
Theses of the Ph.D. dissertationStati
 and Dynami
 Program Analysis
Tamás Gergely

SupervisorDr. Tibor Gyimóthy
Ph.D. S
hool in Computer S
ien
es

University of SzegedInstitute of Informati
s
2010

Introdu
tionThe subje
t of this dissertation is program analysis � dete
ting relationships between pro-gram elements. It
an be used for many purposes during the software's life-
y
le, for examplefor test
ase sele
tion, debugging, error lo
ation, program understanding, reverse engineer-ing, or
hange propagation.Program analysis is a large and diversi�ed resear
h area, but many of its �elds
an bedistinguished from ea
h other by
ertain aspe
ts. These aspe
ts in
lude granularity, andwhether the method is stati
 or dynami
. The granularity de�nes whether the relations arede�ned between high level program elements (e. g. pro
edures, methods,
lasses) or betweenlow level elements (sour
e
ode or assembly instru
tions, typi
ally). Stati
 analysis
an onlyrely on stati
ally available information (thus without exe
uting the program), while dynami
analysis
an use dynami
 information a
quired during the exe
ution of the program too.Impa
t analysis is a high level analysis employing mostly stati
 te
hniques, while programsli
ing is a low level analysis with both stati
 and dynami
 appli
ations. In this dissertationwe have dis
ussed these two �elds of program analysis. Namely, we present our results ofboth stati
 and dynami
 impa
t analysis and dynami
 program sli
ing resear
hes.Our results are summarized in �ve theses.
• I/1. De�nition of SEA/SEB relations.
• I/2. De�nition, determination and evaluation of DFC metri
.
• II/1. Determination of d:U based sli
ing algorithms.
• II/2. Implementation of d:U based sli
ing algorithms.
• II/3. Evaluation of d:U based sli
ing algorithms.I. High level analysisIn several software engineering a
tivities related to software evolution, only
ertain parts ofa system are investigated at a time, and this part of interest may be extended or shifted asthe a
tivity progresses. Namely, in a software life-
y
le based on in
remental
hange [20℄,the impa
t of a
hange made to the system needs to be determined; this will then be usedfor
hange propagation, regression testing and other a
tivities. The key of these a
tivities isto determine the neighborhood of the items.The notion of su
h `neighborhood' may be quite di�erent depending on their a
tualappli
ation s
enario. For example, with
hange propagation a very simple te
hnique is toinvestigate only the dire
tly dependent
lasses of the
lass of interest (a

ording to the
lassdiagram-like relations) in one iteration of the propagation. Similarly, with regression testinga simple, yet very e�e
tive te
hnique is based on testing �rewalls [26, 27℄, whi
h meansrerunning only test
ases that exer
ise dire
t (or
lose) dependents of a
hanged part.The aim of impa
t analysis [11℄ is to support the di�erent a
tivities of software develop-ment and maintenan
e by determining the impa
ted program elements. It is usually doneby determining di�erent relations between program elements. Di�erent approa
hes exist to
ompute relations between higher level software stru
tures supporting impa
t analysis [4℄.Most of the
ommon methods are stati
, e. g. the work of Rajli
h et al. or Ren et al. [20, 21℄.The simplest stati
 methods use the
all graph [11℄ or some other lightweight program de-penden
y relations, whi
h are impre
ise or unsafe te
hniques (e. g. [28℄). It is possible to �ndmethods and results that both pre
ise and safe (for example stati
 program sli
ing), but the
omputation
ost of these methods are found to be too high [14, 24℄ for impa
t analysis.1

Our methods for
omputing impa
t sets on fun
tion level are motivated by of the dynami
Exe
ute After relation of Apiwattanapong et al. [3℄. Apiwattanapong et al. use a very simpleapproa
h that essentially states the following: based on a set of exe
utions, a spe
i�
 fun
tion
f will potentially have an impa
t on all those methods that are exe
uted sometime after itin any of the exe
utions, meaning that any fun
tion g exe
uted after f will be
ome partof f 's impa
t set. This approa
h is safe � meaning that no dependen
e is missed �, butimpre
ise too. In fa
t, based purely on the sequen
e of fun
tion
alls and returns, it seemsto be impossible to provide a more pre
ise, yet still safe method.I/1. De�nition of SEA/SEB relationsSome of the dependen
ies between program
omponents are expli
it, for example gener-alization,
omposition, asso
iation between
lasses in obje
t oriented systems. Typi
allythese dependen
ies are expressed in the
ode as expli
it referen
es. However besides expli
itdependen
ies, there are also other dependen
ies; we
all these hidden dependen
ies1. Yuand Rajli
h [28℄ explored hidden dependen
ies that are based on the existen
e of data �owsbetween otherwise expli
itly unrelated
omponents.We proposed an alternative way to determine the expli
it and hidden dependen
ies by em-ploying Stati
 Exe
ute After (SEA) relation and Stati
 Exe
ute After (SEA) relation amongprogram
omponents. The SEA is a stati

ounterpart of the approa
h of Apiwattanapong etal. who introdu
ed the notion of Exe
ute After relations [3℄. We say that (f, g) ∈ SEA if andonly if any part of g may be exe
uted after any part of f in any of the possible exe
utionsof the program. An intrinsi
 property of the SEA relation is that it is safe but impre
ise.Formally, the SEA/SEB relations
an be divided into three (non-distin
t) sub-relations:

