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“In theory, there is no difference
between theory and practice.
But, in practice, there is.”

Jan L.A. van de Snepscheut

Introduction

Bioinformatics is a marriage of biology, informatics and mathematics and it employs computational

tools and methods for managing, analysing and manipulating sets of biological data [1; 2]. The main

tasks of bioinformatics are the gathering, organization and analyzing of protein sequence databases

using computational methods. When sequencing a new protein, perhaps its 3-Dimensional structure

is one of the most important questions, since it provides a much greater insight into the function

of the protein than its sequence version. Three mainstream themes have evolved to determine the

3-Dimensional structure of a protein:

(i) The direct determination of the 3D structures of a protein molecule via chemical and biological

experiments. Unfortunately, these experiments involve costly, time consuming and difficult methods.

(ii) A computational approximation of the 3D structures based on the sequence of the protein.

Since the problem is NP-hard, several heuristic algorithms have been developed.

(iii) A newly sequenced protein is compared to well-known databases via a proximity function1.

Then their function and 3D structure can be either inferred from the most similar, well-known protein

sequences, or they can be classified into a known protein group by machine learning approaches like

Artificial Neural Networks or Support Vector Machines.

The topic of the dissertation lies in the third area. This booklet provides a summary of the Author’s

thesis points.

Protein Benchmark Database

A protein molecule is a linear concatenation of amino acid molecules and thus it can be represented

by a string over a certain alphabet where every letters in the alphabet correspond to different amino

acids. Let us call it amino acid alphabet. The total number of the amino acids – and thus the size of

the amino acid alphabet – is 20. An example for the first part of a protein sequence is the following

string: “rintvrgpit iseagftlth ehicgssagf lrawpeffgs ...”2. We should mention here that

a string representation of a protein molecule is called a protein sequence, but a protein sequence is

not a series of proteins. Protein sequences are distinguished from general strings in the following four

specific ways: (i) the size of the alphabet is 20, (ii) their length tends to be several tens to several

thousands, (iii) the protein sequence usually contains long repeated subsequences and (iv) each protein

1A proximity function is a positive-valued bivariate function over the Descartes product of a set of object. When
a proximity measure gives a higher score for more “similar” objects and a lower one for “different” objects, then it is
called a similarity function while if a proximity measure gives a lower score for “less similar” objects, then it is called a
distance function.

2Note that a protein molecule can be also represented by either a nucleotide sequence that codes the given protein
in the DNA or by the 3 dimensional Euclidean coordinates of the protein molecule.
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sequence codes real protein molecules, but not every string over the amino acid alphabet codes real

protein molecules. In this dissertation the sequences we analyzed relate to real proteins.

Proteins can be classified based on their similarity or evolutionary relationship. For example the

oxygen atom carrying proteins from different species can be classified to the same, the hemoglobin,

class. These proteins can differ slightly in various species, but their 3D structure and function are

roughly the same. Let us label protein classes by natural numbers 1, 2, . . . , N , where N denotes

the number of the classes and let pair (s, y) stand for a protein sequence s and its class label y

(1 ≤ y ≤ N).

The aim of the protein classification is to build a function F such that F (s) = y; that is,

F classifies each sequence s to its own class y. Machine learning techniques are used to adjust

(to learn) the parameters of the function F which minimizes the number of misclassified objects3

(|{s | F (s) 6= y}|)[3]. For the experiments in the dissertation we selected a class that is called

positive class and its elements are called positive elements while the complementer class within the

database is called negative class and its elements are called negative elements. We mention that the

reason for this step is that most classifiers are defined on two-class classification problems [3]. To

achieve the learning of the parameters of the function F the positive and negative sets of the protein

sequences are divided into two distinct, non-empty classes called train and test set, respectively, thus

we get positive train, positive test, negative train and negative test sets and such a division of the

protein sequences in the database is called a classification task. Then the parameters of the function

F are learned using the train set, while its performance is evaluated on the test set. In the studies

for the performance evaluation of a classifiers we used the ROC analysis [4]. A Detailed description

of about this technique is given in the dissertation. Here we note that the range of the ROC analysis

is [0, 1] and a higher value means a better performance.

Most of the classifier algorithms need data represented in fixed length vector form. In our studies

the sequences were represented by the so-called Empirical Feature Map (EFM) method [5]; that is, a

sequence s is represented by a feature vector

Fs = [fx1 , fx2 , . . . , fxn ]. (1)

Here n is the total number of proteins in the training set and fxi is a proximity score between sequence

x and the ith sequence in the training set obtained by an arbitrary fixed proximity measure. We chose

this method because this provides a markedly better sequence representation than the others [6].

Proteins can usually be categorized hierarchically in a similarly way to the biological classification

of organism (kingdom, phylum, class, order, family, genus, species). Such categorization can be rep-

resented by a H depth, rooted tree, where H represents the number of the hierarchy, the root of the

tree represents the whole database and each letter stands for a protein sequence. Moreover an inner

node of the tree denotes the set of the letters (protein sequences) which are derived from the given

inner node. An inner node (and the corresponding set of letters) is called a category. Categories in

the same layer in the tree give a partition of the dataset. A tree representation of a hierarchically

categorized database can be seen in Fig. 1.A. We should add that this tree is balanced4 because in

the database each element belongs to a particular category in each layer, i.e. it is not allowed, for

example, a certain species do not belong to any genus or family and so on.

