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Introduction

The subject of this dissertation is program analysis — detecting relationships between pro-
gram elements. It can be used for many purposes during the software’s life-cycle, for example
for test case selection, debugging, error location, program understanding, reverse engineer-
ing, or change propagation.

Program analysis is a large and diversified research area, but many of its fields can be
distinguished from each other by certain aspects. These aspects include granularity, and
whether the method is static or dynamic. The granularity defines whether the relations are
defined between high level program elements (e. g. procedures, methods, classes) or between
low level elements (source code or assembly instructions, typically). Static analysis can only
rely on statically available information (thus without executing the program), while dynamic
analysis can use dynamic information acquired during the execution of the program too.

Impact analysis is a high level analysis employing mostly static techniques, while program
slicing is a low level analysis with both static and dynamic applications. In this dissertation
we have discussed these two fields of program analysis. Namely, we present our results of
both static and dynamic impact analysis and dynamic program slicing researches.

Our results are summarized in five theses.

e I/1. Definition of SEA/SEB relations.

[/2. Definition, determination and evaluation of DFC metric.

IT/1. Determination of d:U based slicing algorithms.

IT1/2. ITmplementation of d:U based slicing algorithms.

[1/3. Evaluation of d:U based slicing algorithms.

I. High level analysis

In several software engineering activities related to software evolution, only certain parts of
a system are investigated at a time, and this part of interest may be extended or shifted as
the activity progresses. Namely, in a software life-cycle based on incremental change [20],
the impact of a change made to the system needs to be determined; this will then be used
for change propagation, regression testing and other activities. The key of these activities is
to determine the neighborhood of the items.

The notion of such ‘neighborhood’” may be quite different depending on their actual
application scenario. For example, with change propagation a very simple technique is to
investigate only the directly dependent classes of the class of interest (according to the class
diagram-like relations) in one iteration of the propagation. Similarly, with regression testing
a simple, yet very effective technique is based on testing firewalls [26, 27|, which means
rerunning only test cases that exercise direct (or close) dependents of a changed part.

The aim of impact analysis [11] is to support the different activities of software develop-
ment and maintenance by determining the impacted program elements. It is usually done
by determining different relations between program elements. Different approaches exist to
compute relations between higher level software structures supporting impact analysis [4].
Most of the common methods are static, e. g. the work of Rajlich et al. or Ren et al. [20, 21].
The simplest static methods use the call graph [11] or some other lightweight program de-
pendency relations, which are imprecise or unsafe techniques (e. g. [28]). It is possible to find
methods and results that both precise and safe (for example static program slicing), but the
computation cost of these methods are found to be too high [14, 24| for impact analysis.



Our methods for computing impact sets on function level are motivated by of the dynamic
FEzecute After relation of Apiwattanapong et al. [3]. Apiwattanapong et al. use a very simple
approach that essentially states the following: based on a set of executions, a specific function
f will potentially have an impact on all those methods that are executed sometime after it
in any of the executions, meaning that any function g executed after f will become part
of f’s impact set. This approach is safe — meaning that no dependence is missed —, but
imprecise too. In fact, based purely on the sequence of function calls and returns, it seems
to be impossible to provide a more precise, yet still safe method.

I/1. Definition of SEA/SEB relations

Some of the dependencies between program components are explicit, for example gener-
alization, composition, association between classes in object oriented systems. Typically
these dependencies are expressed in the code as explicit references. However besides explicit
dependencies, there are also other dependencies; we call these hidden dependencies'. Yu
and Rajlich [28] explored hidden dependencies that are based on the existence of data flows
between otherwise explicitly unrelated components.

We proposed an alternative way to determine the explicit and hidden dependencies by em-
ploying Static Ezxecute After (SEA) relation and Static Frecute After (SEA) relation among
program components. The SEA is a static counterpart of the approach of Apiwattanapong et
al. who introduced the notion of Execute After relations [3]. We say that (f,g) € SEA if and
only if any part of g may be executed after any part of f in any of the possible executions
of the program. An intrinsic property of the SEA relation is that it is safe but imprecise.