SEA = SEAcall ∪ SEAseq ∪ SEAret ,where
(f, g) ∈ SEAcall

def
⇐⇒ f
alls g,

(f, g) ∈ SEAseq
def
⇐⇒ ∃ h: h
alls f �rst, thenafter f returned into h, h
alls g,

(f, g) ∈ SEAret
def
⇐⇒ f returns into g,where both `
all' and `return into' are treated transitively. We also de�ned the Stati
 Exe
uteBefore (SEB) relation in a similar way:

SEB = SEBcall ∪ SEB seq ∪ SEB ret .For
omputing the SEA relation a suitable program representation is needed. The tra-ditional Call Graph [22℄ is unsuitable for our needs sin
e it says nothing about the order ofthe pro
edure
alls within a pro
edure. On the other hand, an Interpro
edural Control FlowGraph (ICFG) [19℄
ontains too mu
h information and is expensive to work with. Thus, wede�ned a new representation.First we de�ned the (intrapro
edural) Component Control Flow Graph (CCFG), whereonly nodes and edges important for pro
edure
alls were
onsidered. Ea
h CCFG representsone pro
edure and
ontains one entry node and several
omponent nodes with
ontrol �owedges
onne
ting them. Furthermore, strongly
onne
ted sub-graphs are
ollapsed into sin-gle nodes; this means that if two
all sites are rea
hable from ea
h other by
ontrol �ow1Note, that these are usually hidden to impa
t analysis only, a detailed sli
ing would �nd most of them2

e() {if(...) {f();}g();}f() {while(...) {h();g();}}

g() {if(...) {f();} else {while(...) {h();if(...) {f();}}h();}}h() {}
e g

f

h

Figure 1: ICCFG exampleedges then they are represented by the same
omponent node. Interpro
edural ComponentControl Flow Graph (ICCFG) represents the whole system and for ea
h pro
edure, there isa
orresponding CCFG inter
onne
ted by
all edges with other CCFGs. In the ICCFG thereis a
all edge from a
omponent node c to a pro
edure entry of m if and only if at least one
all site represented by c
alls m. An example of ICCFG
an be seen in Figure 1.Own
ontributionsThe de�nition of SEA/SEB relations and the determination of ICCFG is a joint
ontribution.The results were published in [9℄.
I/2. De�nition, determination and evaluation of DFC metri
Many of the existing te
hniques for impa
t set
omputation in
hange propagation andregression testing are approximate for the sake of e�
ien
y. A way to improve pre
ision isto apply dynami
 analyses instead of stati
 ones. The dynami
 EA relation is also simpleand e�
ient, but yet overly
onservative and hen
e impre
ise. The basi
 idea for re�ning itis based on the intuition that the `
loser' the exe
ution of a fun
tion f is to the exe
ution offun
tion g in some of the runs of the program, the more likely they are dependent on ea
hother.Before presenting the formal de�nition, we introdu
e the
on
ept of dynami

all tree.It is a rooted tree with ordered edges, where the node p labeled with f fun
tion representsa
alled instan
e of the f fun
tion, and a p → q edge represents a fun
tion
all from the pinstan
e of f to the q instan
e of g fun
tion, where q has a label g. We will also use theterm f → g
all
hain, whi
h is a path from vertex q to vertex p, these being instan
es offun
tions f and g, respe
tively, for whi
h the following holds: the path from the root to q isthe pre�x of the path from the root to p.Now, we extend the de�nition of Exe
ute After relation with the measure of indire
tion3

level d. Formally:
(f, g) ∈ EA

(d)
call

def
⇐⇒ ∃ f → g
all
hain of length d,

(f, g) ∈ EA
(d)
ret

def
⇐⇒ ∃ g → f
all
hain of length d,

(f, g) ∈ EA(d)
seq

def
⇐⇒ ∃ h fun
tion, where:

∃ h → f
all
hain of length dr and h → g
all
hain of length dcwith only one
ommon point (labeled with h) in the tree, where
f is
alled before g, and d = dr + dc − 1.We
ombine these in the EA(d) relation, whi
h permits the maximal indire
tion level of d,formally de�ned as follows:

(f, g) ∈ EA(d) def
⇐⇒ ∃ d′ ≤ d : (f, g) ∈ EA

(d′)
call ∪ EA

(d′)
ret ∪ EA(d′)

seq .Following our view on the symmetry, the Exe
ute Before relation (EB (d))
an be
om-puted for any d values by repla
ing the role of the two fun
tions:
(f, g) ∈ EB (d) def

⇐⇒ (g, f) ∈ EA(d),and by
ombining these two relations we de�ne the Exe
ute Round (ER(d)) relation as well,as follows:
∀d : ER(d) = EB (d) ∪ EA(d).Observe, that as spe
ial
ases of our de�nitions, EA(∞)
orresponds to Apiwattanaponget al.'s de�nition of the Exe
ute After relation, while ER(∞) gives the
omplete graph withthe
overed fun
tions.Naturally, if a
ut-o� level d is su�
ient for a pair of fun
tions to be
onne
ted by Exe
uteRound, all higher levels will be appropriate too. So, the Dynami
 Fun
tion Coupling (DFC)metri
 de�nes the lowest d value for ea
h f , g fun
tion pairs, for whi
h the two fun
tionsare in ER(d) relation:

DFC (f, g) =

{

min{d | (f, g) ∈ ER(d)} if su
h d exists,
∞ otherwise.Observe that DFC (f, g) = DFC (g, f) and DFC (f, f) = 0 will be true for any two fun
tions

f and g.2Based on the above, for a �xed indire
tion
ut-o� value d, the dynami
 impa
t set of aset of
hanged fun
tions C is the following:
ImpactSet (d)(C) = {g | ∃f ∈ C : (f, g) ∈ ER(d)}.AlgorithmsWe presented three algorithms; all of them are working on an exe
ution history
ontainingfun
tion entry and fun
tion return events.The �rst one is a global re
ursive algorithm, that
omputes DFC values of all fun
tionpairs in O(t · n2) time in the worst
ase, and its memory requirement is O(n ·m), where n isthe number of fun
tions, m is the depth of the
all tree, and t is the length of the exe
utionhistory.2Here we do not follow the traditional
onvention that a larger value means stronger
oupling.4

The se
ond one is an on-demand algorithm for impa
t set
omputation for a given indi-re
tion level d. The worst
ase time requirement of this algorithm is O(t · n), the memoryrequirement is O(n · m).The third algorithm is an on-demand algorithm for impa
t set
omputation for a �xedindire
tion level d = 1. It has O(t·n) time and O(n·m) spa
e
ost in the worst
ase. It seemsto be the same as the previous algorithm. But while the average
ost of the previous one isnot mu
h better than the worst
ase, the time and size requirements of this one redu
es toalmost O(t) and O(n + m).MeasurementsWe made some experiments. We measured the pre
ision and re
all of the relations and sub-relations on three open-sour
e Java programs. These values were
omputed against programsli
ing results as exa
t relations. To summarize our �ndings, we present the answers to theresear
h questions set up before the measurements:1. Is it true that a small DFC value between two fun
tions indi
ates a more probable a
tual
oupling between them? Yes. Most notably DFC levels 1 or 2 indi
ate signi�
antlymore a
tual
ouplings than higher levels.2. To what extent does
all sub-relation alone and together with the sequen
e sub-relationre�e
t a
tual
oupling? If we observe higher indire
tion levels, the
all sub-relationalone does not represent many of the a
tual
ouplings (only about 20% is re
alled).This means that a signi�
ant part of a
tual
ouplings
omes from sequen
e-indire
tions,so the simple only-
all algorithm is not su�
ient.3. What is the threshold value of parameter d that produ
es good re
all, and what is thepre
ision of the method with that parameter? The
ut-o� value of parameter d around5�15 produ
es re
all near 100%. However pre
ision drops mu
h faster, pra
ti
ally,within 1 or 2 steps it rea
hes the pre
ision of the original EA method.4. What d values should be used when pre
ision is important, and what is the re
all inthat
ase? The best pre
ision values
an be obtained at levels one or two. However,the re
all is very low in this
ase.5. How mu
h gain
an we a
hieve using this method
ompared to the original EA relationin terms of the size of the impa
t sets? The
losest level 1 produ
es impa
t sets thatare on average 13�15% of the set sizes of the safe method, while level 2 brings in about25�35%.Own
ontributionsThe de�nition, idea of
omputation and the measurements and evaluation of DCF metri
 arejoint
ontributions. The elaboration of the algorithms
omputing the DFC and the impa
tsets are my own
ontribution. The results were published in [6℄.II. Low level analysisProgram sli
ing is both similar to and di�erent than impa
t analysis. It is similar, be
auseboth have the same goal: dete
t relations between program elements. Yet, it is di�erent,be
ause it provides low level relations and aims pre
ision, but it requires more
omputations.5

Over time, a number of program sli
ing methods [24, 25℄ have been elaborated. A signi�-
ant part of the pra
ti
al methods
ompute the sli
es based on various dependen
es (
ontrol-and data-) among the program elements (variables, instru
tions, addresses, predi
ates, et
.).The literature is elaborate about the details of stati
 sli
ing methods. For example, the workby Horwitz et al. [14℄ served as the starting point for a number of subsequent implementa-tions and enhan
ements, whose basis is the System Dependen
e Graph (SDG).The basi
 dynami
 sli
ing methods use di�erent
on
epts, proposed by resear
hers likeKorel and Laski [17, 18℄, Agrawal et al. [1, 2℄ and Kamkar et al. [16℄. The traditional dynami
dependen
e-based method by Agrawal and Horgan [2℄ uses a graph representation
alled theDynami
 Dependen
e Graph (DDG) that in
ludes a distin
t vertex for ea
h o