3We should mention that other sophisticated methods are currently used.
4Here by a balanced tree we mean that every path from the root to letters has the same length.
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Let us fix an arbitrary ordering of the nodes in each layer of the tree respectively and index

them by natural numbers 1, . . . , Np, where Np denotes the number of the nodes in the pth layer

(1 ≤ p ≤ H). We note that N0 is the number of the elements in the database, NH = 1 because

the layer H consist of the root, while NH ≤ NH−1 ≤ · · · ≤ N1 ≤ N0. Let the pair (s, y) denote

a protein sequence s and its class label vector y such that s is a certain letter of the tree and the

vector y ∈ NH+1 codes the path from the root node to the letter s in the tree such that the ith

component yi(≤ Ni) of the y denotes the ith index of the node on the path in the ith layer in the

tree. Let us fix an arbitrary layer i in the tree and let us mark a category j within the layer i. Then

let the set P = {(s, y) | yi = j} be the positive class while let the set N = {(s, y) | yi 6= j} be the

negative class. Then one can make classification task using these positive and negative sets in the

common manner (cross-validation, One-Leave-Out) [3]. Note that the elements in the databases are

not classified into positive and negative classes, we generated different classification tasks varying the

chosen category j(< Ni) within the layer i and a database element may belong to the positive class

in one classification task and may belong to the negative class in another classification task.

Most genomes contain novel variants of the known proteins i.e., in a known protein family a newly

sequenced genome is expected to be different from rather than similar to that of its known variants.

So the property relevant to biologists is how well a classifier will generalize to a novel subtype of

the already known groups. When constructing the classification task the elements of the positive

Figure 1: The application of a supervised cross-validation scheme to an 5-depth classification hierarchy.
(A) The positive class is denoted by A (j = 1) at the level L(2) (i = 2). Within this category at the
level L(1) a subcategory (k = 1) was chosen as a positive test set and the remainder were chosen as
a train set, thus the train and the test sets consist of disjoint subcategories. During the classification
the classifier has to recognize a new subcategory within a known category. (B) For the negative class
categories selected based on their distance from the category A. The negative sets (a), (b) and (c)
are contains further and further categories, where the distance is defined on the tree with the steps
of the shortest path between categories.
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class (a certain category) are rated to train and test sets randomly, then the train and test sets

probably consist of the same categories. As a consequence, the results of the classification evaluation

do not provide information on how correctly the classifier classifies elements from a distantly related

new subcategory within the known positive category. The Author’s result is a general framework for

construction classification tasks within hierarchically defined databases in the following way. Let the

positive class P = {(s, y) | yi = j} be the elements of jth category within the ith layer and let

N = {(s, y) | yi 6= j} be the negative class both defined as before. Then let the positive test set

be the elements of kth subcategory within the category j; that is, the node k is a child of the node

j while let the positive train set be the elements of remaining subcategories within the category j.

The negative class usually consists of several categories and let each of them be rated by a fair

coin tossing for the train or test set. This method is termed supervised cross-validation since the

hierarchical categorization of the database elements as an information is exploited to construct the

classification tasks [7]. As a result it gives lower, and our opinion more reliable estimation on how

a classification technique will generalize to novel, distantly related subtypes within a known protein

classes. The other well-known techniques (random cross-validation, One-Leave-Out [3]) may grossly

overestimate the predictive power of a classifier on new genomes.

The Author examined how the classification results depend on the filtering of the categories from

the negative set. It is an important step because in a typical binary classification task the positive

sets consist of several tens of to several hundred of sequence objects while the negative set is simply

defined as “the rest of the database” that gives large and imbalanced classification tasks and it slows

down the preprocessing and learning methods [8]. Using the hierarchical classification of the database

let us define the negative set Nk = {(s, y) | yi 6= j, yk = φ(i, j, k)}, where k > i and the function

φ(i, j, k) returns the index of the category on the layer k which contains the category j on the layer

i. Thus the parameter k controls from the positive class how distant elements belong to the negative

class, where the distance between the database elements is defined by the length of the shortest

path between them in the tree. We should add that in the case of k = H the negative class is the

complementer class of the positive class within the whole database, and in the case k = i the negative

class would be the empty set. We also mention that the larger the k is, the bigger the negative set we

get. The filtering method described above is termed categorical filtering and it is shown in Fig 1.B.

The Author compared the categorical filtering with two other filtering strategies, namely: (i) a

random subsampling of the negative set (10%, 20% of the whole negative set) (ii) a selection of the

nearest neighbours of the positive group based on a proximity score [8]. Based on our experiments we

propose the method (i) for negative class filtering since the classification performances remain close

to those of the original dataset, and the number of structural categories is higher than in the case

of (ii) and the categorical filtering. Method (ii) sharply reduces the number of structural categories

presented in the negative set and as a result, the negative sets will be too specific i.e. they may be

less representative with respect to the entire database. Although this result may be considered as

a negative result, in our opinion we should mention it because it makes the characterization of the

hierarchically organized protein datasets more complete from classification point of view. Hence when

constructing the positive train set, we suggest using the supervised cross-validation but to filter the

negative set we suggest using the random subsampling method [7].