Formally, the SEA /SEB relations can be divided into three (non-distinct) sub-relations:

SEA = SEAcall U SEAseq U SEATet )

where
(f? g) € SEAcall g f Ca].]_s g,
(f.g) € SEAy, <L 3 h: hcalls f first, then
after f returned into h, h calls g,
(f.g) € SEA,y <% f returns into g,

where both ‘call”’ and ‘return into’ are treated transitively. We also defined the Static Ezecute
Before (SEB) relation in a similar way:

SEB = SEB ;i U SEB g U SEB ¢t .

For computing the SEA relation a suitable program representation is needed. The tra-
ditional Call Graph [22] is unsuitable for our needs since it says nothing about the order of
the procedure calls within a procedure. On the other hand, an Interprocedural Control Flow
Graph (ICFG) [19] contains too much information and is expensive to work with. Thus, we
defined a new representation.

First we defined the (intraprocedural) Component Control Flow Graph (CCFG), where
only nodes and edges important for procedure calls were considered. Each CCFG represents
one procedure and contains one entry node and several component nodes with control flow
edges connecting them. Furthermore, strongly connected sub-graphs are collapsed into sin-
gle nodes; this means that if two call sites are reachable from each other by control flow

!Note, that these are usually hidden to impact analysis only, a detailed slicing would find most of them
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Figure 1: ICCFG example

edges then they are represented by the same component node. Interprocedural Component
Control Flow Graph (ICCFG) represents the whole system and for each procedure, there is
a corresponding CCFG interconnected by call edges with other CCFGs. In the ICCFG there
is a call edge from a component node ¢ to a procedure entry of m if and only if at least one
call site represented by c calls m. An example of ICCFG can be seen in Figure 1.

Own contributions

The definition of SEA /SEB relations and the determination of ICCFG is a joint contribution.
The results were published in [9].

I/2. Definition, determination and evaluation of DFC metric

Many of the existing techniques for impact set computation in change propagation and
regression testing are approximate for the sake of efficiency. A way to improve precision is
to apply dynamic analyses instead of static ones. The dynamic EA relation is also simple
and efficient, but yet overly conservative and hence imprecise. The basic idea for refining it
is based on the intuition that the ‘closer’ the execution of a function f is to the execution of
function g in some of the runs of the program, the more likely they are dependent on each
other.

Before presenting the formal definition, we introduce the concept of dynamic call tree.
It is a rooted tree with ordered edges, where the node p labeled with f function represents
a called instance of the f function, and a p — ¢ edge represents a function call from the p
instance of f to the ¢ instance of g function, where ¢ has a label g. We will also use the
term f — g call chain, which is a path from vertex ¢ to vertex p, these being instances of
functions f and g, respectively, for which the following holds: the path from the root to ¢ is
the prefix of the path from the root to p.

Now, we extend the definition of Frecute After relation with the measure of indirection



level d. Formally:

Ha
a@
o,

(f.9) € EAY)

call

(f,g9) € EA(T?,)5 <= dg — f call chain of length d,
(f.9) € BAG)

seq

3 f — g call chain of length d,

[N
e}
—n

Ha
a@
o,

3 h function, where:

3 h — f call chain of length d, and h — g call chain of length d.
with only one common point (labeled with h) in the tree, where
f is called before g, and d = d, + d. — 1.

We combine these in the EA@ relation, which permits the maximal indirection level of d,
formally defined as follows:

(f.g) € EAD &L 34 < d : (f,g) € EA”)UEAY) U EA®)

call ret seq *

Following our view on the symmetry, the Ezrecute Before relation (EB(d)) can be com-
puted for any d values by replacing the role of the two functions:

(f,9) € EB@ &% (g, f) € EAY,

and by combining these two relations we define the Fzecute Round (ER(d)) relation as well,
as follows:

Vd : ERY = EB@ |y gA@,

Observe, that as special cases of our definitions, EA® corresponds to Apiwattanapong
et al.’s definition of the Execute After relation, while ER) gives the complete graph with
the covered functions.

