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Introduction

A large amount of effort has been made in supporting the software development process. The
best-known methods and methodologies support the development phase of the software life-cycle.
The increased productivity in development and the constantly changing technologies introduced
the notion of software maintenance. Large C and C++ programs exist today that have been in the
maintenance phase for many years. Owing to its nature, software maintenance requires activities
other than the usual ones in the development phase. Maintenance does not consist of just bug
fixing in an operating program. Such an activity may be any modification of a software product
after delivery to improve performance or other attributes, or to adapt the product to a changed
environment. Furthermore, maintenance costs can easily be underestimated. Correcting defects,
keeping the software up to date with the changing environment and changing user requirements
are costly activities. Any change in a system in the production stage costs much more than the
same kind of change in an earlier phase.

Program understanding is a crucial part of any maintenance tasks. The developers who want
to modify the existing system need both a high level, overall view of the system and detailed
implementation level information. The information extraction process is called reverse engineer-
ing [5]. The real importance of source code-based reverse engineering approaches (including
ours) is shown by the fact that during software maintenance, the most reliable documentation is
the source code itself. Other specifications, plans, documentations become incomplete or inac-
curate over years of software operation. In addition, outdated documentation may mislead the
maintainer and create additional costs.

Although development and maintenance are closely related, rapid development and good
maintenance are often opposing notions. This phenomenon can be observed especially in the
case of preprocessed languages. The usefulness of the preprocessor has been proven by many
years of use by developers. Features improving productivity like a flexible control over program
configurations, the structured hierarchy of source files using includes, and the practical utility of
the text-based macros (even parameterized), all provide reasons for the extensive use of the tool.
An empirical study based on the analysis of commonly used unix software shows that preprocessor
directives make up a relatively high 8.4% of source code lines on average [6]. The view taken by
most is just the opposite when software maintenance or program understanding tasks have to be
done: the presence of preprocessor directives is always mentioned as an obstacle [17]. Some types
of macros and conditionals may be transformed into C/C++ program code [13], and methods
have been introduced for removing unnecessary conditional directives [1], but the vast majority
of directive uses remain present in the code. The fundamental problem about preprocessing from
a program comprehension point of view is that the compiler gets the preprocessed code and not
the original source code that the programmer sees. In many cases the two codes are markedly
different. These differences make program understanding harder for programmers and analyzers,
and they can cause problems with program understanding tools. Reverse engineering techniques
are often used when the maintainer has an insufficient knowledge of the system. The need for
tool support is even greater in the presence of preprocessing directives, where the maintainer only
sees the unprocessed code.

Our work was dedicated to supporting program maintenance activities impeded by the presence
of preprocessor directives. Alas, preprocessor issues are often completely neglected by C/C++
analyzer tools, or at least, handled rather poorly (there exist some notable exceptions [7, 12]).
In the core of our work there is a detailed metamodel for preprocessing (in a reverse engineering
context it is often called a schema). The schema describes the source code from a preprocessing
point of view. Not only is the structure of directives modelled by the schema, but so is the
preprocessing operation. A schema instance is a concrete (graph) representation of a program. It
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is the result of the reverse engineering process, and conforms with the schema. The information
obtained may be used for program understanding purposes like macro folding or extracting include
hierarchy.

Moreover, our other contributions were also built upon these results. We contributed view-
points for an elaboration of concrete macro refactorings based on higher level refactoring concepts.
A tool architecture was also designed and implemented for planning, performing and checking
refactorings on macros.

Change impact analysis is the study of the ripple effect that is caused by a change in a
large software package [3, 16]. We introduced novel methods in the area of program slicing,
which is a proper method for change impact analysis purposes. We integrated macro-related
analysis for program slicing in two steps. First, the Macro Dependence Graph (MDG) was
constructed and forward and backward macro slices were defined. Computing macro slices involves
program points which would have been missed without the MDG using traditional C/C++ slicing.
However, the real advantage of the MDG can be exploited in the second step, where C/C++
language slices and macro slices are combined. The two types of slices may be combined in both
forward and backward directions. We presented definitions of the combined dependence graph
and the combined slices, together with algorithms for computing these slices. The proposed
slicing methods were implemented and evaluated via experiments on real-life programs.