We created a protein classification database, called Protein Benchmark Database, on which the

machine learning techniques and the protein sequence proximity measures could be compared [9]. The
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Table 1: Protein classification results.
1NN RF SVM ANN LogReg

BLAST 0.7577 0.6965 0.9047 0.7988 0.8715
SW 0.8154 0.8230 0.9419 0.8875 0.9063
NW 0.8252 0.8030 0.9376 0.8834 0.9175
LAK 0.7343 0.8344 0.9396 0.9022 0.8766
PRIDE 0.8644 0.8105 0.9361 0.9073 0.9029
DALI 0.9892 0.9941 0.9946 0.9897 0.9636
The protein sequences and classification tasks we used were the “SCOP40” entry taken from the
Benchmark database. The classification performance was evaluated via the ROC analysis. For the
classifier algorithms, the values of the parameters we used can be found in the dissertation. In these
classification tasks the protein sequences were classified based on their 3D structure.

databases consist of 40000 protein sequences that were selected from several public protein databases

3PGK [10], CATH [11], COG [12], SCOP [13]) and we generated around 9500 classification tasks using

the supervised cross-validation techniques. The Benchmark collection also contains the best results

using several popular classification methods with protein sequence proximity measures, whose results

can be used as a baseline for further comparison. Moreover, the database contains a short description

of the methods used along with the parameter settings applied. For the classification part we applied

the following classifiers: Artificial Neural Networks (ANNs) [14], Support Vector Machines (SVMs)

[15], Random Forest (RF) [16] One Nearest Neighbour (1NN) [3] and Logistic Regression (LogReg)

[17]. The sequences were represented by the EFM (1) method where the underlying proximity measure

that we used were the following proximity methods: the BLAST [18], the Smith-Waterman (SW) [19],

the Needleman-Wunsch (NW) [20], the Local Alignment Kernel (LAK) [21], the PRIDE [22] and the

DALI [23], respectively. Table 1 shows the test results on a small part of the Benchmark database.

Each rows of the table corresponds to a classifier while each column corresponds to a proximity

measure used in the EFM during the sequence representation. The performance of the classification

were measured by ROC analysis [4].

The Benchmark database is freely available at: http://hydra.icgeb.trieste.it/benchmark.

Likelihood-ratio approximation for protein classification

A newly determined sequence can be classified to a well-known protein class using sequence proximity

methods like SW [19], and functional and structural annotation of the new sequence can be derived

from the properties of the closest known protein class. Since proximity algorithms play a key role here,

more accurate proximity algorithms have been developed like those of BLAST[18], PSI-BLAST [24]

and FASTA[25].

Let S denote the set of the protein sequences, let T ⊂ S be the well know protein sequences

within S, P denote a category5 of protein sequences and let s : S×S → R+ be a similarity function.

Let us define how close a sequence x ∈ S is to the class P by the maximum similarity score between

5We should mention that the category of protein sequences denotes a set of proteins that have a common function
and 3D structure.
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the sequence x and the members of P , similarly to the nearest neighbour technique [3]. Formally:

POS(x, P ) = max
z∈P

{s(x, z)}. (2)

Then the sequence x can be place to the class P when this score hits a predefined threshold, otherwise

it is denied. Note that in the practice this threshold is usually chosen using either priori information

about the class P or some heuristic algorithm.

Let us consider the following scoring function:

LRA(x, P, N) =

{
POS(x, P )

POS(x,N)

}
,

where the set N is the complementer set of the set P within the set T . This method was developed

for computer vision applications [26] but using a comprehensive evaluation of the method on our

Benchmark dataset we were the first to show this technique can be successfully applied in the context

of the classification of protein sequences and it significantly improves the results against the POS

method as well as we showed that this technique is equivalent to the Likelihood ratio technique [3]

and both give the same results [27]. Our experimental results can be found in table 2.

Table 2: Comparison of the LRA and POS methods using BLAST and SW similarity methods and
evaluated via ROC analysis.

SCOP 3PGK COG
SW POS 0.850 0.791 n.a

LRA 0.932 0.944 n.a.
BLAST POS 0.825 0.792 0.987

LRA 0.892 0.941 0.999

A SCOP, 3PGK and COG stand for datasets of protein sequences. The SCOP dataset was taken from [28], while the
3PGK and COG datasets were taken from our Benchmark database. The parameter values we used can be found in
the dissertation.

Note that instead of POS(, ., ) any other method can be used which gives an estimate of how

close a sequence is to a certain protein class. Unfortunately, in practice some methods cannot be used

on every protein classes, for instance a profile-HMM [29] can be applied instead of POS(., P ) but

in practice a profile-HMM may not be calibrated for negative classes since it is usually a mixture of

more than one protein category.

Compression-based Distance Measures (CBD) for protein se-
quence classification

The Information Distance is a universal metric for strings and defined by the following formula:

E(x, y) =
max{K(x | y), K(y | x)}
max{K(x | λ), K(y | λ)} . (3)

Here λ denotes the empty string and K(a | b) denotes the conditional Kolmogorov complexitiy of a

with respect to string b; that is, the length of the shortest binary program that outputs a with the
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parameter b. Due to the fact that it is non-computable in the Turing sense, it has been approximated

by text file compressors with the following formula [30]:

CBD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} , (4)

where C(z) denotes the length of the compressed string z compressed by a particular compressor like

gzip, arj and xy denotes the concatenation of strings x and y.