Naturally, if a cut-off level d is sufficient for a pair of functions to be connected by Fzrecute
Round, all higher levels will be appropriate too. So, the Dynamic Function Coupling (DFC)
metric defines the lowest d value for each f, g function pairs, for which the two functions
are in ER@ relation:

~{ min{d | (f,9) € ER®} if such d exists,
DFC(f,9) = { 00 otherwise.

Observe that DFC(f,g9) = DFC(g, f) and DFC(f, f) = 0 will be true for any two functions
f and ¢.2

Based on the above, for a fixed indirection cut-off value d, the dynamic impact set of a
set of changed functions C' is the following:

ImpactSet D (C) = {g | 3f € C : (f,9) € ERD}.

Algorithms

We presented three algorithms; all of them are working on an execution history containing
function entry and function return events.

The first one is a global recursive algorithm, that computes DFC values of all function
pairs in O(t-n?) time in the worst case, and its memory requirement is O(n - m), where n is
the number of functions, m is the depth of the call tree, and ¢ is the length of the execution
history.

2Here we do not follow the traditional convention that a larger value means stronger coupling.
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The second one is an on-demand algorithm for impact set computation for a given indi-
rection level d. The worst case time requirement of this algorithm is O(¢ - n), the memory
requirement is O(n - m).

The third algorithm is an on-demand algorithm for impact set computation for a fixed
indirection level d = 1. It has O(¢-n) time and O(n-m) space cost in the worst case. It seems
to be the same as the previous algorithm. But while the average cost of the previous one is
not much better than the worst case, the time and size requirements of this one reduces to
almost O(t) and O(n +m).

Measurements

We made some experiments. We measured the precision and recall of the relations and sub-
relations on three open-source Java programs. These values were computed against program
slicing results as exact relations. To summarize our findings, we present the answers to the
research questions set up before the measurements:

1. Is it true that a small DFC value between two functions indicates a more probable actual
coupling between them? Yes. Most notably DFC levels 1 or 2 indicate significantly
more actual couplings than higher levels.

2. To what extent does call sub-relation alone and together with the sequence sub-relation
reflect actual coupling? If we observe higher indirection levels, the call sub-relation
alone does not represent many of the actual couplings (only about 20% is recalled).
This means that a significant part of actual couplings comes from sequence-indirections,
so the simple only-call algorithm is not sufficient.

3. What s the threshold value of parameter d that produces good recall, and what is the
precision of the method with that parameter? The cut-off value of parameter d around
5-15 produces recall near 100%. However precision drops much faster, practically,
within 1 or 2 steps it reaches the precision of the original EA method.

4. What d values should be used when precision is important, and what is the recall in
that case? The best precision values can be obtained at levels one or two. However,
the recall is very low in this case.

5. How much gain can we achieve using this method compared to the original EA relation
in terms of the size of the impact sets? The closest level 1 produces impact sets that
are on average 13—15% of the set sizes of the safe method, while level 2 brings in about
25-35%.

Own contributions

The definition, idea of computation and the measurements and evaluation of DCF metric are
joint contributions. The elaboration of the algorithms computing the DFC' and the impact
sets are my own contribution. The results were published in [6].

II. Low level analysis

Program slicing is both similar to and different than impact analysis. It is similar, because
both have the same goal: detect relations between program elements. Yet, it is different,
because it provides low level relations and aims precision, but it requires more computations.



Over time, a number of program slicing methods [24, 25] have been elaborated. A signifi-
cant part of the practical methods compute the slices based on various dependences (control-
and data-) among the program elements (variables, instructions, addresses, predicates, etc.).
The literature is elaborate about the details of static slicing methods. For example, the work
by Horwitz et al. [14] served as the starting point for a number of subsequent implementa-
tions and enhancements, whose basis is the System Dependence Graph (SDG).

The basic dynamic slicing methods use different concepts, proposed by researchers like
Korel and Laski [17, 18], Agrawal et al. [1, 2| and Kamkar et al. [16]. The traditional dynamic
dependence-based method by Agrawal and Horgan [2] uses a graph representation called the
Dynamic Dependence Graph (DDG) that includes a distinct vertex for each occurrence of a
statement (an action), and the edges correspond to the dynamically occurring dependences.
Based on this graph, the computation of a dynamic slice is finding all reachable vertices
starting from the slicing criterion.

