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1IntrodutionThis booklet summarises the sienti� results of the author of the Ph.D. dissertation entitled�Quotient and Power methods for the Graph Colouring Problem�. The author developed a gen-eral framework for graph olouring methods, where the traditional olouring sheme is de�ned viaspeial graph homomorphisms motivated by the Zykov theorem [64; 65℄. These speial homo-morphisms proved useful in the design of algorithms ([35; 37�43℄). This summary is struturedin a similar way to the thesis itself. The results an be separated into di�erent groups aordingto the parts of the graph olouring framework. The author de�ned the problem via ertain graphhomomorphisms using quotient and power graphs. The author alled these Quotient and Powermethods. Then he desribed these graphs and homomorphisms by matrix representations withsuitable operations, resulting in his Merge Models with his nomenlature [37; 40; 41℄. MergeModels provide a novel desription of the olouring problem. The operations (i.e. the MergeOperations) subsequently hange the state of the model and diret it to a possible solution ofthe original graph olouring problem. The author developed strategies in the model alled MergeStrategies [35; 38; 42; 43℄, whih de�ne possible diretions to a solution. Furthermore, the au-thor onstruted general frameworks (Merge Frameworks) in whih strategies an be embedded[38; 40℄. These frameworks are generalisations of the traditional sequential olouring shemes,hene existing algorithm strategies an be embedded into one of them. Suh an embeddingmay onsiderably derease the omputational e�orts. Moreover, the embedding supports thestrutural analysis of the algorithms in a ommon way and makes available a natural extensionof them, whih may result in an inrease in their performane. Suh algorithms generate a se-quene of model operations aording to the strategy. The end of the sequene is a andidatesolution for the original graph olouring problem. The author provided several novel algorithmsin [35; 37�43℄. These algorithms proved useful in an experimental analysis and theoretial study.Graph Colouring ProblemA graph is a pair G = (V, E) of disjoint �nite sets, where E ⊆ V × V . The elements of V arethe verties of the graph G, the elements of E are its edges. Put brie�y, graph vertex k-olouring(or simply graph k-olouring) is an assignment of olours from a olour set C for eah vertex,where the number of the olours in the olour set C is k. The problem ours in the olouringproess when we onsider edges as onstraints.De�nition 1 (Proper graph vertex k-olouring) A proper graph vertex k-olouring of
G = (V, E), if it exists, is a k-olouring where adjaent verties are assigned di�erent olours:

c : V
sur
−−→ C , vi 7→ c(vi) , ∀(vi, vj) ∈ E ⇒ c(vi) 6= c(vj) , |C| = kDe�nition 2 (Graph minimum vertex olouring) Graph minimum vertex χ-olouring isa proper χ-olouring, where χ is the smallest integer needed to get a proper olouring.