Our results have been grouped into five contributions, divided into two parts according to the
research topics. In the remaining part of the thesis summary, the following contribution points
will be presented:

I/1 Metamodel for the C/C++ preprocessor language

I/2 Model level refactoring of macros

II/1 Macro slicing

II/2 Combining C/C++ language and preprocessor slicing

II/3 Experimental evaluation of slicing methods

Part I - Modelling and refactoring preprocessor directives

The contributions of the first part are related to preprocessor models extracted from the source
code. First we introduce the preprocessor metamodel, which serves as a basis for all maintenance-
related methods. Next, our most recent work is presented which investigates the model level
refactoring of preprocessor constructs (especially macros) in terms of graph transformations.

I/1 Metamodel for the C/C++ preprocessor language

Columbus Schema for C/C++ preprocessing

Our first result is the preprocessor schema (metamodel), which plays a key role in reverse engi-
neering. The schema covers all preprocessor-related elements in a C/C++ source file, and also
contains information on preprocessor operations (macro calls). To our knowledge this was the
first publicly available general-purpose preprocessor schema. The schema consists of entities with
attributes, and their relations, hence it is presented using the UML class diagram notation. A
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schema instance (model) is a graph that corresponds to a concrete C/C++ program and contains
all the preprocessor-related information in a concrete form.

From the schema instance the original source code, the preprocessed source code and all imme-
diate states of the preprocessing process can be obtained. In addition, the schema describes both
dynamic (configuration dependent) and static (configuration independent) instances. Therefore
the solution is applicable for fully analyzing preprocessor usage at a fine-grained level.

The metamodel is not presented here due to space constraints, but an example piece of
source code can be seen in Listing 1, and the corresponding schema instance can be found below
in Figure 1. Each preprocessor language element is represented by a node with attributes in
the instance graph, e.g. the definition of __MATHDECL_1 (10), condition for __STDC__ (20),
definition of __MATH_PRECNAME (22), the include directive (25) and the included file (27) with
its subgraph. Furthermore, steps of the macro substitution can be understood by following the
edges of the graph (see reference object (40)).

#define __MATHDECL_1(type , function ,suffix , args) \ /*ID=10*/

extern type __MATH_PRECNAME(function ,suffix) args __THROW

...

#if defined __USE_MISC || defined __USE_ISOC99

...

#ifdef __STDC__ /*ID=20*/

# define __MATH_PRECNAME(name ,r) name##f##r /*ID=22*/

#else

# define __MATH_PRECNAME(name ,r) name/**/f/**/r

#endif

#include <bits/mathcalls.h> /*ID=25*/

#undef __MATH_PRECNAME

Listing 1: Example code from math.h

A programming API was developed for handling the graph from graph building to information
extraction. To facilitate tool inter-operability and program understanding, the graph obtained
can be exported to GXL [9] and PPML (our XML representation) as well.

1 :File
name = math.h

contains (1)

hasReplacement(...)

15 :DirectiveId
name = __MATH_PRECNAME

10 :FuncDefine
name = __MATHDECL_1

hasParameter(...)

... ...

...

contains (2)

18 :If
enabled = true

dependsOn

19 :DirectiveText
name = ...

hasConstExpression

20 :Ifdef
enabled = true

22 :FuncDefine
name = __MATH_PRECNAME

23 :Else
enabled = false 24 :Endif 25 :Include

26 :Text
name = <bits/mathcalls.h>

hasFileName

dependsOn

40 :FuncDefineRef
refersToId

hasReplacement(…)

... 27 :File
name = bits/mathcalls.h

includes

21 :DirectiveId
name = __STDC__

hasConstExpression

...

contains (1)

...

contains (3)

28 :Id
name = __MATHDECL_1

hasReplacement(...)

contains (2)

41 :FuncDefineRef

refersToId

refersToDefinition

contains (5)
contains (6) contains (7) contains (9) contains (10)contains (3)

refersToDefinition

contains (8)

refersToNext

...

contains (4)

dependsOn
dependsOn

belongsTo
belongsTo

29 :Undef
name = __MATH_PRECNAME

undefines

dependsOn

...

hasParameter(...)

...
...

hasArgument(…)

hasArgument(…)

Figure 1: Dynamic schema instance
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Building schema instances

We implemented a preprocessor for building schema instances, which is called CANPP. It is part
of the Columbus Framework and it can analyze industrial sized software projects with millions of
lines of code. It is only capable of building dynamic instances, but this still offers a wide range
of possibilities. The preprocessor was designed to imitate the behavior of the GNU gcc/cpp and
the Microsoft cl preprocessors, but intended to be fault tolerant, e.g. a missing include file will
not prevent it from analyzing other parts of the program. The process of reverse engineering
directives is depicted in Figure 2 below.