However, relatively few publications appeared that deal with the practical sides of dy-
namic slicing and provide detailed algorithms. A reason can be that dynamic analysis of
programs is an inherently hard problem because of several reasons, the most significant one
being that a very large number of events may be generated by a program run. Most of the
basic dynamic slicing algorithms have difficulties with handling large inputs. For example,
the size of the DDG graph is actually determined by the number of steps of the execution
history which is unbounded.

Tibor Gyiméthy, Gabor Forgacs and Arpad Beszédes presented an algorithm for back-
ward slice computation, which computes slices for all dynamic slicing criterion by traversing
the execution history only once [13]. Based on this, Arpad Beszédes worked out an algo-
rithm for computing a single slice [5]. These algorithms use so-called d : U (definition-use)
pairs to represent instructions. Although the original algorithms support only a very sim-
ple language, their relatively low space requirements makes them suitable for slicing large
programs.

IT/1. Determination of d:U based slicing algorithms

By examining the two algorithms elaborated by Arpad Beszédes et al., it became obvious
that many graph-less slicing algorithms can be created using the same representation. Thus,
we determined some aspects of the algorithms, and determined their possible values, and
then we examined their combinations. We found three aspects:

Slicing direction. The two slicing directions are forward and backward slicing. In the case
of forward slicing we are interested in those program points, that uses (even transi-
tively) the values computed in the program point determined by the slicing criterion.
A backward slice consists of all statements that might affect the values computed at a
specific program point.

Global or demand-driven. In the traditional approach we have one criterion at a time,
and we compute slice for this criteria. It is called demand-driven slicing. However, it
is possible to compute more (or all possible) slices by traversing the execution history
only once. In this case we are talking about global slicing.

Processing direction. The execution history can also be processed in two ways. The
forward processing is the ‘natural’ direction, as the execution history is generated this
way. Sometimes this is the only feasible direction. However, there are situations when
the backward processing can be applied and more efficient than the other direction.



Global /Demand-driven  Slicing direction Processing direction Usability

Demand-driven backward backward practical
Demand-driven backward forward unfeasible
Demand-driven forward backward unfeasible
Demand-driven forward forward practical
Global backward backward parallel
Global backward forward practical
Global forward backward practical
Global forward forward parallel

Table 1: Overview of dynamic slicing algorithms

This totals eight possibilities, of which some give useful algorithms, while there are irrel-
evant combinations as well. These are summarized on Table 1.

Computing a dynamic slice in a demand-driven fashion means that given an execution of
the program and a dynamic slicing criterion, a single dynamic slice is produced. We traverse
the execution trace starting with the action of the dynamic slicing criterion, and follow the
dynamic dependences with the help of the d : U representation going backward towards the
first executed instruction or forward towards the end of the trace, depending on the slice
direction. This allows us to construct the two demand-driven dynamic slicing algorithms.

Computing slices in a demand-driven fashion with opposite slicing and processing direc-
tion is unfeasible. It practically results in a global algorithm, because all slices must be kept
until the criterion is reached in the execution history.

In a number of applications more than one slice may be needed at a time for a given
execution of the program. This leads to an idea to compute more dynamic slices during
only one traversal through the execution history. It is possible to compute many dynamic
slices by executing the demand driven methods in parallel: traversing the execution history
in a forward way for forward slices and in a backward way for backward slices. However,
this approach is not very practical since the data structures (and the slices) for all dynamic
criteria need to be maintained throughout the whole execution history.

Fortunately, it is possible to construct such global algorithms that are more practical
in which not the whole dynamic slices need to be maintained during the execution of the
algorithms but only the actual dependence sets belonging to the variables of the program.
These dependence sets contain statement numbers providing the actual dependences of the
given variables at the given point of execution. We derive these dependence sets based on the
d : U information and maintain them for each execution step. Thus we are able to compute
the dynamic slices for all possible dynamic criteria based on the actual values of these sets
only. An interesting duality in this approach is that the mentioned dependence sets can be
acquired the trace is processed in an opposite direction as the slicing direction.