2Here the Graph Colouring Problem is the graph minimum vertex olouring problem. An examplefor this an be found in Figure 1. The smallest number of olours that an properly olour vertiesis alled the hromati number of a graph and will be denoted by χ. Figure 1(a) shows a
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v1 0 1 1 0 · 1
v2 1 · 1 · · ·
v3 1 1 · 1 · 1
v4 0 · 1 0 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·(b) Adjaeny matrix v1
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v6() A proper olouringFigure 1: A graph and a proper 3-olouring, whih is the minimum.drawing of a graph, while the orresponding adjaeny matrix of the graph 1 is illustrated inFigure 1(b), whih desribes the edge relation between the verties and Figure 1(a). Figure 1()shows a proper olouring of the graph, whih is a minimum as well, where sets {v1, v4}, {v2, v6}and {v3, v5} are the olour lasses. Colour lasses must form independent sets2 in order to geta proper olouring. The 0-s in Figure 1(b) represent an independent set.Lots of algorithms have been reated and studied to solve the graph minimum vertex olouringproblem. Atually, these algorithms ome in two main types: the exat algorithms where �ndingof a solution is guaranteed, but the time involved may be onsiderable due to the omplexity of theproblem (- whih is NP-omplete [45℄); and the non-exat algorithms, that is, the approximationalgorithms where a solution is not guaranteed but one may �nd a solution or a good approximationof it in a reasonable time. The latter methods may have stohasti omponents. Some reentsurveys of these methods an be found in [23; 32; 47; 63℄ The graph olouring problem an besolved exatly by an exhaustive searh, i.e. systematially exploring a searh spae [15; 16; 34℄.Unfortunately, when the size of the instanes grows the running time for an exhaustive searhsoon beome prohibitively large, even for instanes of fairly small searh spae. To improve thee�ieny of the searh, several heuristis were developed to generate a 'good' starting andidatesolution whih may be lose to an optimal solution [4; 17; 26�28; 46; 49; 55; 58; 60�62℄. Thenstarting the exploration proess with the generated andidate solution, a systemati searh anonsiderably improve the performane. Usually, the exploration is based on an examination ofthe loal environment of the generated solution and it assumes that a neighbourhood relationis de�ned on the elements of the searh spae. This approah led to the development of loalsearh methods [1; 8; 10; 23; 29; 31℄. These methods usually apply some heuristi to generatea new andidate solution from an existing one in its loal environment. But though a heuristian onsiderably improve a solution they do not always provide an optimal solution, hene these1The 0-s have been replaed by dots for the sake of larity.2There is no edge between the verties.
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Figure 2: Connetion and ontration steps in a Zykov-tree. Assigning the same olour for
v2 and v5 must be avoided, beause this always results in a non-optimal olouring, hene
v2v5 edge addition is reasonable, but the same olour assignment for v2 and v6 supports theminimum olouring, therefore they an be ontrated.methods belong to the lass of approximate algorithms. Many algorithms studied today employa stohasti proess in the loal searh to guide a andidate solution to a suboptimal solution or,hopefully, to an optimal solution. Several of these approahes maintain a population of andidatesolutions. Examples of suh methods inlude tabu-searh [3; 31℄, simulated annealing [9; 33℄and ant olony optimisation [5; 12℄. One popular approah for dealing with graph olouring isevolutionary omputation [2; 13; 14; 19; 20; 22; 25; 30; 48; 56; 59℄. In the development ofalgorithms for graph olouring, various integer programming formulations of the problem ouldbe used. Several suh formulations, usually involving binary variables, have been proposed. Thesevariables an identify di�erent strutures: e.g. independent sets [50℄; a variable for eah possibleolour and vertex [11; 51; 53℄; ayli orientations of a graph [21℄. In several formulationsan optimal solution an be represented as a binary vetor of the variables. These binary vetorsonstitute a polytope, a olouring polytope. These polytopes are the entral topis of the analysisof the problem based on integer programming approahes [6; 24℄. Several relaxed versions ofthese integer programmes have been developed to approximate a fae of a olouring polytope[18; 44; 50; 52; 57℄. Di�erent tehniques may improve the e�ieny of these methods e.g. olumngeneration with branh-and-bound [7; 50; 57℄ or branh-and-ut [53℄. Atually the branh-and-bound tehnique impliitly uses Zykov's idea (see [57℄). In the middle of the last entury Zykovame up with the idea of applying an edge addition or vertex ontration instead of a olourassignment in the olouring problem (see Figure 2). During these operations new graphs arereated from the original one whih may inherit the parent graph's properties.In the thesis we generalise Zykov's approah by introduing di�erent models (Merge Models).We will demonstrate the e�ieny of these novel models via a theoretial analysis and experi-



4mental study. Merge Models reformulate the original problem. In this reformulated environmentthree di�erent general frameworks will be introdued to desribe an abstration for algorithmsbased on the Merge Models. They provide a uniform and ompat way in whih algorithms anbe de�ned. Embedding algorithms in the same ommon framework supports both their stru-tural and performane omparison, whih an be anyway problemati. Traditional olouringshemes an be identi�ed in one of the frameworks and extended shemes may be provided. Theframework itself generalises the formal sequential olouring approah. With this generalisationan algorithm an be extended in a natural way, whih may result in new algorithms. The novelaspet of the Merge Models implies the development of novel olouring strategies, i.e. MergeStrategies. The Merge Models desribe speial graph homomorphisms, hene their analysis mayreveal onnetions between strategies and di�erent graph properties. Many novel e�ient MergeStrategies will be provided whih outperform several standard benhmark algorithms. In additiona general strategy design is disussed, whih allows the appliation of mahine learning tehniquesin the algorithm design.Quotient and Power MethodsThe author de�ned graph olouring proesses as a series of homomorphisms using quotient orpower graphs and multigraphs, where the verties whih get the same olour will be 'glued' or'grouped' together to form new vertex sets (see Juhos et al. [37; 41℄), as illustrated in Figure 3.The author alled the new olouring methods whih are based on these priniples Quotient andPower methods. The goal of a Quotient/Power method is to �nd a suitable homomorphism whihmaps the original graph 3 into a omplete graph or an appropriate graph whih is homomorphiwith a omplete graph. The homomorphism obtained de�nes a olouring of the original graph.In order to support the design of sequential olouring algorithms a homomorphism is reatedas a omposition of a series of intermediate homomorphisms. These homomorphisms produehelpful intermediate graph strutures whih may be exploited for an e�ient olouring and alsohelp to provide a deeper insight into the olouring proedure. Moreover, they allow us to designe�ient new algorithms or redesign existing graph olouring algorithms in a framework supportedby quotient or power graphs (see Juhos et al. [37�43℄).Merge ModelsThe relation between the original graph and a quotient or power graph/multigraph is de�ned bya graph homomorphism. The author introdued four kinds of matrix operations, alled MergeOperations (or 'merges' for short) to map the adjaeny matrix of the original graph to its fourdi�erent homomorphi images: alled Binary/Integer Merge Square (A/A) and Binary/IntegerMerge Table (T/T) matries [37; 41℄. In general they are referred to as a Merge Matrix (M).3Or an equivalent reformulation of the original graph.