urren
e of astatement (an a
tion), and the edges
orrespond to the dynami
ally o

urring dependen
es.Based on this graph, the
omputation of a dynami
 sli
e is �nding all rea
hable verti
esstarting from the sli
ing
riterion.However, relatively few publi
ations appeared that deal with the pra
ti
al sides of dy-nami
 sli
ing and provide detailed algorithms. A reason
an be that dynami
 analysis ofprograms is an inherently hard problem be
ause of several reasons, the most signi�
ant onebeing that a very large number of events may be generated by a program run. Most of thebasi
 dynami
 sli
ing algorithms have di�
ulties with handling large inputs. For example,the size of the DDG graph is a
tually determined by the number of steps of the exe
utionhistory whi
h is unbounded.Tibor Gyimóthy, Gábor Forgá
s and Árpád Beszédes presented an algorithm for ba
k-ward sli
e
omputation, whi
h
omputes sli
es for all dynami
 sli
ing
riterion by traversingthe exe
ution history only on
e [13℄. Based on this, Árpád Beszédes worked out an algo-rithm for
omputing a single sli
e [5℄. These algorithms use so-
alled d : U (de�nition-use)pairs to represent instru
tions. Although the original algorithms support only a very sim-ple language, their relatively low spa
e requirements makes them suitable for sli
ing largeprograms.II/1. Determination of d:U based sli
ing algorithmsBy examining the two algorithms elaborated by Árpád Beszédes et al., it be
ame obviousthat many graph-less sli
ing algorithms
an be
reated using the same representation. Thus,we determined some aspe
ts of the algorithms, and determined their possible values, andthen we examined their
ombinations. We found three aspe
ts:Sli
ing dire
tion. The two sli
ing dire
tions are forward and ba
kward sli
ing. In the
aseof forward sli
ing we are interested in those program points, that uses (even transi-tively) the values
omputed in the program point determined by the sli
ing
riterion.A ba
kward sli
e
onsists of all statements that might a�e
t the values
omputed at aspe
i�
 program point.Global or demand-driven. In the traditional approa
h we have one
riterion at a time,and we
ompute sli
e for this
riteria. It is
alled demand-driven sli
ing. However, itis possible to
ompute more (or all possible) sli
es by traversing the exe
ution historyonly on
e. In this
ase we are talking about global sli
ing.Pro
essing dire
tion. The exe
ution history
an also be pro
essed in two ways. Theforward pro
essing is the `natural' dire
tion, as the exe
ution history is generated thisway. Sometimes this is the only feasible dire
tion. However, there are situations whenthe ba
kward pro
essing
an be applied and more e�
ient than the other dire
tion.6

Global/Demand-driven Sli
ing dire
tion Pro
essing dire
tion UsabilityDemand-driven ba
kward ba
kward pra
ti
alDemand-driven ba
kward forward unfeasibleDemand-driven forward ba
kward unfeasibleDemand-driven forward forward pra
ti
alGlobal ba
kward ba
kward parallelGlobal ba
kward forward pra
ti
alGlobal forward ba
kward pra
ti
alGlobal forward forward parallelTable 1: Overview of dynami
 sli
ing algorithmsThis totals eight possibilities, of whi
h some give useful algorithms, while there are irrel-evant
ombinations as well. These are summarized on Table 1.Computing a dynami
 sli
e in a demand-driven fashion means that given an exe
ution ofthe program and a dynami
 sli
ing
riterion, a single dynami
 sli
e is produ
ed. We traversethe exe
ution tra
e starting with the a
tion of the dynami
 sli
ing
riterion, and follow thedynami
 dependen
es with the help of the d : U representation going ba
kward towards the�rst exe
uted instru
tion or forward towards the end of the tra
e, depending on the sli
edire
tion. This allows us to
onstru
t the two demand-driven dynami
 sli
ing algorithms.Computing sli
es in a demand-driven fashion with opposite sli
ing and pro
essing dire
-tion is unfeasible. It pra
ti
ally results in a global algorithm, be
ause all sli
es must be keptuntil the
riterion is rea
hed in the exe
ution history.In a number of appli
ations more than one sli
e may be needed at a time for a givenexe
ution of the program. This leads to an idea to
ompute more dynami
 sli
es duringonly one traversal through the exe
ution history. It is possible to
ompute many dynami
sli
es by exe
uting the demand driven methods in parallel: traversing the exe
ution historyin a forward way for forward sli
es and in a ba
kward way for ba
kward sli
es. However,this approa
h is not very pra
ti
al sin
e the data stru
tures (and the sli
es) for all dynami

riteria need to be maintained throughout the whole exe
ution history.Fortunately, it is possible to
onstru
t su
h global algorithms that are more pra
ti
alin whi
h not the whole dynami
 sli
es need to be maintained during the exe
ution of thealgorithms but only the a
tual dependen
e sets belonging to the variables of the program.These dependen
e sets
ontain statement numbers providing the a
tual dependen
es of thegiven variables at the given point of exe
ution. We derive these dependen
e sets based on the
d : U information and maintain them for ea
h exe
ution step. Thus we are able to
omputethe dynami
 sli
es for all possible dynami

riteria based on the a
tual values of these setsonly. An interesting duality in this approa
h is that the mentioned dependen
e sets
an bea
quired the tra
e is pro
essed in an opposite dire
tion as the sli
ing dire
tion.
DDG equivalen
eTo show that our d : U-based algorithms
ompute the same sli
es as the DDG-based method,we must show the equivalen
e of the two representations �rst. Let the instru
tions of theprogram be identi�ed with the numbers i ∈ {1, . . . , I}. Given the PDG (Pro
edure Depen-den
y Graph, a
omponent in the SDG) and d : U representation of the same program. By7

