színezés. Egyik általános keretrendszernek sins konkrét sorkiválasztási stratégiája.A keretrendszerek konkrét kiválasztási stratégiákkal alkotnak algoritmusokat.Merge StratégiákA Merge Algoritmusok minden lépésben egy Merge M¶veleteket hajtanak végre a MergeMátrix két kiválasztott során. A sorok kiválasztásához valamilyen kiválasztási straté-giára (stratégiákra) van szükség. A sorozatos Merge M¶veletek végén az záró MergeMátrix áll amelyen további Merge M¶velet nem végezhet®. A sorok kiválasztása a m¶ve-



138 Analysislet végrehajtások során fontos ez határozza meg a színezés min®ségét, azaz, hogy hányszínt használtunk fel az elért színezésben. A szerz® különböz® sorkiválasztási stratégi-ákat, Merge Stratégiákat határozott meg, amelyek segítik a hatékony sorkiválasztást,melyeket elméletileg és tapasztalati úton is elemzett (lásd Juhos et al. [94; 96�102℄).A felsorolt stratégiák Bináris Merge Modelleket feltételeznek, bár Integer Modellbelipárjuk is megadható. Az Integer Modellek az algoritmus tervezésben nyújtanak számostámogatást, mint például a visszalépés vagy a másodlagos döntéshozatal (lásd Juhoset al. [99℄).A leghosszabb Merge sorozat. Mivel a Merge Mátrix sorok színosztályokat azono-sítanak. Ennélfogva a él a sorok számának sökkentése. Ezt a leghosszabb Mergesorozattal létrehozásával érhetjük el. Ennek érdekében a szerz® bevezetett két stra-tégiát (lásd Juhos et al. [97℄). A Dot Produt Stratégia nem-zéró elemek alakulásátköveti nyomon a Merge-k során. Megkísérli azok számát minimálisan tartani. A Bár anem-zéró elemek meggátolhatják a Merge M¶veleteket, a zéró elemek segítenek támo-gatják azokat. Így a Cosine Stratégia �gyelembe veszi mindkett® alakulását a Merge-ksorán és annak megfelel®en alakítja a sor kiválasztásokat.Párhuzamos sorok. A Cosine Stratégia el®nyben részesíti a párhuzamos sorokat aMerge Mátrixokban. Ez ésszer¶ választás azért is mert a szomszédsági mátrix soraiamelyek azonos színosztályhoz tartoznak egy optimális színezésben majdnem párhuza-mosak. A Merge-k során a keletkez® kvóiens gráfokhoz tartozó Merge Square Mátri-xokban ez a párhuzamos tulajdonság egyre karakteresebbé válik. A Merge Square-ekésszer¶ módosításai Karger et al. [103℄ munkássága nyomán további támogatást nyújta Cosine stratégia számára. Felhasználva ezt az szerz® de�niálta a Zykov-fa és Lovász-theta stratégiát (lásd Juhos et. al. [94; 102℄)Szín hasonlóság Valójában a Zykov-fa és Lovász-theta stratégia a súsok szín ha-sonlóságának beslésén alapszik. A szomszédsági mátrix egy szín különböz®ségi reláióthatároz meg, mivel a súsok amelyek (él-)reláióban vannak nem színezhet®k azono-san. Ennek ellenkez®je a színezési reláió. Egy színezés megadható egy szín hasonlóságireláió meghatározásával, itt sak az azonos súsok állnak reláióban. A reláió egy
{0, 1}−mátrixszal kifejezhet®, ez a színezési mátrix. Ez megadja, hogy két sús azo-nos szín¶ vagy különböz®. Bár az optimális színezések mátrixa is megadható eképpen,ezek alkotják a feladat megoldását, tehát ezekre nem támaszkodhatunk. Noha ezeknem ismertek, az átlaguk közelíthet® egy szemi-de�nit program megoldásával amely aLovász-theta-t is szolgáltatja eredményül. Így egy közelített szín hasonlósági reláiótkapunk. Amely egy valós érték¶ mátrixszal írható le, melyben a legnagyobb és legki-sebb elemek fontos informáiót hordoznak. A szerz® ezen informáiókat valamint Zykovmunkásságát felhasználva (lásd [161; 162℄) elkészítette Zykov-fa és Lovász-theta stra-tégiát. Ahol egy kvóiens gráf súsai összekötend®k vagy Merge-lend®k a kisi illetvenagy közelített hasonlósági értékeknek megfelel®en. Az összekötési (él hozzáadási) ésMerge M¶veletek során a hasonlóság egyre karakterisztikusabbá válik, támogatva ezzelaz egyre értékesebb sor kiválasztásokat.Norma minimalizálás az eredményben. A Dot Produt Stratégia azt a két sort vá-lasztja ki Merge-elésre, amelyeknek maximális a skaláris szorzatuk. Ez az eredmény