5Subsequent Merge Operations will produe a omposition of the homomorphisms until no furtherMerge Operation is possible. The merge ondition is de�ned by Mij = 0; that is, in this ase
Mi and Mj rows (and olumns) are mergeable, as an be seen in Figure 1(b). The merge resultsin a M/ij Merge Matrix. With the last possible merge, the last homomorphi image de�nesa andidate solution for the olouring, where the merged rows and the orresponding vertiesdetermine the olour lasses. Figure 3 shows an example for eah Merge Operation, while Table1 gives an exat desription of them via row and matrix-based formulations. Moreover, Table 1shows a relation between the Binary Merge Matries (A and T ) and their Integer ounterparts Aand T. Merge Tables haraterise a relation between the original verties and the neighbouringRow-based formula Matrix-based formulaT[t+1]

i = a + b T[t+1]
j

= 0 T[t+1] = (I + W )T[t]
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i = a ∨ b T

[t+1]
j = 0

T T [t+1] = T [t] ∨ PT [t] −MT [t]
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i − a ◦ b A
[t+1]
j = 0

T

A
[t+1]_i = (A

[t+1]
i )T A

[t+1]_j = 0Table 1: Desription of di�erent merge operations when the a and b, the i-th and j-thmergeable rows of a Merge Matrix are merged. The supersript [t] de�nes the t-th mergestep and P = Ii ⊗ Ij, R = Ij ⊗ Ij, W = P − R, where Ii is the i-th row of the identitymatrix I. Mi stands for the i-th row of a matrix M , while M_i denotes its the olumn. Theoperation ◦ is alled the Hadamard-Shur produt, while ⊗ is alled the dyadi produt.olour lasses. We may assoiate rows of an adjaeny matrix with olour lasses or power vertiesand olumns with verties of the original graph. As previously mentioned, there are two subtypes,namely a weighted type (Integer for power multigraphs) and an unweighted type (Binary for powergraphs), based on whether the number of the multiple edges are taken into aount in the mergingproess. Hene, there are two basi row operations the addition and the pieewise binary oroperations. When they are applied on the rows only, we arrive at power multigraphs/graphs, i.e.Integer/Binary Merge Tables, but applying them on the rows and on the relevant olumns as well,we arrive at a quotient multigraph/graph, i.e. Integer/Binary Merge Squares. In Merge Squares,the rows and the olumns of the matrix orrespond to olour lasses, and their edges de�ne arelation between the olour lasses. The representations and the operations form new olouringmodels, alled Merge Models. Eah row of a Merge Matrix orresponds to an independent set inthe original graph. Reall that olour lasses are independent sets and eah vertex onstitutes aone-element independent set in the original graph. Atually, a Merge Operation reates the unionof two independent sets in the traditional sense. Figure 4 shows how the strutures of di�erentMerge Matries are related to the appropriate graphs. These models support parallel softwareand hardware implementations. All the models have their own strong points, and they an assisteah other in di�erent ways. The author obtained signi�ant improvements, both theoretially
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{v1, v4}(a) Power multigraph G�{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Integer Merge Table. Addition is performed onthe r1 and r2 rows.
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v6 {v1, v4}() Power graph G/{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Binary Merge Table. Pieewise OR operation isperformed on the r1 and r2 rows.
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{v1, v4}(e) Quotient graph G � {v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 2 1 1
r2 1 · 1 · ·
r3 2 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(f) Integer Merge Square. Additions are performedon the r1 and r2 rows and v1 and v4 olumns.
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{v1, v4}(g) Quotient graph G/{v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 1 1 1
r2 1 · 1 · ·
r3 1 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(h) Binary Merge Square. Pieewise OR operationsare performed on the r1 and r2 rows and v1 and v4olumns.Figure 3: Results of di�erent merge operations.
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Figure 4: The original graph, a sub-Integer Merge Table and then a sub-Integer MergeSquare of oloured verties when olouring is in progress. Co-strutures our on the sidesof the sub-matries and they sum and ount the non-zero elements. Here µl denotes the sumof the degree of the verties in a olour lass, µr denotes the number of adjaent verties ofa olour lass, µt denotes the number of adjaent oloured verties, and µb stands for thenumber of adjaent olour lasses.and via experiment, when an algorithm applied one of these models [40℄. Exploiting their bene�ts,the author used the models to design powerful graph olouring algorithms in [35; 38�40; 42; 43℄.Merge FrameworksMerge Models provide a model for the graph olouring problem via matrix representations andoperations. The author introdued three general frameworks for graph olouring algorithmssupported by Merge Models in [41; 42℄. These are generalisations of the traditional sequentialolouring shemes. Merge Models replae the olour assignment operation with a Merge Op-eration, and this eliminates the di�erene between the olour seletion and the vertex seletionstrategies. Merge Models de�ne these di�erent seletion strategies in a ommon way as a om-mon row seletion strategy. Therefore, a general row seletion strategy an operate as a olouredor unoloured row seletion when we would like to model the traditional seletion strategies. Herethe olours only indiate whether a row has already been taken into aount in the merge proess.Depending on the order of the seletion of the di�erent (oloured/unoloured) state rows, twogeneral frameworks an be de�ned: either we hoose an unoloured row �rst and then hoose asuitable oloured one (UC Merge Framework) or, onversely, we an hoose a oloured �rst andthen �nd an appropriate unoloured row for the merge (CU Merge Framework) [41℄. The UCand the CU frameworks provide a generalisation of the sequential olouring shemes (see Figure5). The choose-unc and choose-col funtions/strategies are not de�ned preisely here. Theyan be replaed by di�erent onrete hoie strategies whih operate on oloured (Mcol) and un-