de�nition:
in PDG in d : U

∃Pi ⇐⇒ ∃di : Ui

∃Pi → Pk
ontrol �ow edge ⇐⇒ di predi
ate variable ∈ Uk

∃Pi → Pk data �ow edge =⇒ di ∈ UkBased on the above, it
an be shown that a Pij → Pkl edge exist in the DDG if and onlyif di ∈ Uk and the di variable is last de�ned in ij before the l step (LD(di, l) = ij).In the
ase of demand-driven algorithms, the equivalen
e was shown through transformingthe algorithm into a graph-
oloring algorithm using equivalent transformations. It
olors thepoints of the graph rea
hable from a start node. Instru
tions belonging to the
olored pointsform the DDG-based sli
e.To show that the global algorithms
ompute the DDG-based sli
es we use indu
tion. Inthe beginning the sets used by the algorithms are empty, whi
h is trivially
orre
t beforepro
essing any tra
e elements. Then suppose that at the beginning of the iteration thatpro
esses ij the sets
ontain instru
tions or a
tions that are rea
hable from the
orrespondingDDG-node. Finally, regarding the algorithms we show that if the assumptions are
orre
tbefore pro
essing ij then they remain
orre
t after pro
essing it too.Own
ontributionsClassi�
ation of the algorithms, the elaboration of the four new algorithms (demand drivenforward, global ba
kward pro
essed forward sli
es, and the two parallel) are joint
ontribu-tions. Showing that the sli
es are equivalent to the DDG-based sli
es is my own
ontribution.Results were published in [7℄ and in the te
hni
al report [8℄.II/2. Implementation of d:U based sli
ing algorithmsWe implemented the dynami
 sli
ing algorithms for C and Java languages. To sli
e realC programs several problems, su
h as pointers, fun
tion
alls and jump statements mustbe solved. As a �rst step, we modi�ed the d : U representation a

ording to the need ofrepresenting C instru
tions. For C programs, the d : U representation will
ontain a sequen
eof d : U items for ea
h instru
tion as:
i. 〈(d1 : U1), (d2 : U2), . . .〉 .The sequen
e order is important and determined by the `exe
ution-order' of the
orrespond-ing sub-expressions.The exe
ution history was also modi�ed. We added some te
hni
al information to it, likememory addresses, blo
k entry/exit events, fun
tion
all/return events, et
. This extended

EH is
alled TRACE . The TRACE is produ
ed by �rst instrument the program (addinginstru
tions to it), then exe
uting the instrumented version.The handling of pointers was solved by
onverting everything to memory lo
ations (whenit is possible). Thus, during the algorithm's exe
ution, we need another d : U stru
ture,
alled dynami
 d : U . This dynami
 d : U
ontains the memory lo
ations, and the algorithmworks on it. 8

Handling pointersThe address of a variable does not
hange in its s
ope, so after it is determined it
an beused any number of times. But the value of a pointer
an
hange at any time and mustbe determined every time the pointer o

urs. Thus, the instrumented program writes theseaddresses into the TRACE using the fun
tions remember() for variables and dump() forpointers: int x, *p; int x, *p;remember("x", &x, sizeof(int));remember("p", &p, sizeof(int*));1. x=1; x=1;2. p=&x; p=&x;3. *p=2; *dump("PTR1", p,, sizeof(int))=2;4. print(x); print(x);The stati
 and dynami
ally resolved d : U of the program and the
omputed sli
es forline 4. � provided that means that variables x and p has the addresses 01 and 02 � are thefollowing: line def : USE a
tion def : USE Slice1 x : ∅ 1
1 01 : ∅ ∅2 p : ∅ 2
2 02 : ∅ ∅3 PTR1 : {p} 3
3 01 : {02} {2}4 OUT : {x} 4
4 OUT : {01} {2, 3}In the C language the arrays and the pointers are pra
ti
ally the same and the
onversionfrom one to the other is quite simple. The ith element of an array t, denoted by t[i℄,
anbe expressed as a pointer *(t+i). Then, when an element of an array is referen
ed, it istreated as a pointer in the d : U and then its address is written out.The o�set of the members of a stru
ture
ould be determined stati
ally but the
omputa-tion of dynami
 addresses would be quite
ompli
ated. Instead, the members of a stru
turewill also be treated as pointers. In this way the stru
ture member a

esses are redu
ed topointers. The stru
tures themselves are not
onverted; they are handled as regular variables.The address itself does not
orre
tly des
ribe a variable. For example the address of astru
t and its �rst member are the same, but assigning a new value to a whole stru
tureindi
ates dependen
ies through all its members. Thus, sizes are also re
orded by remember()and dump().AlgorithmOur method for sli
ing C programs works as follows. First, the input program is analyzed andinstrumented, and the stati
 d : U representation is built. Next, the instrumented programis
ompiled and exe
uted to produ
e the TRACE . Finally, the dynami
 sli
e algorithm isexe
uted using the previously
reated d : U representation and TRACE .To handle the TRACE and
onvert variables to memory addresses, the TRACE handlingloop of the algorithms are modi�ed as follows. Based on the type of the a
tual TRACEelement, the following a
tions must be taken.