The interest in compression-based methods was fostered by Ming Li et al.’s paper [31]. Then var-

ious practical applications and study appeared: language classification [32; 33], hierarchical clustering

[34; 35], music classification [36], protein sequence and structure classification [37–39], SVM kernel

for string classification [40] and clustering fetal heart rate tracings [41].

The Author examined the behaviour of CBDs on protein classification from several aspects and

the results can be summarized in three point.

(1) The Author experimentally investigated the CBD measures in the EFM (1) in order to see

how well they perform in the protein classification. In the experiments for the compressor we chose

a Huffman-based compressor [42], an LZW (Lempel-Ziv-Welch) compressor [43], a PPM (Prediction

by Partial Matching) compressor [44], and the GenCompress method [45] (which was designed di-

rectly for genome sequence compression), respectively. The classification results have been evaluated

with ROC analysis and test results are shown in Table 3, which showed us the CBDs perform less

well than substructure-based comparisons like the outstanding Smith-Waterman algorithm in protein

similarity. This is in fact expected, since Smith-Waterman calculations include a substantial amount

of biological knowledge encoded in the amino acid substitution matrix while CBDs do not use any

apriori information. [37; 46].

(2) Here, let us measure the efficiency of a sequence proximity with the ROC analysis by regarding

a proximity value between two sequence as a score by a binary classifier for putting them into the

same class. The Author examined the efficiency of the CBDs as a function of the size of the alphabet.

The alphabet extension was obtained by representing each bi-gram and tri-gram with a new character

[47] yielding an alphabet with number of elements n2 and n3, respectively, where n is the number of

a particular alphabet. The alphabet reduction was carried out by grouping the amino acids based on

their chemical properties [48]. We should add that a compressor applied to reduced alphabet sequences

can be viewed as a lossy compressor. The Author designed and evaluated the experiments that did

not display, for amino acids or nucleotide sequences, any general noticeable relationship between the

performance and the size of the alphabet [46].

Table 3: Protein classification results using CBD measures.
Methods1 1NN SVM RF LogReg ANN avg

AH .711 .877 .824 .751 .800 .793
GC .644 .775 .691 .753 .769 .726
LZW .751 .856 .821 .718 .794 .788
PPM .798 .851 .800 .813 .583 .823
SW2 .815 .942 .823 .906 .888 .875

The protein sequences and classification tasks were the ’SCOP40’ entry from our Benchmark protein database. The
classification results were evaluated via a ROC analysis. The parameter settings that we used can be found in the
dissertation. 1The compressor method in the CDB. 2The classification results obtained using SW are presented for
comparison.
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(3) We were interested in finding out if an application specific method like BLAST could im-

prove the performance of the applied independent compression-based measures. Although numerous

combination schemes are available in the literature [49], here the process of combining of proximity

measures was carried out using the multiplication rule:

F (x, y) =

(
1− BLAST (x, y)

BLAST (x, x)

)
· CBD(x, y), (5)

where BLAST (x, y) is a BLAST score computed between a query x and a subject y and BLAST (x, x)

is the BLAST score of the query compared with itself. The term in parentheses is used to transform

the BLAST score into a normalized distance measure whose value lies between zero and one. Eq.(5) is

a straightforward method for combining CBDs with more specialized methods. We chose the BLAST

algorithm since it is the most popular method in the literature and in the practice for protein sequence

comparison while for the compressor in the CBD we used the compressors PPM and LZW, respec-

tively. The performance of this combined measure (LZW-BLAST, PPMZ-BLAST) was in fact close

to and, in some cases, even slightly superior to that of the SW algorithm and two HMM-based model,

namely the Fisher kernel[50], SAM[51]. We consider this result encouraging since Eq. (5) does not

contain any tuned parameter [37].

Table 4: Preliminary results on protein sequence classification using compression-based and combined
proximity measuresa.
SW BLAST LZW PPMZ LZW + BLAST PPMZ + BLAST SVM-Fishera SAMb

0.901 0.884 0.869 0.787 0.907 0.884 0.686 0.657
The SVM method was used for the classification while an ROC analysis was used to evaluate its performance. aThe
sequence database was taken from [28]. bSVM-Fisher method [50], cSAM profile-HMM-based classifier[51].

Equivalence Learning for protein classification

Sequence groups are vastly different in terms of most their parameters like group size, degree of

within-group similarity and separation from other groups. A method that performs well on one group

may perform worse on another and vice versa. The learning of a similarity in a supervised manner may

provide a general framework for adapting a similarity function to a specific sequence class.

For the Distance Metric Learning (DML) the first supervised method was published in [52], which

method involves diagonalization and eigen decomposition methods. The seminal papers [53–57] pro-

pose more sophisticated methods for DML. A review of this topic can be found in the dissertation.

In the field of bioinformatics the publication [58; 59] provides methods for predicting interactions be-

tween genes. To optimize the substitution matrix of sequence alignment methods for specific sequence

groups the publications [60; 61] give an iterative and a convex optimization methods, respectively.

But to the best of the Author’s knowledge his own papers [62; 63] are the first for learning of similarity

over protein sequences.