8 UC Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 u← arg choose-unci{M
unc
i } //Choose an unoloured row index4 c← arg choose-coli{M

col
i } //Choose a oloured row index,a where Muc = 05 M ← merge(M, {u, c}) //Merge u and c rows/olumns b6 until Munc is empty7 return MCU Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 c← arg choose-coli{M
col
i } //Choose a oloured row index4 u← arg choose-unci{M

unc
i } //Choose an unoloured row index, where Mcu = 05 M ← merge(M, {u, c}) //Merge u and c rows/olumns6 until Munc is empty7 return MaMuc = Mcu = 0 is the merge ondition, i.e. there is no edge.bFor Merge Squares, olumns are also a�eted in a Merge Operation.Mcu = Muc = 0 is the merge ondition, i.e. there is no edge.Figure 5: The UC and CU Merge Frameworksoloured (Munc) sub-merge-matries, respetively. These sub-merge-matries onsist of oloured(Mcol

i ) and unoloured (Munc
j ) rows of the original merge matrix. Figure 4 shows examples foroloured sub-merge-matries. The choose-unc funtion selets an unoloured row/vertex, while

choose-col selets a oloured row/'olour lass' or alloates a new empty row in the olouredsub-merge-matrix, in order to support the one-operand Merge. In fat, there is no need todistinguish between the oloured or unoloured states of the rows; just take the set of rows andapply a ommon choose strategy suitable for all of them. After, selet an arbitrary row-pairfrom the Merge Matrix by a strategy and merge them. This approah is formulated in the CCMerge Framework [37℄, as shown in Figure 6. The rows of the Merge Matrix orrespond toCC Merge Framework(A adjaeny matrix )1 M ← A2 repeat3 {i, j} ← arg choose{i,j}{Mi,Mj : i 6= j} //Choose two row indiesa, where Mij = 04 M ← merge(M, {i, j}) //Merge i and j rows/olumns5 until M is not mergeable6 return MaMij = Mji = 0 is the merge ondition, i.e. there is no edge.Figure 6: The CC Merge Frameworksolour lasses, i.e. independent sets. An algorithm in a CC Merge Framework selets two olour



9lasses/independent sets and reates the union of them in the traditional sense. The CC MergeFramework is the most general. Even though it overs the UC and CU Merge Frameworks, it isworth de�ning them separately so as to have the possibility of ategorising the algorithms laterMoreover, it is useful in the identi�ation of the traditional shemes. These general frameworkswith the new Merge Models support a ommon strutural analysis of the existing and novelgraph olouring methods, as shown in [38; 40; 42; 43℄. The author demonstrated improvementsin the performane of an algorithm after embedding it into a suitable Merge Model. Withoutany hange in the algorithm steps, the representation of the problem in a Merge Model leads toa redution in the omputational ost. In [19; 59℄, Eiben and van Hemert et al. pointed outthat the number of onstraint heks is a key fator in the omputational ost in most of theolouring algorithms. In traditional shemes, the adjaeny matrix representation plays the keyrole in the GCP4. We have two hoies when olouring a vertex for onstraint heking; eitheralong the already oloured verties (Acol), or along all the neighbours of the vertex onsidered(Aneigh). In the following we will show how to markedly redue the number of onstraint heksby applying our proposed Merge Models (Amm).Corollary 1 ([40℄) Given a random graph Gn,p with �xed p edge probability and given aolouring algorithm A, then the following performane is expeted on average based on ountingonstraint heks #(.):1. Cheking the oloured verties: #(Aol) = O(n2)2. Cheking the neighbours: #(Aneigh) = O(n2)3. Cheking the merged-verties/olour lasses: #(Amm) ≤ O
(