• fun
tion begin mark: The pro
essing of the a
tual d : U item is suspended and theposition is pushed on a sta
k.
• fun
tion end mark: The pro
essing
ontinues at the d : U position saved on the top ofthe sta
k. The value is removed from it.9

• EH element: The
urrent a
tion will be the one spe
i�ed by the element, the pro
essing
ontinues with its �rst d : U item.
• other: The unresolved referen
es are translated to memory addresses based on thiselement.The variables of the stati
 d : U are resolved in the dynami
 d : U a

ording to their type:
• S
alar variables. They have a
onstant address in the s
ope where they are de
lared.The addresses are resolved by simulating the sta
k of the C program (using addressesand blo
k entry/exit events). The dynami
 d : U uses the addresses.
• Dereferen
e variables. Denoted by PTRn, where n is a global
ounter for ea
h deref-eren
e o

urren
e. They
an be resolved dire
tly from the TRACE .
• Predi
ate variables. Denoted by Pn, where n is the serial number of the predi
ateinstru
tion. The depth of the program
all sta
k is appended to them in the dynami

d : U , to avoid
ollisions due to re
ursive
alls.
• Output variables. Denoted by OUTn, where n is the instru
tion number. Outputvariables are a kind of `dummy' variables that are generated at those pla
es where aset U is used but no other variable takes any value from it. They remain un
hangedin the dynami
 d : U .
• Fun
tion
all argument variables. Variables denoted by ARG(f, n), where f is a fun
-tion name and n is the fun
tion argument (parameter) number. An argument variableis de�ned at the fun
tion
all site and used at the entry point of the fun
tion. Theyremain un
hanged in the dynami
 d : U .
• Fun
tion
all return variables. Denoted by RET (f), where f is a fun
tion name. Areturn variable is de�ned at the exit point of the fun
tion and used at the fun
tion
aller after returning. They remain un
hanged in the dynami
 d : U .After it, if the a
tual dynami
 d : U item
an be pro
essed (e. g.
ontains no unresolvedvariables) then it is pro
essed.Own
ontributionsThe handling of variables in the C sli
ing algorithm, thus assigning sour
e
ode referen
esand runtime memory addresses is my own result. The results were published in [10℄ and [12℄.II/3. Evaluation of d:U based sli
ing algorithmsWe made two kinds of evaluation. First, we analyzed the
omplexities of our six sli
ingalgorithms and
ompared them to the DDG based method. Se
ond, we made di�erentmeasurements with the C and Java implementations.ComplexitiesWhen time and spa
e requirements are elaborated, we
on
entrate on the
ore of the algo-rithms. For example, the reading and storing of the tra
e or the building and storing of thestati
 representation of the program are not
ounted. We also omit modi�
ations requiredfor a
ertain implementation. 10

timeAlgorithm maximum averageDemand-driven ba
kward J · V · log(J) J + DEP · log(J)Demand-driven forward J · V JPra
ti
al algorithms J · I · V · log(I) J · DS · log(DS)Parallel algorithms J2 · (log(I) + V · log(J)) J · DEP · log(DS · DEP)DDG: one sli
e J · V DEPDDG: building and one sli
e J · V J + DEPDDG: all sli
es J2 · V J · DEPTable 2: Computational
omplexities of sli
ing algorithmsspa
eAlgorithm maximum averageDemand-driven ba
kward J JDemand-driven forward V V DEFPra
ti
al algorithms V · I V DEF · DSParallel algorithms J · (I + V) J · DS + V DEF · DEPDDG J · V JTable 3: Spa
e
omplexities of sli
ing algorithmsWe summarized the
omputational and spa
e requirements of the six d : U-based andthe DDG-based algorithms on tables 2 and 3. The notations we used: J is the length of theexe
ution history; I is the number of instru
tions; V is the number of program variables;
V DEF is the number of de�ned variables during program exe
ution; DS is the average sli
esize; DEP is the average number of points rea
hable from a
ertain node in the DDG. (DSis related to I, while DEP is related to J .) Values presented for demand-driven algorithmsdenote the
omputation of one sli
e only, while values presented for pra
ti
al and parallelalgorithms denote the
omputation of all sli
es.In a general
ase our demand-driven algorithms
an be more e�e
tive than the DDG-based method, be
ause they determine the sli
es while traversing (a part of) the EH onlyon
e, and does not require a separate full traversal, whi
h is needed in the DDG-basedmethod. Moreover, the number of dynami
 dependen
es kept in the memory at a time islimited, thus their spa
e requirements are also smaller (and it is true not only for the forwardsli
ing, where it is obvious due to V DEF ≤ J).The time requirements of the pra
ti
al algorithms in a general
ase are not better orworse than that of the DDG-based method. As DS is related to the size of the program it isbounded, while DEP is related to the length of the EH , thus potentially unbounded, witha suitably long exe
ution tra
e the d : U based method seems to be more pra
ti
al. The
O(V DEF ·DS) spa
e requirements of our algorithms are more pra
ti
al then the O(J) spa
erequirement of the DDG-based method in a general
ase (taking into
onsideration that inreal appli
ations the value of V DEF is rather dependent on V than on J).However, our parallel algorithms are obviously worse than the DDG-based method re-garding both time and spa
e requirements.Measurements with the C implementationThe aim of the measurements made with the C implementation was the veri�
ation of thealgorithms' pra
ti
al usability. We made experiments with the demand-driven and pra
ti
al11