CANPP

1.cpp
1.i

n.cpp

n.i

CANPPLink...

...

...

1.psi

n.psi

lpsi Exporter
GXLCommand line 

macros, include 
paths

Ini file

PPML

Library
headers

Figure 2: Preprocessor reverse engineering process

Utilization of results

First, all four of the following thesis contributions rely heavily on the schema. Second, there are
several applications of the schema instances in the Columbus framework. Preprocessor-related
analysis was used to aid the static rule checking capabilities of the SourceAudit tool. Include
dependency was used to help in incremental parsing in the Columbus tool. A Visual Studio plugin
was developed to implement the macro folding mechanism [11] to show intermediate states of
macro replacements for the developer.

Our results were utilized in several successful industrial and academic research projects as
well. For instance, a 5MLoc large software project was analyzed using our tool in a joint project
with the Nokia Research Center for compile time optimization. Another example here is the
OpenOffice++ R&D project co-funded by the EU, where the aim was to analyze and improve
the architecture of OpenOffice.org and the quality of its source code.

Own contribution

The schema and the related API is the work of the author. The implementation of model building
is the work of the author, but the source code analysis technique and the building strategy of
schema instances are based on the technology of the Columbus C++ Analyzer, hence these are
shared results. The results of this contribution point were published in research papers [19, 20].

I/2 Model level refactoring of macros

Model level refactoring has the advantage that it formally checks specific conditions, which is
necessary when a high level refactoring has many concrete forms. Our first contribution is the
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set of viewpoints/steps for elaborating concrete macro-related refactorings related to the pre-
processor metamodel. The design of applicable refactorings on macros includes the following
considerations. As an alternative, one can always consider defining C/C++ constants or func-
tions, or the possibility of variadic macros. In preprocessing, the environment plays an important
role, including the command line defined and standard macros, whose aspect usually changes
the preconditions. Similar to other languages, call sites of macros must be traversed and the
necessary modifications must be made in order to keep the model consistent. The concrete form
of a macro refactoring is also influenced by the type of the macros being transformed (object-like,
function-like or variadic types). Based on the determined criteria, we presented a discussion and
elaboration of the refactoring called add parameter for macros. We applied a graph transforma-
tion approach for refactoring [15, 14] using left-hand side and right-hand side graphs. An example
refactoring for adding a parameter to an object-like macro is shown in Figure 3.

refersToDefinition

:File
name = example

:Define
name = MACRO

:Id
name = MACRO

:DefineRef

consistsOfR1 :DirectiveText
name = 

Rm :DirectiveText
name = 

refersToDefinition

:File
name = example

:FuncDefine
name = MACRO

:Id
name = MACRO

:FuncDefineRef

consistsOfR1 :DirectiveText
name = 

Rm :DirectiveText
name = 

A1:Id
name = 

:Text
name =  (

 :Text
name = )

P1 :Parameter
name = 

hasParameter(1)

:Argument

consistsOf

hasArgument(1)

Figure 3: Add parameter to object like macro - left hand side and right hand side of the rule

A special aspect of our work is that transformations are carried out on reverse engineered,
real-life program models. We designed a tool architecture, mainly based on existing tools, capable
for planning (important in elaborating concrete transformations), performing and checking refac-
torings on macros. The proposed architecture is shown in Figure 4. The preprocessor metamodel
(A) plays an important role in each phase. The transformation rule is designed by adjusting the
left and right hand side models in the USE system (B). Based on these models, a rule description
file is created by hand (a straightforward step). The Rule2OCL tool uses the metamodel and a
rule description to generate applicable rules. OCL pre and postconditions are also automatically
generated. The initial program model was produced by our Columbus tool (C). We implemented
an exporter which can transform schema instances to an understandable form for the USE UML
specification environment, where the transformations are handled [4, 8]. The USE system checks
whether the reverse-engineered model conforms with the metamodel (D). The rules are then
applied at specified program points (in our case these points are automatically generated). The
preconditions and postconditions on the refactored model are checked in each case and any in-
consistencies are reported. We conducted experiments to justify our proposed method. The
object-like macro refactoring was implemented in two steps. The macro definition was changed
and a parameter was added first, then each call site was extended with an argument. During the
experiments we found that the proposed tool-set was appropriate for medium-sized programs,
and also for validating preprocessor models and the metamodel itself.