n2

log n

)As the theorem above tells us the asymptoti performane of the algorithms, we an hek theworst ase performane of a olouring algorithm using these di�erent approahes.Corollary 2 ([40℄) Let G be an arbitrary graph, then the following relations hold1. #(Amm) ≤ #(Aol)2. #(Amm) ≤ #(Aneigh)All of these frameworks are de�ned in a uni�ed manner using the Merge Model sheme. Analgorithm in one of these frameworks applies a subsequent seletion of rows of the merge matriesand merges them to ahieve a olouring. None of these frameworks has a onrete strategy forthe hoie of rows for merging. A framework with a onrete hoie strategy, i.e. Merge Strategy,forms a partiular algorithm.Merge StrategiesIn order to get a olouring algorithm, the algorithm steps must be de�ned; that is, a sequeneof the Merge Operations. A Merge Operation takes two rows/olumns of a Merge Matrix and4List based or inidene matrix representations require more operations for graph olouring.



10produes a new Merge Matrix if the merge ondition allows it. By repeating Merge Operationswe will end up with a �nal Merge Matrix where a Merge Operation is no longer possible. Thesequene of the Merge Operations is ruial. It determines the quality of the solution, i.e. thenumber of olours used in the olouring of the original graph. The author desribed variousMerge Strategies in order to generate e�ient merge sequenes, as desribed in [35; 37�43℄.These strategies proved useful in the theoretial and experimental parts of our analysis. Thenovel desription of the olouring proess provides new aspets whih an be exploited in thedesign and analysis of Merge Strategies, as desribed in the following. This strategies assumeBinary Merge Models, but their integer extensions are also available. The importane of theInteger Models are disussed separately. They support the algorithm design, e.g. baktraking ortie breaking, as shown in [40℄. The following strategies de�ne row-pair seletion strategies; thatis, they support the most general strategy, the CC framework choose funtion. Hene they aresuitable for the UC and CU frameworks as well. Let X̂ be the basis of the row-pair seletion,i.e. the choose funtion. An X̂ij element of the matrix is proportional to the probability of theseletion of row i and j for a merge in the next algorithm step 5. The following strategies willde�ne X̂ values. The choose funtion applies the following seletion {i, j} = arg maxij X̂ij .The longest merge sequene. Sine the Merge Matrix rows (Mi-s) represent olour lasses,the main aim is to redue the number of rows by onseutive merges. The longest merge sequeneprodues the fewest rows. The author in [38℄ introdued two novel strategies to generate thelongest merge sequene. The Dot Produt Strategy fouses on the evolution of the number ofnon-zero elements during suessive merges and attempts to keep them as low as possible, using
X̂ij = 〈Mi, Mj〉 [Mij = 0] (1)where [Mij = 0] is the Kroneker delta funtion, where [x = x] := 1, otherwise it is 0 (thisenodes the merge ondition) Mi and Mj are the i-th and j-th rows of a Binary Merge Matrix6. For a Binary Merge Square A, it an be de�ned by

X̂ = AAT ◦ Ā (2)Though the non-zero elements in a Merge Matrix frustrate the merges, the number of zeros assistthem. Hene the Cosine Strategy takes the number of non-zero elements into aount, but alsoonsiders the number of zeros present, using
arg max

i,j
X̂ij = arg max

i,j

〈Mi, Mj〉

|Mi| |Mj |
[Mij = 0] = arg max

i,j

〈Mi, Mj〉

||Mi|| ||Mj ||
[Mij = 0] (3)Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matries. It isreasonable beause the rows of the adjaeny matrix whih orrespond to the same olouredverties in an optimal solution are almost parallel. Their parallel behaviour beomes learer with5X̂ may hange during the steps6For Binary Merge Matries [Mij = 0] ≡ (1 −Mij).



11eah suessive merge. For the Merge Square Model, there is a ertain modi�ation of the MergeMatries based on a semi-de�nite optimisation by Karger et al. [44℄, whih further supportsthe Cosine strategy. Exploiting this fat, the author in [35; 43℄ de�ned the Zykov-tree andLovász-theta strategy.Colour similarities Atually, a 'Zykov-tree and Lovász-theta' strategy is based on the esti-mation of the olour similarities of the verties of the quotient graphs. The adjaeny matrixdesribes an exat olour dissimilarity relation, where the verties in a relation de�ned by theedges annot get the same olour. The opposite approah is the olour similarity relation. Apartiular olouring an be de�ned via a olour similarity relation between the verties, whereonly the same oloured verties are inluded in the relation. This relation an be represented bya {0, 1}-matrix, namely a olouring matrix. It desribes whether two verties are oloured withthe same or di�erent olours. Although the optimal solutions an be represented in this form,they are unknown beause they are the solutions of the problem. Despite this, their average anbe approximated by a solution of a semi-de�nite program (see Karger et al. [44℄), whih providesthe Lovász-theta θ̄:
θ̄ = min

t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E} (4)Hene a non-exat (an approximated) olour similarity relation beomes available between theverties. This an be desribed by a real-valued matrix Zopt, whih is a solution of Eq. 4 and wean de�ne a matrix X̂ by