ba
kward implementations on �ve small programs: b
dd, unzoo, bzip, b
, and less. Duringthe measurements, we re
orded some properties of the test programs and the algorithms.Our �ndings were:
• No relation was found between the sli
e size and the length of the exe
ution history.
• The
orrelation between the number of stati
 variables (in the program
ode) anddynami
 variables (allo
ated during exe
ution) is relatively high 0.73. Based on theresults repla
ing the variables to memory lo
ations
auses no problem resulting fromthe multipli
ation of the number of variables.
• For pra
ti
al usability, the relation between the number of set operations and the sizeof the program or the length of the exe
ution history is important. The maximal sizeof the sets and the average number of set operations per step are
hanged more or lesstogether with program size. We also found, that the maximal set size did not growsigni�
antly with the progress of pro
essing the tra
e.
• In
ase of the demand-driven algorithm a longer exe
ution history did not imply thegrowth of the algorithm's iteration steps.
• The size of the set that in�uen
es the number of iterations of the demand-drivenalgorithm was highly
orrelated with the sli
e sizes.As a summary, we
an
on
lude that fa
tors that determine the exe
ution time of thealgorithms (number of dynami
 variables or set operations) are mainly depend on stati

omponents, and the number of iteration steps of the demand-driven algorithm is mu
hsmaller than the length of the EH .Measurements with the Java implementationThe measurements made with the Java implementation were fo
used on di�erent sli
e sizes,namely the relation between stati
, dynami
 and union sli
es were measured. Stati
 sli
eswere
omputed using the Indus [15℄ Java stati
 sli
er.Our measurements were made on �ve small open sour
e Java programs (RayTra
er,JSubtitles, NanoXML/DumpXML, java2html, and dynjava) with about 100 test
ases perprogram. Statisti
s on the number of exe
uted instru
tions
an be seen on Table 4.Exe
uted instru
tionsProgram minimum maximumRayTra
er 2, 598, 546 21, 525, 307, 460JSubtitles 516, 213 55, 459, 126NanoXML 910, 806 94, 754, 237java2html 1, 541, 531 20, 370, 505dynjava 4, 019, 365 6, 369, 636Table 4: Exe
uted instru
tionsOur �ndings were:
• Union sli
es are mu
h smaller than stati
 sli
es.
• The sizes of the forward union sli
es are lower than the sizes of the ba
kward unionsli
es. 12

• The number of smaller sli
es among the forward sli
es is higher, but the maximal sizesmore or less the same as the maximal sizes of the ba
kward sli
es.
• The
orrelations between union sli
e sizes and instru
tion
overage are between 0.89and 0.96. It is good, be
ause
overage
an be exa
tly determined, thus the �nal sli
esize
an be approximated.So, important results are that the sizes of the union sli
es are mu
h lower than stati
sli
e sizes, and that the growth of the union sli
es (by adding more and more dynami
 sli
es)are highly
orrelated with the instru
tion
overage growth.Own
ontributionsThe evaluation of the theoreti
al algorithms is my own result, whi
h was summarized in [7℄and elaborated in a te
hni
al report [8℄. The evaluation of the C implementation is a jointwork, published in the papers [10℄, [12℄ and in the report [8℄. The evaluation of the mea-surements made with the Java implementation is a joint work too, and it was publishedin [23℄.A
knowledgementsThe dissertation summarizes results that were the results of a team work. Although, some-times the boundaries of the individuals' works are
lear, the results are hard to be interpretedseparately. I would like to thank Tibor Gyimóthy for his guidan
e,
o-authors of our papersÁrpád Beszédes, Csaba Faragó, Gabriella Tóth, Judit Jász, Feren
 Fis
her, Zsolt Szabó,Attila Szegedi, Szabol
s Faragó, Vá
lav Rajli
h, János Csirik, and my
olleagues Feren
Havasi, Ákos Kiss, László Vidá
s, István Siket, Rudolf Feren
 and those I did not mentionhere by name for the joint work.I would like to thank my family, my wife, my
hildren and my parents for their patien
eand support.Referen
es[1℄ Hiralal Agrawal. Towards Automati
 Debugging of Computer Programs. PhD thesis,Purdue University, 1992.[2℄ Hiralal Agrawal and Joseph R. Horgan. Dynami
 program sli
ing. In Pro
eedings of theACM SIGPLAN'90 Conferen
e on Programming Language Design and Implementation,number 6 in SIGPLAN Noti
es, pages 246�256, White Plains, New York, June 1990.[3℄ Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. E�
ient andpre
ise dynami
 impa
t analysis using exe
ute-after sequen
es. In Pro
eedings of the27th International Conferen
e on Software Engineering (ICSE'05), pages 432�441, May2005.[4℄ Robert S. Arnold. Software Change Impa
t Analysis. IEEE Computer So
iety Press,Los Alamitos, CA, USA, 1996.[5℄ Árpád Beszédes. Forráskód Analízis és Szeletelés a Programmegértés támogatásához.PhD thesis, Szegedi Tudományegyetem, Matematika- és Számítástudományok DoktoriIskola, Szeged, November 2004. 13