DDG equivalence

To show that our d : U-based algorithms compute the same slices as the DDG-based method,
we must show the equivalence of the two representations first. Let the instructions of the
program be identified with the numbers i € {1,...,I'}. Given the PDG (Procedure Depen-
dency Graph, a component in the SDG) and d : U representation of the same program. By
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definition:

in PDG ind:U
P, < dd;:U;

4P, — Py control flow edge <= d; predicate variable € Uy
JP;, — P, data flow edge — d; € Uy

Based on the above, it can be shown that a P;; — Pj. edge exist in the DDG if and only
if d; € Uy, and the d; variable is last defined in #/ before the [ step (LD(d;, 1) = #7).

In the case of demand-driven algorithms, the equivalence was shown through transforming
the algorithm into a graph-coloring algorithm using equivalent transformations. It colors the
points of the graph reachable from a start node. Instructions belonging to the colored points
form the DDG-based slice.

To show that the global algorithms compute the DDG-based slices we use induction. In
the beginning the sets used by the algorithms are empty, which is trivially correct before
processing any trace elements. Then suppose that at the beginning of the iteration that
processes 7/ the sets contain instructions or actions that are reachable from the corresponding
DDG-node. Finally, regarding the algorithms we show that if the assumptions are correct
before processing i/ then they remain correct after processing it too.

Own contributions

Classification of the algorithms, the elaboration of the four new algorithms (demand driven
forward, global backward processed forward slices, and the two parallel) are joint contribu-
tions. Showing that the slices are equivalent to the DDG-based slices is my own contribution.
Results were published in [7] and in the technical report [8].

I1/2. Implementation of d:U based slicing algorithms

We implemented the dynamic slicing algorithms for C and Java languages. To slice real
C programs several problems, such as pointers, function calls and jump statements must
be solved. As a first step, we modified the d : U representation according to the need of
representing C instructions. For C programs, the d : U representation will contain a sequence
of d : U items for each instruction as:

1. <(d1 . Ul), (dg . UQ), .. > .

The sequence order is important and determined by the ‘execution-order’ of the correspond-
ing sub-expressions.

The execution history was also modified. We added some technical information to it, like
memory addresses, block entry/exit events, function call/return events, etc. This extended
EH is called TRACE. The TRACE is produced by first instrument the program (adding
instructions to it), then executing the instrumented version.

The handling of pointers was solved by converting everything to memory locations (when
it is possible). Thus, during the algorithm’s execution, we need another d : U structure,
called dynamic d : U. This dynamic d : U contains the memory locations, and the algorithm
works on it.



Handling pointers

The address of a variable does not change in its scope, so after it is determined it can be
used any number of times. But the value of a pointer can change at any time and must
be determined every time the pointer occurs. Thus, the instrumented program writes these
addresses into the TRACF using the functions remember () for variables and dump() for
pointers:

int x, *p; | int x, *p;
remember ("x", &x, sizeof(int));
remember ("p", &p, sizeof (int*));

1. | x=1; x=1;

2. | p=tx; p=&x;

3. | *p=2; *dump ("PTR1", p,, sizeof (int))=2;
4. | print(x); | print(x);

The static and dynamically resolved d : U of the program and the computed slices for
line 4. — provided that means that variables z and p has the addresses 01 and 02 — are the
following:

line ‘ def : USE H action ‘ def = USE ‘ Slice
1 x : 0 | oot 0 0
2 D : 0 221 02 0 0
3|PTR1 : {p} 31 o1 {02} | {2}
4 oUT :  Ax} 44 four . {o1} |{2,3}

In the C language the arrays and the pointers are practically the same and the conversion
from one to the other is quite simple. The i element of an array t, denoted by t[il, can
be expressed as a pointer *(t+i). Then, when an element of an array is referenced, it is
treated as a pointer in the d : U and then its address is written out.

The offset of the members of a structure could be determined statically but the computa-
tion of dynamic addresses would be quite complicated. Instead, the members of a structure
will also be treated as pointers. In this way the structure member accesses are reduced to
pointers. The structures themselves are not converted; they are handled as regular variables.