X̂ = (Zopt + 1) ◦ (1− I)where I is the identity matrix. The largest and the smallest values of X̂ ontain valuableinformation. Using this information and Zykov's work in [64; 65℄, the author reated the'Zykov-tree and Lovász-theta' strategy in [35; 43℄, where quotient graph verties are onneted(arg mini,j{X̂ij : X̂ij < 0}) or merged (arg maxi,j X̂ij) aording to their approximated sim-ilarities (see Figure 2). The approximation beomes more exat with eah subsequent merge,supporting more on�dent deisions of this strategy. To speed-up the algorithm, multiple edgeadditions (X̂ij < 0) or merges (X̂ij > 0.5θ̄) an be performed.Norm minimisation in the resulting state. The Dot Produt Strategy selets two rows Mrand Ms whih produe the maximum dot produt {r, s} = arg maxi,j 〈Mi, Mj〉, then mergesthem. This introdues a minimisation in the entrywise 1-norm7 in the resulting Merge Matrix
∣

∣M/rs

∣

∣ = |M | −maxi,j 〈Mi, Mj〉 = |M | − 〈Mr, Ms〉, thus
arg

(

|M | −max
i,j
〈Mi, Mj〉

)

= arg min
i,j

(|M | − 〈Mi, Mj〉) = arg min
i,j

∣

∣M/ij

∣

∣ (5)A �nal Merge Matrix whih orresponds to an optimal solution has the smallest entrywise normamong the possible merge matries (homomorphi images). Hene, the entrywise norm min-imisation approah is reasonable. In addition suh a Merge Matrix has minimal indued norms7This is valid for all entrywise norms.



12as well. This observation led us to apply the steepest desent norm minimisation strategy, inpartiular the steepest desent Spetral Norm Strategy (indued 2-norm), whih was introduedby the author in [42℄ and was found to be an e�ient strategy with
X̂ij =

{

1

||M/ij||
2

[Mij = 0] i 6= j

0 i = j
(6)The Spetral Norm Strategy must �rst make several trial merges. With the resulting trial mergematries M/ij , this strategy makes spetral norm alulations ∣

∣

∣

∣M/ij

∣

∣

∣

∣

2
to reate a seletion of arow-pair for merging. Calulating the spetral norm is omputationally expensive, but Merikoskiand Kumar one introdued an e�ient spetral norm approximation in [54℄. Let M = A be aBinary Merge Square then

∣

∣

∣

∣A/ij

∣

∣

∣

∣

2
≈

√

∑l
r=1

〈

(A/ij)r, e
〉2

l
(7)where l is the number of rows of the 'trial' Merge Matrix A/ij . Based on Merikoski and Kumar'sresults, the author adapted his Spetral Norm Strategy to an approximated spetral norm strategy[42℄. Owing to this, this strategy an exploit an update mehanism where an investigation of theresulting Merge Matries is no longer needed as it is just based on the urrent Merge Matrix

〈

(A/ij)i, e
〉

= 〈Ai, e〉+ 〈Aj , e〉 − 〈Ai, Aj〉
〈

(A/ij)j, e
〉

= 0
〈

(A/ij)r, e
〉

= 〈Ar, e〉 − 1 r ∈ I
〈

(A/ij)r, e
〉

= 〈Ar, e〉 r /∈ I ∪ {i, j}

(8)
where I is an index set, the set of the ommon one positions of the rows Ai and Aj . HeneEq. 7 an be diretly alulated from the Merge Matrix values without any trial merges. Inaddition, this reformulation revealed a onnetion with the Dot Produt strategy. Eq. 7 providesan e�ient strategy with a Merge Table T as well, but in a diret alulation the third line ofEq. 8 must be replaed with 〈(T/ij)r, e〉 = 〈Tr, e〉. However, in order to get the original formof the approximated Spetral Norm Strategy for Binary Merge Tables, Eq. 7 must be applied tothe T/ijT