The Author’s method uses a binary classifier and pairs of equivalent sequences (belonging to

the same class) as positive samples and non-equivalent sequences (belonging to different classes)

as negative training samples. The evaluated comprehensive experiments tell us this method provides

better results in protein sequence classification. Moreover the Author proved that with some conditions
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equivalence non-equivalence

Figure 2: Principle of equivalence learning. Equivalence learning is a two-class classification problem
defined on object pairs. In the figure the objects are represented by their class symbol 4, ◦ and �
and object pairs are grouped based on the member of a pair belongs to the same class (equivalent)
or not (non-equivalent).

Table 5: Summary of the vector composition methods we applied.
Name Formula
Sum C+(u, v) = u + v
Product C•(u, v) = u · v
Quadratic CQ(u, v) = (u− v)2

Hellinger CH(u, v) = (
√

u−√v)2

Dombi CD(u, v) = u · v + (1− u) · (1− v)
Here for ease of notation, the operators were defined on vectors in a coordinate-wise manner, i.e. for
any vector u, v ∈ Rn, (u · v)i = uivi, (

√
v)i =

√
vi and (vn)i = (vi)

n.

the resultant learned similarity function gives a metric or kernel function6. The metrics and kernel

functions can be viewed as a certain distance and similarity functions which have certain additional

mathematical properties that can be exploited in algorithms providing further possibilities. Now we

will present our method.

Since in protein classification the aim is to classify a protein s into its unique class using an

automatic algorithm F ; that is, F (s) = y, where y stands for the class label, then it naturally defines

the following equivalence relation over the objects:

δ(s, t) =

{
1 F (s) = F (t) i.e. s and t belong to the same class,

0 otherwise,

which is reflexive, symmetric and transitive. We called the learning of this relation equivalence learning

(EL) and its principle is shown in Fig. 2.

Since most of the machine learning techniques act on numerical vectors, here a key issue is to decide

how we should represent a protein sequence pair with a numerical vector. Let Pφ
C : S × S → Rn

be a function that maps sequence pairs to the n-dimensional vector space in the following way:

Pφ
C(s, t) = C(φ(s), φ(t)), where S denotes the set of sequences, the function φ : S → Rn maps

any sequence to an n-dimensional real vector, C : Rn × Rn → Rn is a bivariate operator called

projection operator. Table 5 summarizes the methods which were used in our experiments. Then

the equivalence learning task can be reduced to the learning of the two-class classification problem

6The kernel function is a symmetric, positive semi-definite function which can be regarded as a generalization of
the inner (scalar) product.
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EL(s, t) = F (PC
φ (s, t)) = y, where y = {1, 0} denotes whether s and t belong to the same class or

not, formally: y = δ(s, t). In the following we will treat EL as a similarity function and the learning of

EL is viewed as learning of a similarity function. The parameters of the method EL are a vectorization

method φ, a composition method C and a binary classifier F along with their parameters.

Let us consider f(z) = 〈w, z〉+b as a decision hyperplane between two classes in the n-dimensional

real-valued vector space, where z is an n-dimensional vector, w is the normal vector of the decision

plane, b is a constant and 〈x, y〉 =
∑

i xiyi is the scalar product over the n-dimensional vector

space. The SVM approach provides a decision boundary f between two classes which maximizes the

distance between the plane and the nearest object between the two classes [64]. Here, without loss of

the generality let us assume that the two class are linearly separable in the vector space. The decision

plane can be written in the following form

f(z) =
∑

i

αi〈z, xi〉+ b, (6)

where xi is the so-called support vectors and αi is the corresponding so-called Lagrangian multiplier.

The Author showed that replacing the equation (6) with one of the following function

SV KP φ
C•

(s, t) =
∑

i
αi exp(σ〈Pφ

C•(s, t), xi〉), (7)

SV KP φ
C+

(s, t) =
∑

i
αi exp(σ〈Pφ

C+
(s, t), xi〉), (8)

SV KP φ
CD

(s, t) =
∑

i
αi exp(σ〈Pφ

CD
(s, t), xi〉), (9)

SV KP φ
CQ

(s, t) =
∑

i
αi exp(−σ〈Pφ

CQ
(s, t), xi〉), (10)

SV KP φ
CH

(s, t) =
∑

i
αi exp(−σ〈Pφ

CH
(s, t), xi〉), (11)

where σ is a real valued positive parameter, and the learning with One-Class SVM and non-negative

Least Squares technique gives kernel functions. The SVK functions can be considered as an learned

kernel functions over the protein sequences.

The results in the Table 6 tells that better protein classification results can be obtained using

our EL technique. The classification task have been taken from our Benchmark database and the

parameters we used can be found in the dissertation. Further investigation was made to study the

behavior of the EL from different aspects and the results can be found in the dissertation.

Table 6: Protein classification resultsa with EL method and several classification technique and se-
quence comparison methods.
Methodsb 1NN SVM RF ANN LogReg avg
BLAST 0.863 0.953 0.852 0.958 0.953 0.921
SW 0.861 0.953 0.866 0.955 0.948 0.916
LAK 0.860 0.955 0.876 0.956 0.959 0.922
ELc 0.964 0.966 0.948 0.963 0.927 0.953
In each column the largest value is underlined. aFor the evaluation of the classification an ROC analysis
was performed. b Columns show classification results as a function of sequence comparison method
with various classification method while rows shows it as a function of classification methods with
various comparison methods. c For the EL method the classifier FR, for the composition the CD and
for the sequence vectorization φ the EFM (1) were used.
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Kalman filter for DNA chips

The content of the last chapter of the dissertation differs from the previous chapters. It describes

DNA chips (a.k.a. a microarray) that contain gene expression data obtained from healthy and/or

diseased tissues [65]. These data items are arranged in a matrix form whose columns represent tissues

and its rows represent genes and a matrix cell shows how many proteins were expressed form a gene

in a certain tissue. Here the task is to identify the smallest set of genes (rows) that best separates

the class of tissues (columns); that is, we need to identify those genes that determine the absence

or presence of a particular disease. Such set of genes called biomarker and can help to apply more

accurate treatment and diagnoses for a patient.