The address itself does not correctly describe a variable. For example the address of a
struct and its first member are the same, but assigning a new value to a whole structure
indicates dependencies through all its members. Thus, sizes are also recorded by remember ()
and dump ().

Algorithm

Our method for slicing C programs works as follows. First, the input program is analyzed and
instrumented, and the static d : U representation is built. Next, the instrumented program
is compiled and executed to produce the TRACE. Finally, the dynamic slice algorithm is
executed using the previously created d : U representation and TRACE.

To handle the TRACFE and convert variables to memory addresses, the TRACE handling
loop of the algorithms are modified as follows. Based on the type of the actual TRACE
element, the following actions must be taken.

e function begin mark: The processing of the actual d : U item is suspended and the
position is pushed on a stack.

e function end mark: The processing continues at the d : U position saved on the top of
the stack. The value is removed from it.



e FH element: The current action will be the one specified by the element, the processing
continues with its first d : U item.

e other: The unresolved references are translated to memory addresses based on this
element.

The variables of the static d : U are resolved in the dynamic d : U according to their type:

e Scalar variables. They have a constant address in the scope where they are declared.
The addresses are resolved by simulating the stack of the C program (using addresses
and block entry/exit events). The dynamic d : U uses the addresses.

e Dereference variables. Denoted by PT Rn, where n is a global counter for each deref-
erence occurrence. They can be resolved directly from the TRACE.

e Predicate variables. Denoted by Pn, where n is the serial number of the predicate
instruction. The depth of the program call stack is appended to them in the dynamic
d : U, to avoid collisions due to recursive calls.

e Qutput variables. Denoted by OUTn, where n is the instruction number. Output
variables are a kind of ‘dummy’ variables that are generated at those places where a
set U is used but no other variable takes any value from it. They remain unchanged
in the dynamic d : U.

e Function call argument variables. Variables denoted by ARG(f,n), where f is a func-
tion name and n is the function argument (parameter) number. An argument variable
is defined at the function call site and used at the entry point of the function. They
remain unchanged in the dynamic d : U.

e Function call return variables. Denoted by RET(f), where f is a function name. A
return variable is defined at the exit point of the function and used at the function
caller after returning. They remain unchanged in the dynamic d : U.

After it, if the actual dynamic d : U item can be processed (e.g. contains no unresolved
variables) then it is processed.

Own contributions

The handling of variables in the C slicing algorithm, thus assigning source code references
and runtime memory addresses is my own result. The results were published in [10] and [12].

I1/3. Evaluation of d:U based slicing algorithms

We made two kinds of evaluation. First, we analyzed the complexities of our six slicing
algorithms and compared them to the DDG based method. Second, we made different
measurements with the C and Java implementations.

Complexities

When time and space requirements are elaborated, we concentrate on the core of the algo-
rithms. For example, the reading and storing of the trace or the building and storing of the
static representation of the program are not counted. We also omit modifications required
for a certain implementation.

10



time
Algorithm maximum average
Demand-driven backward J -V -log(J) J + DEP -log(J)
Demand-driven forward J-V J
Practical algorithms J-1-V -log(I) J - DS -log(DS)
Parallel algorithms J? - (log(I)+V -log(J)) J-DEP -log(DS - DEP)
DDG: one slice J-V DEP
DDG: building and one slice J-V J+ DEP
DDG: all slices J*V J - DEP

Table 2: Computational complexities of slicing algorithms

space
Algorithm maximum average
Demand-driven backward J J
Demand-driven forward %4 V PEF
Practical algorithms V. VDPEE . DS
Parallel algorithms J-(I+V) J-DS+VPEF.DEP
DDG | J-v J

Table 3: Space complexities of slicing algorithms

We summarized the computational and space requirements of the six d : U-based and
the DDG-based algorithms on tables 2 and 3. The notations we used: J is the length of the
execution history; I is the number of instructions; V' is the number of program variables;
VDEE is the number of defined variables during program execution; DS is the average slice
size; DEP is the average number of points reachable from a certain node in the DDG. (DS
is related to I, while DEP is related to J.) Values presented for demand-driven algorithms
denote the computation of one slice only, while values presented for practical and parallel
algorithms denote the computation of all slices.