T
/ij (symmetri) matrix, whih provides an approximation for the square of the spetralnorm of T/ij . In this ase a similar diret alulation is available.Matrix properties � Merge Paths The author introdued the notion of Merge Paths [42℄.Certain graph properties like matrix norms may be evaluated during the seletion of two rows fora Merge Operation. Gathering these graph properties into a vetor (e.g. eigenvalues), they formthe basis of the deision. The hanges of the property vetor with eah suessive merge desribea path alled the Merge Path. This path is responsible for determining the olouring, and the endof the path de�nes the quality of the olouring (see Figure 7(a)). Unfortunately, the ideal path(whih results in an optimal solution) is of ourse unknown; the task of olouring is to �nd this
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(a) Spetral norm steepest desent minimisation.The ends of the urves are extended in order to havelearer omparison (horizontal lines). (b) An example 3D Merge Path of the three largest eigen-values of a graph during the merges.Figure 7: Evolution of the eigenvalues along a merge sequene. The graph is a 20−hromati,equi-partite graph having 200 verties with a 0.64 edge density from the peak of the phasetransition. The spetral norm value of the �nal Binary Merge Square is χ − 1 = 19 in theoptimal ase, otherwise bigger.path. The author introdued a general strategy whih approximates an optimal Merge Path [42℄.The start and the end points of the path are usually known and the urve of the path may beestimated by using preliminary knowledge. In order to build the knowledge base the Merge Pathapproah an be ombined with arti�ial intelligene methods, suh as instane-based learningor lustering, in aordane with the results desribed in [36℄.Enhaned heuristis and meta-heuristis A non-merge based olour strategy an be extendedand enhaned by reformulating the strategy in a Merge Model. A Binary Merge Square8 is theadjaeny matrix of a quotient graph. Consequently, if a strategy an operate on the adjaenymatrix of the original graph, then the same strategy an ooperate with a merged adjaenymatrix (an intermediate Merge Square) as well. It introdues a dynami reonsideration proesswhere previous deisions of a strategy an be revised after eah Merge Operation by exploitingthe additional information ontained in the intermediate matries. The author in [38℄ showedthe e�ieny of suh an extension.The author in [37℄ applied the strutural properties of the Merge Table Models in the meta-heuristis design. The author introdued a better granular �tness funtion than the traditionalone for the evolutionary solvers of the olouring problem. This resulted in a smoother landsapeof the objetive funtion, whih inreased the e�ieny of the optimisation proess. If ζM(π)denotes the number of non-zeros in a �nal Merge Table (see Figure 4), then the ζ-�tness funtionis f(π) = (kM(π) − χ)ζM(π), where M(π) is the �nal Merge Table orresponding to the πpermutation and a greedy merge/olouring sheme. This approah follows the entrywise normoptimisation of a Binary Merge Table (see the Dot Produt strategy). Moreover, the authorde�ned a mutation whih fores the di�ult verties by a Merge Table Model (for whih theolouring is problemati) in advane in the merge/olour assignment.8Usually the extension an be applied on the other Merge Models as well.



14Merge AlgorithmsThe author in [35; 37�43℄ ombined various novel Merge Strategies with di�erent Merge Frame-works and analysed their performane. The algorithms were ompared with standard benhmarkalgorithms on various benhmark graphs. The experimental analysis showed that the novel MergeAlgorithms perform well in the omparison. They generally outperformed the benhmark algo-rithms espeially in the phase transition region where the problems beome hard. Some resultsof an extensive study an be found in Figure 8, where some of the novel Merge Strategies areembedded into di�erent Merge Frameworks and ompared with benhmark algorithms and eahother. In order to denote an algorithm in the UC Merge Framework we introdued the followingnotation: UCchoose−col
choose−unc , where the choose − unc denotes the unoloured row hoie strategy,while the choose− col denotes the oloured one. We did likewise with the CU Merge Frameworkusing the CUchoose−unc
choose−col denotation. In the CC Merge Framework CC − hoose, the hoosedenotes the only row-pair hoie strategy. The hoose funtions and the Merge Strategies in-trodued by the author were denoted by: 'dotprod' - Dot Produt and 'os' - Cosine; 'σ̃' -approximated spetral norm; 'Zykovθ̄' - Zykov-tree and Lovász-theta9 and 'EAζ ' - evolutionaryalgorithm with the ζ-�tness , while some of the seleted benhmark algorithms are denoted by:'dsatur' - DSatur heuristi and 'Erd®s' - Erd®s heuristi. Furthermore the 'greedy' stands for thegreedy strategy. In order to get a fair omparison eah 'benhmark' algorithm was embeddedinto a suitable Merge Framework applying a suitable Merge Model.ConlusionsThe new olouring approah presented in this thesis demonstrates that graph olouring an bee�etively modelled by quotient or power graphs. It provides a potential redution in omputa-tional ost, as well as a uniform and ompat way in whih algorithms an be de�ned. Embeddingalgorithms in the same ommon framework supports both their strutural and performane om-parison, as making a omparison is sometimes problemati. The framework itself generalisesa formal olouring approah. With this generalisation an algorithm an be naturally extended,whih may result in new algorithms. The novel problem desription yields novel information thatan help us to extrat and support a new sheme of the olouring proess.