Gene expression measurements capture a large amount of expression variance. A large number

of error sources also corrupt the gene expression data, even though normalization procedures are

meant to reduce such influences [66]. Here we describe the Kalman Filter (KF) method as a noise-

reduction step for DNA chip data as well as we present a new automatic parameter tuning technique

which significantly improves the performance of the KF approach on various type of DNA microarray

(affymetrix, cDNA, oligonucleotid). With the resulted filtered dataset better classification result can

be obtained even with smaller biomarker. The advantage of the KF against the PCA filter [67] – in

addition it helps to get better classification results – it keeps the data in the original space, hence the

biological interpretation of the features (genes) remains while this is not true for PCA.

The setting of the parameters has a key role in the successful application of the KF. The Author

has been participated in the developing of an automatic parameter setting method for the KF. Here

we will present it. Due to the lack of the space here, we will omit the presentation of the KF but

it can be found in the dissertation and in the publication [68]. Let us denote the two parameters of

the KF with Q and R as it is denoted in the dissertation as well. Both of them are a matrix, the

parameter Q and R can be interpreted as an modeling error and measurement noise, respectively. Our

proposed parameter setting is the following. Let us define Q = Q + qI and R = R + rI, where Q

is the between class covariance matrix while R is the within class covariance matrix of the data. The

Table 7: Classification results on the original and on the Kalman Filtered datasets using several
classification methods.
Database SVM ANN 1NN RF

Original PCAa KF Original KF Original KF Original KF
ALL-AML 0.99 0.99 0.99 0.97 0.99 0.73 1.00 0.92 0.95
Breast Cancer 0.88 0.81 0.70 0.67 0.74 0.23 0.68 0.64 0.68
Lung Cancer 1.00 0.99 0.99 1.00 0.99 0.59 0.99 0.99 0.99
MLL 1.00 1.00 1.00 1.00 1.00 0.87 1.00 0.92 0.98
Leukeamia 0.97 0.96 0.98 0.90 0.98 0.60 0.88 0.94 0.96
SRBCT 0.99 0.99 1.00 0.99 1.00 0.66 1.00 0.99 1.00
Tumours 0.95 0.91 0.94 0.90 0.94 0.72 0.92 0.84 0.87
For the evaluation of the classification performance an ROC analysis was carried out. Each row
corresponds to a dataset, while each column corresponds to a classification method. We should
mention that it seems the classifier SVM provides lower result on the Kalman filtered data than with
the original data, but further analyses on gene selection presented in the dissertation tell us better
biomarkers can be obtained with SVM on the Kalman filtered data than with the original data. aPCA
noise filter also was evaluated with SVM classification.

11



two additive term is a regularization parameter to avoid the over-fitting. Our tests led us to conclude

that in the case of single channel raw intensity array data (i.e. Affymetrix) q = Q11 and r = R11 are

good choices for a reasonably good performance while in the case of expression log-ratio data (usually

coming from dual channel cDNA chips) or very sparse expression matrices, these parameters yield

acceptable results when we choose r = tr(R) and q = tr(Q). Here A11 refers to the first element of

the first row in the matrix A, tr(A) denotes the trace of the matrix A while I stands for the identity

matrix.

We applied Kalman filtering on seven publicly available cancer expression datasets, and tested

the most popular classification methods on the original and on the Kalman filtered datasets. Test

results are shown in Table 7, which show that the KF approach generally improves the classification

performance. The databases and algorithm along with their parameter settings that we applied can be

found in the dissertation. We have also shown that the number of Kalman filtered features necessary

for a good discrimination of tumor types is smaller than the size of the raw feature set required for

a similar performance. Moreover, we used three state-of-the-art graphical representation schemes are

also employed in the study, to inspect whether the tumor subclasses are also visually detectable.

Conclusions

The chief topic of this thesis is the application of machine learning techniques to protein and disease

state classification. As a brief summary of our conclusions we could say: if more useful biological

knowledge can be included in the model, better results can be obtained. Now we will summarize our

findings on this point of view.

The first part of the thesis describes our results for protein classification using machine learning

techniques. In general, it seems that the classification results do not critically depend on the classifier

method but strongly depend on how a sequence is represented. Here biological knowledge is included

in the proximity measure that is applied in the so-called Empirical Feature Mapping technique for

sequence representation. Most of the biological knowledge here is exploited by a 3D comparison (like

DALI and PRIDE) and by the alignment-based methods (like BLAST, SW, NW). The CBDs do not

incorporate any detailed biological knowledge; they are simply based on substring repetitions and

distributions, but these substrings are not weighted by their importance. The early n-gram technique

(double, triplet character composition) also offers a weak representation since the amino acid com-

position is not useful for determining the function or the structure of a protein. Then, as expected,

the general performance of CBDs with the n-gram technique is not as good as the exhaustive 3D

comparison or alignment-based methods in protein sequence classification and separation.