[6℄ Árpád Beszédes, Tamás Gergely, Szabol
s Faragó, Tibor Gyimóthy, and Feren
 Fis
her.The dynami
 fun
tion
oupling metri
 and its use in software evolution. In Pro
eedingsof the 11th European Conferen
e on Software Maintenan
e and Reengineering (CSMR2007), pages 103�112. IEEE Computer So
iety, Mar
h 21�23, 2007.[7℄ Árpád Beszédes, Tamás Gergely, and Tibor Gyimóthy. Graph-less dynami
 dependen
e-based dynami
 sli
ing algorithms. In Pro
eedings of the Sixth IEEE International Work-shop on Sour
e Code Analysis and Manipulation (SCAM 2006), pages 21�30. IEEEComputer So
iety, September 27�29, 2006.[8℄ Árpád Beszédes, Tamás Gergely, and Tibor Gyimóthy. Investigation of graph-less dy-nami
 program sli
ing algorithms. Te
hni
al report, University of Szeged, 2007.[9℄ Árpád Beszédes, Tamás Gergely, Judit Jász, Gabriella Tóth, Tibor Gyimóthy, and Vá-
lav Rajli
h. Computation of stati
 exe
ute after relation with appli
ations to softwaremaintenan
e. In Pro
eedings of the 23rd IEEE International Conferen
e on SoftwareMaintenan
e (ICSM 2007), pages 295�304. IEEE Computer So
iety, O
tober 2�5, 2007.[10℄ Árpád Beszédes, Tamás Gergely, Zsolt Mihály Szabó, János Csirik, and Tibor Gyimóthy.Dynami
 sli
ing method for maintenan
e of large C programs. In Pro
eedings of the 5thEuropean Conferen
e on Software Maintenan
e and Reengineering (CSMR 2001), pages105�113. IEEE Computer So
iety, Mar
h 14�16, 2001. Best paper of the
onferen
e.[11℄ Shawn A. Bohner and Robert S. Arnold, editors. Software Change Impa
t Analysis.IEEE Computer So
iety Press, 1996.[12℄ Csaba Faragó and Tamás Gergely. Handling pointers and unstru
tured statements inthe forward
omputed dynami
 sli
e algorithm. A
ta Cyberneti
a, 15:489�508, 2002.[13℄ Tibor Gyimóthy, Árpád Beszédes, and István Forgá
s. An e�
ient relevant sli
ingmethod for debugging. In Pro
eedings of the Joint 7th European Software EngineeringConferen
e and 7th ACM SIGSOFT International Symposium on the Foundations ofSoftware Engineering (ESEC/FSE'99), number 1687 in Le
ture Notes in ComputerS
ien
e, pages 303�321. Springer-Verlag, September 1999.[14℄ Susan Horwitz, Thomas Reps, and David Binkley. Interpro
edural sli
ing using depen-den
e graphs. ACM Transa
tions on Programming Languages and Systems, 12(1):26�61,1990.[15℄ Indus proje
t: Java program sli
er and stati
 analyses tools.http://indus.proje
ts.
is.ksu.edu/.[16℄ Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson. Interpro
edural dynami
 sli
-ing. In Pro
eedings of the 4th International Conferen
e on Programming LanguageImplementation and Logi
 Programming (PLILP'92), volume 631 of Le
ture Notes inComputer S
ien
e, pages 370�384. Springer-Verlag, 1992.[17℄ Bogdan Korel and Janusz W. Laski. Dynami
 program sli
ing. Information Pro
essingLetters, 29(3):155�163, O
tober 1988.[18℄ Bogdan Korel and Janusz W. Laski. Dynami
 sli
ing in
omputer programs. TheJournal of Systems and Software, 13(3):187�195, 1990.14

[19℄ William Landi and Barbara G. Ryder. Pointer-indu
ed aliasing: a problem taxonomy. InPOPL '91: Pro
eedings of the 18th ACM SIGPLAN-SIGACT symposium on Prin
iplesof programming languages, pages 93�103. ACM Press, January 1991.[20℄ Vá
lav Rajli
h and Prashant Gosavi. In
remental
hange in obje
t-oriented program-ming. IEEE Software, 21(4):62�69, 2004.[21℄ Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder, and Ophelia Chesley. Chianti:A tool for
hange impa
t analysis of Java programs. In Obje
t-Oriented ProgrammingSystems, Languages, and Appli
ations (OOPSLA'04), pages 432�448, O
tober 2004.[22℄ B. G. Ryder. Constru
ting the Call Graph of a Program. IEEE Transa
tions on SoftwareEngineering, SE-5(3):216�226, May 1979.[23℄ Attila Szegedi, Tamás Gergely, Árpád Beszédes, Tibor Gyimóthy, and Gabriella Tóth.Verifying the
on
ept of union sli
es on Java programs. In Pro
eedings of the 11thEuropean Conferen
e on Software Maintenan
e and Reengineering (CSMR 2007), pages233�242. IEEE Computer So
iety, Mar
h 21�23, 2007.[24℄ Frank Tip. A survey of program sli
ing te
hniques. Journal of Programming Languages,3(3):121�189, September 1995.[25℄ Mark Weiser. Program sli
ing. IEEE Transa
tions on Software Engineering, SE-10(4):352�357, 1984.[26℄ Lee White and Khalil Abdullah. A �rewall approa
h for the regression testing of obje
t-oriented software. In 10th International Software Quality Week (QW'97), page 27, May1997.[27℄ Lee White, Khaled Jaber, and Brian Robinson. Utilization of extended �rewall forobje
t-oriented regression testing. In Pro
eedings of the 21st IEEE International Con-feren
e on Software Maintenan
e (ICSM'05), pages 695�698, September 2005.[28℄ Zhifeng Yu and Vá
lav Rajli
h. Hidden dependen
ies in program
omprehension and
hange propagation. In Pro
eedings of the 9th International Workshop on ProgramComprehension (IWPC'01), pages 293�299, May 2001.

15