9Supersript + will denote multiple edge additions.
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10-hromati random equi-partite graph set onsists of groups with edge probabilities de�nedby 0.1 ≤ pe ≤ 0.9. Eah group has ten graph instanes generated by using the same pe, butdi�erent random seeds {1, 2, . . . , 10} in the generation proess.



16Thesis 1 The author, applying ertain graph homomorphisms, de�ned two general on-epts to rede�ne the graph olouring problem, namely the Quotient and Power meth-ods [37; 40; 41℄. He provided a onrete desription of the general methods usingmatrix representations and Merge Operation of the rows or olumns. He alled thesedesriptions Merge Models. Based on the Merge Models the original problem un-dergoes an evolution and produes homomorphi graph images. These models anbe a basis of novel and existing algorithms too. Embedding an algorithm into aMerge Model may onsiderably derease its omputational e�orts. Moreover, suhan embedding supports the strutural analysis of the algorithms in a ommon wayand makes available a natural extension of them, whih may result in an inreasein their performane. Traditional olouring shemes distinguish between the oloursand the verties of the graph. Merge Models integrate them into one single objet.This antiipates a uniform algorithm design, where olour hoies do not di�er fromthe vertex hoies.Thesis 2 Based on the Merge Models of the olouring, the author uni�ed and generalisedthe formal sequential olouring model in three di�erent Merge Frameworks [41; 42℄.These frameworks provide a uniform and ompat desription in whih algorithmsan be de�ned and analysed in the same systemati way. Furthermore, exploiting theuniform desription, he skethed some explanations of how the struture of algorithmsan have an in�uene on the overall performane. Existing sequential olouringalgorithms �t into one of the Merge Frameworks, and the frameworks provide novelapproahes for algorithm design.Thesis 3 The author provided a way to redue the omputational ost of olouring algo-rithms after embedding them into a Merge Framework [38; 40℄. This improvementwas demonstrated and analysed via experiments as well. In the experiments he anal-ysed the phase transitions of di�erent algorithms implemented in di�erent MergeFrameworks. Furthermore, the author provided a natural extension of sequentialolouring algorithms in the Merge Framework, whih results in an inrease in theire�ieny.Thesis 4 In eah Merge Model the olouring operation is replaed by a Merge Operation.Several Merge Strategies were developed by the author. Sine the models use matrixrepresentations, he was able to de�ne some of his strategies by applying speial matrixrow operations as well as matrix norms. The novel strategies of the author are listedbelow:� Extended Hajnal; Extended Welsh-Powell (∞�norm) [38℄� Spetral norm[42℄� Spetral norm approximations [42℄� Dot produt (entrywise norms) [38℄



17� Cosine [38℄� Zykov-tree and Lovász-theta [35; 43℄These strategies an be ombined with di�erent Merge Models and Merge Frame-works to form di�erent algorithms. The performane analysis of these strategiesare given. The novel algorithms are ompared with several well-known benhmarkalgorithms. The novel algorithms outperformed the well-known algorithms in a stan-dard benhmark set of graph instanes. Moreover, their e�ieny revealed in amore di�ult-to-solve graph instane set, where the graphs are generated during thephase transition region, where �nding a solution beomes really hard. In this ase,the omparison is fair; that is, it annot be manipulated by a good hoie of thebenhmark instanes sine the generated instanes represent well all instanes fromdi�ult-to-solve graph lasses.Thesis 5 The author introdued the notion of a Merge Path in [42℄. A Merge Path arisesfrom the properties of the dynamially hanging model during its evolution. Elementsof suh a path are assoiated with olouring steps. He was able to desribe an abstratgraph olouring approah based on Merge Paths, whih allows the appliation ofarti�ial intelligene methods in graph olouring e.g.:� Using a training set of known graphs, a supervised learning algorithm [36℄ anlearn ertain optimal Merge Paths that are assoiated with optimal olouring steps.Then using the learnt knowledge, olouring steps for an unknown graph instane anbe predited.� In an unsupervised learning task optimal Merge Paths of known graphs arelustered. Then unknown graphs, whih are not involved in the lustering, an belassi�ed in order to predit their properties suh as their hromati number.Thesis 6 He embedded his olouring strategies into a meta heuristi, an evolutionaryalgorithm and reated the following evolutionary operators for olouring [37�39; 42℄: � A mutation operator by aquiring di�ult verties in a andidate solution andforing their early olouring� A �tness funtion whih solves the �tness granularity problem of the olouringThese novel meta heuristi algorithms performed well in an experimental omparisonwith di�erent benhmark algorithms, on di�erent benhmark graphs and di�ult-to-solve generated problem sets as well.
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