The situation is similar with the LRA technique. Here the protein classification based on proximity

measures is not only based on the similarity value between the test sample and the closest member

in the positive class, but it also takes into account the similarity score of the nearest member in the

negative class. Hence the LRA approach exploits additional information which improves the sequence

ranking.

Equivalence Learning provides a two-class classification approach which is realized by a binary

classifier and takes advantage of relationships among equivalent and non-equivalent object-pairs.

This gives better protein classification results than when a sequence is represented “alone”. The

KF procedure also exploits additional information for the noise reduction as their parameters can be
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adjusted in a supervised way.

Unfortunately, the supervised methods are sensitive to the distribution of the train and test set

and they can easily overlearn, which reduces the generalization ability of a classifier. We recommend

using the supervised cross-validation approach, which can provide a more realistic estimation on how

the algorithm will detect a novel subtype of a known protein class.

The results presented in this dissertation surely suggest some further questions on this topic. It

may be interesting to know whether the KF method can be used to remove the noise from sequence

proximity methods in protein classification. Can we include some biological knowledge in the CBDs?

Can we do this in such a way that they still preserve the metric property? We showed that a simple

combination of two low-time complexity proximity measures can distinguish protein classes just as well

as the exhaustive computationally intensive SW. Can we achieve a performance of the 3D structural

comparison method like DALI either by the learning of a hybrid combination of comparison methods

in a supervised fashion or by setting the mixed similarity to the ideal kernel matrix?

As we have seen, additional knowledge included in the models can indeed provide better results,

but data conversion is just as important. Formalizing and modeling the biological processes and

information using mathematical techniques may provide various novel viewpoints and keen insights

into the nature of protein sequences.

Summary by Results

In the following we summarize the results of the Author by arranging them into four distinct thesis

points. Table 8 shows the relation between the thesis points and the publication, where they were

presented by the Author.

I Protein benchmark

a The Author participated in building the Protein Classification Benchmark database in order

to provide standard datasets on which the performance of the machine learning algorithms

and similarity/distance measures could be compared. The number of total classification

tasks exceeds 9500. Here the contribution of the Author was the evaluation of the state-of-

the-art machine learning techniques on the classification tasks and he provided a parameter

set which probably gives the best results as a baseline for newly developed methods [9].

b The Author developed a general mathematical framework for constructing a positive train

and test set, which was termed by supervised cross-validation. This technique gives a reli-

able estimation on how an algorithm will generalize a new distantly related subtype within a

known protein class that can also be viewed as a generalization ability of the learned model.

He also designed and evaluated the comparative experiments and the resulting datasets

provided lower, and in our opinion, more realistic estimates of the classifier performance

than those of cross-validation schemes (10-fold or leave- one-out) [7].

The Author examined how the classification results depend on the filtering of the categories

from the negative set in order to speed the execution time of the preprocessing and learning

method up and to avoid the class-imbalanced problem. The Author designed and evaluated

the experiments that led him recommend to misuse it since the resulted negative class may
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be to specific ant less representative with respect to the entire database. Although this

result may be considered as a negative results, in our opinion we should have mentioned

it since it makes the characterization of the hierarchically organized protein datasets in

classification point of view more complete [7]. Hence when constructing the positive train

set, we suggest using the supervised cross-validation but for the negative set we suggest

using the random filtering method [7].

II Likelihood ratio scoring

a The Author suggested the application of a simple likelihood ratio approximation for im-

proving the ranking ability of a protein similarity measure. He designed and evaluated the

comparative experiments which justified his view that this likelihood scoring significantly

improves the performance of similarity functions [27].

III Compression-based Distances (CBDs)

a The Author examined the behaviour of CBDs on protein classification from several aspects.

An analysis of the results showed that the CBDs perform less well than substructure-based

comparisons like the outstanding Smith-Waterman algorithm in protein similarity. This

is in fact expected, since Smith-Waterman calculations include a substantial amount of

biological knowledge encoded in the amino acid substitution matrix while CBDs do not

use any apriori information. [37; 46].

The Author examined the efficiency of the CBDs as a function of the size of the alphabet.

An alphabet reduction was carried out by grouping the similar types of amino acids an on

the alphabet extension was obtained by representing each bi-gram and tri-gram with a new

character. The Author designed and evaluated the experiments that did not display, for

amino acids or nucleotide sequences, any noticeable relationship between the performance

and the size of the alphabet [46].

b The Author investigated the combination of CBMs with an additional cheap, but problem-

specific similarity measure. He designed and evaluated the comparative test which showed

that this mixed measure can slightly exceed the performance of the computationally ex-

pensive Smith-Waterman and two Hidden Markov Model-based algorithms as well. [37].

IV Equivalence learning

a The Author introduced the notion of equivalence learning as a new way of carrying out

similarity learning, and he developed it for protein classification. He designed and evaluated

exhaustive experiments and the results show that this novel protein classification technique

performed better than the others [62].

b The Author developed a new class of kernel functions, namely the Support Vector Kernel

(SVK). He theoretically proved that it is a valid kernel function, and he defined two

new ways to learn SVK along with a new parameter setting technique. He designed and

evaluated the experiments as well [63].