Összefoglalás 139Merge Mátrixban az elemenkénti normák minimalizálását eredményezi. A záró MergeMátrix, ami egy optimális megoldáshoz tartozik, rendelkezik a legkisebb elemenkéntimátrixnormával az összes lehetséges záró mátrix közül. Emiatt az elemenkénti normaminimalizálása ésszer¶ stratégia. Továbbá egy optimális zárómátrixnál a származtatottmátrixnormák is minimálisak. Ez a meg�gyelés vezetett a szerz® legnagyobb normasökkentés stratégiájához (lásd Juhos et al. [101℄). Speiális esetben ez a spektrál-norma minimalizálási stratégiához vezet, amely a legkisebb a származtatott normákközött és ennélfogva jó karakterizáiója egy mátrixnak. A szerz® a spektrálnorma mi-nimalizálási stratégiát elemezte, amely hatékonynak bizonyult az elemzések során. Aspektrálnorma próba Merge-ket kell, hogy végezzen. Az eredmény mátrix normája ha-tározza meg a kiválasztási stratégiát. Ez számításigényes feladat. Merikoski és Kumarmegadott több hatékony spektrálnorma közelítési formulát. (lásd [123℄). Felhasználvaezen formulákat a szerz® adaptálta a Spektrálnorma stratégiát és közelített spektrál-norma stratégiákat vezetett be (lásd Juhos et al. [101℄). A közelítéssel lehet®ség nyílika választási stratégia közvetlen meghatározására az aktuális Merge Mátrixból próbaMerge-ek nélkül. Továbbá a közelít® formula rámutat a Dot Produt Stratégiával valóhasonlóságra.Mátrix tulajdonságok � Merge Útvonal A Merge sorozatok nyomán a mátrixoktulajdonságai követhet®k. A kívánt mátrix tulajdonságokból alkossunk egy tulajdon-ságvektort. Ezek a vektorok alkothatják az alapját a kiválasztási stratégiáknak. Azegymást követ® tulajdonságvektorok egy útvonalat, a Merge útvonalat, határoznakmeg (lásd Juhos et al. [101℄). Ez az útvonal elemei összefüggésben vannak a színezéslépéseivel az útvonal vége pedig a színezés jóságával. Az ideális útvonal amely opti-mális színezéshez vezethet nem ismert, mert a feladat egy ilyen útvonal megtalálása.Az optimális útvonal kezd® és a végpontjai általában ismertek, a szerz® bevezetett egyáltalános stratégiát amely az optimális Merge Útvonal közelítésén alapszik (lásd Juhoset al. [101℄) felhasználva egy el®zetes tudást. Az el®zetes tudás megszerzése a szerz® aMerge Útvonal konepiót intelligens tanulási és klaszterezési eljárásokkal ötvözte (lásdJuhos et al. [95℄).Kiterjesztett heurisztikák és meta-heurisztikák A szerz® a nem Merge alapú színezésistratégiák egy Merge kiterjesztését határozta meg, az illet® stratégiák egy megfelel®Merge Modellbe való beágyazásával (lásd Juhos et al. [97℄). A kiterjesztet straté-giák teljesítményének elméleti és tapasztalati vizsgálata javulást mutatott az eredetihezképest. A kiterjesztés egyik a Bináris Merge Square-ek példáján egyszer¶en nyomonkövethet®, habár általában a kiterjesztés a többi Merge Modellre is érvényes. A szom-szédsági mátrixa egy kvóiens gráfnak. Így egy stratégia amely az eredeti gráf szom-szédsági mátrixán m¶ködik, az egy Merge Square Modellel képes együttm¶ködni. Ezlehet®séget biztosít egy dinamikus felülvizsgálati eljárásra amely során minden MergeM¶velet után, a stratégia képes el®z® döntéseit megváltoztatni, azon új informáiókalapján amely a keletkez® Merge Mátrixban elérhet®.A Merge Modellek strukturális jellemz®i támogatást nyújtanak meta-heurisztikáktervezéséhez is (lásd Juhos et al. [96℄). A szerz® gráfszínezési evolúiós algoritmusokszámára de�niált a Merge Table modellek segítségével egy �nomított �tnesz függvényt



140 Analysisa hagyományosan alkalmazott �tnesz javításaként. Melynek eredményeként egy simábboptimalizálási felületet kapunk, amely növeli az optimalizálás hatékonyságát. Továbbáegy mutáió operátort de�niált amely a színezésben a Merge Modellek alapján nehezenszínezhet® súsokat el®reveszi a színezési folyamatban.Merge AlgoritmusokA szerz® kombinálta a Merge Stratégiáit a különböz® Merge Keretrendszereivel vala-mint elemezte ezek teljesítményét (lásd Juhos et al. [94; 96�102℄). Az így keletke-zett algoritmusok összehasonlításra kerültek standard 'benhmark' eljárásokkal számos'benhmark' gráfon. A kísérleti eredmények igazolták a szerz® algoritmusainak haté-konyságát, melyek általában felülmúlták a 'benhmark' eljárásokat különösképpen azún. 'phase transition' területen ahol az igazán nehéz problémák találhatók.KonklúzióA szerz® új színezési megközelítése a gráfszínezés hatékony modelljének bizonyult. Je-lent®s sökkentést hozhat az algoritmusok számítási komplexitásában. Továbbá egy-séges és tömör leírását biztosítja a színezési eljárásoknak, biztosítva ezzel az egységesszerkezetben vett strukturális elemzését. Az algoritmusok implementálása ezen közösmódon lehet®séget biztosít az egységes teljesítmény mérésre. Az új színezési keretrend-szer általánosítja az eddig színezési sémákat. Ezen általánosítás következményekéntegy algoritmus beágyazása a modellbe annak kib®vítése mellett teljesítmény javulássalis járhat. Ezen új megközelítés új informáió kinyerési tehnikákat is támogat amely azalgoritmus tervezésben segíthet valamint új irányokat adhat a probléma elemzéséhez.
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