In a general case our demand-driven algorithms can be more effective than the DDG-
based method, because they determine the slices while traversing (a part of) the EH only
once, and does not require a separate full traversal, which is needed in the DDG-based
method. Moreover, the number of dynamic dependences kept in the memory at a time is
limited, thus their space requirements are also smaller (and it is true not only for the forward
slicing, where it is obvious due to VPEE < J),

The time requirements of the practical algorithms in a general case are not better or
worse than that of the DDG-based method. As DS is related to the size of the program it is
bounded, while DEP is related to the length of the FH, thus potentially unbounded, with
a suitably long execution trace the d : U based method seems to be more practical. The
O(VPEE . DS) space requirements of our algorithms are more practical then the O(.J) space
requirement of the DDG-based method in a general case (taking into consideration that in
real applications the value of VPPF is rather dependent on V' than on .J).

However, our parallel algorithms are obviously worse than the DDG-based method re-
garding both time and space requirements.

Measurements with the C implementation

The aim of the measurements made with the C implementation was the verification of the
algorithms’ practical usability. We made experiments with the demand-driven and practical
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backward implementations on five small programs: bedd, unzoo, bzip, be, and less. During
the measurements, we recorded some properties of the test programs and the algorithms.
Our findings were:

No relation was found between the slice size and the length of the execution history.

The correlation between the number of static variables (in the program code) and
dynamic variables (allocated during execution) is relatively high 0.73. Based on the
results replacing the variables to memory locations causes no problem resulting from
the multiplication of the number of variables.

For practical usability, the relation between the number of set operations and the size
of the program or the length of the execution history is important. The maximal size
of the sets and the average number of set operations per step are changed more or less
together with program size. We also found, that the maximal set size did not grow
significantly with the progress of processing the trace.

In case of the demand-driven algorithm a longer execution history did not imply the
growth of the algorithm’s iteration steps.

The size of the set that influences the number of iterations of the demand-driven
algorithm was highly correlated with the slice sizes.

As a summary, we can conclude that factors that determine the execution time of the
algorithms (number of dynamic variables or set operations) are mainly depend on static
components, and the number of iteration steps of the demand-driven algorithm is much
smaller than the length of the FH.

Measurements with the Java implementation

The measurements made with the Java implementation were focused on different slice sizes,
namely the relation between static, dynamic and union slices were measured. Static slices
were computed using the Indus [15] Java static slicer.

Our measurements were made on five small open source Java programs (RayTracer,
JSubtitles, NanoXML/DumpXML, java2html, and dynjava) with about 100 test cases per
program. Statistics on the number of executed instructions can be seen on Table 4.

Our findings were:

Executed instructions
Program minimum maximum
RayTracer | 2,598,546 | 21,525,307,460
JSubtitles 516,213 55,459,126
NanoXML 910, 806 94,754,237
java2html | 1,541,531 20, 370, 505
dynjava 4,019, 365 6,369, 636

Table 4: Executed instructions

e Union slices are much smaller than static slices.

e The sizes of the forward union slices are lower than the sizes of the backward union

slices.

12



e The number of smaller slices among the forward slices is higher, but the maximal sizes
more or less the same as the maximal sizes of the backward slices.

e The correlations between union slice sizes and instruction coverage are between (.89
and 0.96. It is good, because coverage can be exactly determined, thus the final slice
size can be approximated.

So, important results are that the sizes of the union slices are much lower than static
slice sizes, and that the growth of the union slices (by adding more and more dynamic slices)
are highly correlated with the instruction coverage growth.

Own contributions

The evaluation of the theoretical algorithms is my own result, which was summarized in 7|
and elaborated in a technical report [8]. The evaluation of the C implementation is a joint
work, published in the papers [10], [12] and in the report [8]. The evaluation of the mea-
surements made with the Java implementation is a joint work too, and it was published
in [23].
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