V Noise reduction for the microarray
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a The contribution of the Author to this task was the design of the experiments and evalu-

ations of the classification and the feature selection methods on microarray datasets. The

Author designed an automatic parameter-tuning algorithm for the Kalman Filter as well,

which is a common and indivisible result with the first author of [69].

The results presented in the dissertation resulted in several publications. Table 8 summarizes which

publication covers which item of the thesis points.

[9] [7] [27] [37] [46] [62] [63] [69]
I a b
II a
III a,b a
IV a a,b
V a

Table 8: The relation between the theses and publications.
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[8] János Murvai, Kristian Vlahoviek, Csaba Szepesvári, and Sándor Pongor. Prediction of protein functional domains from sequences using artificial neural

networks. Genome Research, 11(8):1410–1417, 2001.

[9] Paolo Sonego, Mircea Pacurar, Somdutta Dhir, Attila Kertész-Farkas, András Kocsor, Zoltán Gáspári, Jack A. M. Leunissen, and Sándor Pongor. A
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[37] András Kocsor, Attila Kertész-Farkas, László Kaján, and Sándor Pongor. Application of compression-based distance measures to protein sequence

classification: a methodological study. Bioinformatics, 22(4):407–412, 2006.

[38] N. Krasnogor and D. A. Pelta. Measuring the similarity of protein structures by means of the universal similarity metric. Bioinformatics, 20(7):1015–1021,

2004.

[39] Paolo Ferragina, Raffaele Giancarlo, Valentina Greco, Giovanni Manzini, and Gabriel Valiente. Compression-based classification of biological sequences

and structures via the universal similarity metric: experimental assessment. BMC Bioinformatics, 8:252+, July 2007.

[40] Marco Cuturi and Jean-Philippe Vert. The context-tree kernel for strings. Neural Netw., 18(8):1111–1123, 2005.

[41] C. Costa Santos, J. Bernardes, P. M. B. Vitanyi, and L. Antunes. Clustering fetal heart rate tracings by compression. In CBMS ’06: Proceedings of the

19th IEEE Symposium on Computer-Based Medical Systems, pages 685–690, Washington, DC, USA, 2006. IEEE Computer Society.

[42] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley and Sons, Inc., 1991.

[43] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3):337–343, May 1977.

[44] J. Cleary and I. Witten. Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32(4):396–402,

Apr 1984.

[45] Xin Chen, Sam Kwong, and Ming Li. A compression algorithm for DNA sequences and its applications in genome comparison. In RECOMB, page 107,

2000.

[46] Attila Kertész-Farkas, András Kocsor, and Sándor Pongor. The application of the data compression-based distances to biological sequences. In Frank

Emmert-Streib and Matthias Dehmer, editors, Information Theory and Statistical Learning, Lecture Notes in Computer Science. Springer, 2008.

[47] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis : Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, July 1999.

[48] Edward Susko and Andrew J. Roger. On reduced amino acid alphabets for phylogenetic inference. Mol Biol Evol, 24:2139–2150, Sep 2007.

[49] George J. Klir, Ute St. Clair, and Bo Yuan. Fuzzy set theory: foundations and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[50] T. Jaakkola, M. Diekhaus, and D. Haussler. Using the fisher kernel method to detect remote protein homologies. 7th Intell. Sys. Mol. Biol., pages

149–158, 1999.

[51] K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for detecting remote protein homologies. Bioinformatics, 14(10):846–856, 1998.

[52] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning, with application to clustering with side-information, 2003.

[53] Ivor Tsang and James Kwok. Distance metric learning with kernels, 2003.

[54] James T. Kwok and Ivor W. Tsang. Learning with idealized kernels. In Tom Fawcett and Nina Mishra, editors, ICML, pages 400–407. AAAI Press,

2003.

[55] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. Information-theoretic metric learning. In ICML ’07: Proceedings of the

24th international conference on Machine learning, pages 209–216, New York, NY, USA, 2007. ACM.

[56] Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin nearest neighbor classification. In Y. Weiss, B. Schölkopf,

and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1473–1480. MIT Press, Cambridge, MA, 2006.

17



[57] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In ICML ’07: Proceedings of the 24th international conference on Machine

learning, pages 1191–1198, New York, NY, USA, 2007. ACM.

[58] Jean-Philippe Vert, Jian Qiu, and William S Noble. A new pairwise kernel for biological network inference with support vector machines. BMC

Bioinformatics, 8(Suppl 10):S8, 2007.

[59] Y. Yamanishi, J.-P. Vert, and M. Kanehisa. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics, 20(1):363–370,

2004.

[60] Maricel Kann and Richard A. Goldstein. Optima: A new score function for the detection of remote homologs. In Concettina Guerra and Sorin Istrail,

editors, Mathematical Methods for Protein Structure Analysis and Design, volume 2666 of Lecture Notes in Computer Science, pages 99–108. Springer,

2003.

[61] Hiroto Saigo, Jean-Philippe Vert, and Tatsuya Akutsu. Optimizing amino acid substitution matrices with a local alignment kernel. BMC Bioinformatics,

7:246, 2006.

[62] Attila Kertész-Farkas, András Kocsor, and Sándor Pongor. Equivalence learning in protein classification. In Petra Perner, editor, MLDM, volume 4571

of Lecture Notes in Computer Science, pages 824–837. Springer, 2007.
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