Own contribution
The above-mentioned contributions are the work of the author, the main results being published
in research paper [18]. Some notions used in this contribution point were published in an earlier
work in a C++ context [23]. In the earlier work, the C++ metamodel used was not the work of
the author, basic notions of model level transformations using the metamodel were shared results,
while the elaboration and implementation of C++ refactorings were results of the author.
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Figure 4: Refactoring architecture

Part II - Slicing methods for change impact analysis

In the second part we our incorporate macro-related analysis into program slicing. The handling
of changes is a key issue in software maintenance, change impact analysis being the study of
the ripple effect that is caused by a change in a large system. A well-known method for aiding
impact analysis is called program slicing [25, 26]. It is an analysis method for extracting parts
of a program which represent a specific sub-computation of interest. The area of slicing is fairly
diverse, and there exist lots of slicing methods and strategies. Their common attribute, however,
is not to consider preprocessor macros as program points, the basic unit of slicing. An extensively
used approach is when a so-called PDG or SDG (Program or System Dependence Graph) is built
in order to compute dependency-based slices [10]. We introduced the approach of dependency-
based macro slicing in two steps. First, the Macro Dependence Graph was outlined based on the
macro call relation, and forward and backward macro slices were also defined. Using macro slices
we could tackle questions which could not be answered with traditional C/C++ slicing methods,
like “Which parts of the source code are affected by a change in a macro body?” Second, we
integrated dependence graphs and defined connection points to extend traditional C/C++ slices
with macro slices. The definitions of combined dependence graph and combined slices were also
given. Forward and backward slicing algorithms used to calculate combined slices are listed as
well. We proposed a tool architecture for the global computation of combined slices. Novel
slicing notions, introduced in our work, were validated by experiments. Both macro slices and
combined slices were empirically evaluated based on experiments on real-world programs.

As a motivating problem, let us find the points of a C/C++ program which are affected by
a modified macro definition. The modified definition may be used in (called from) other macro
definitions, and finally after several replacements become part of C/C++ language constructs.
These constructs may affect other parts of the program, which may be captured by traditional
C/C++ language slices. The affected part of a program consists of both preprocessor-related
elements and C/C++ program elements. The union of the forward macro slice starting from the
given definition and the forward C/C++ language slices starting from replaced parts gives us all
the affected points.
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1 #define ASSIGN(v) = v

2 #define SGN unsigned

3 #define DECLI(name , val) SGN int name ASSIGN(val);

4 DECLI(i,2) // =⇒ unsigned int i = 2;

5 printf("%u\n",i);

Listing 2: Motivating example for combined slices

Our idea is illustrated with the help the following piece of source code shown above in Listing 2.
The slicing criterion for macro slicing is the macro definition in line 1, and the corresponding macro
slice contains lines 1, 3 and 4. The macro call in line 4 is the link between the two kinds of slices.
During preprocessing, the macro call DECLI(i,2) is expanded to unsigned int i = 2;, which
is a C/C++ program element. The replaced macro is the slicing criterion for C/C++ language
slicing, and the language slice contains lines 4 and 5. The combined slice contains all lines of
the example code except line 2, which means that changing the macro definition on line 1 affects
four lines. A failure to identify these additional dependencies may for instance cause a problem
in a change impact analysis.

The procedure for combining slices works in the other direction as well. Listing 3 lists the
previously shown example code after the preprocessing phase. Suppose the slicing criterion
contains the variable i in line 5. The C/C++ backward slice algorithm does not know about
macros as the slice only contains lines 4 and 5.

1

2

3

4 unsigned int i = 2;

5 printf("%u\n",i);

Listing 3: Preprocessed example code for combined slices

Using the fact that line 4 comes from a macro replacement, a backward macro slice can be
computed on line 4, which contains lines 4, 3, 2, 1. The combined backward slice contains every
line of the original example, instead of two lines of the C/C++ slice. An example where this can
cause a problem is when this additional data is not available in a debugger and the user is unable
to track down to all the possible causes of an error which is being debugged.

II/1 Macro slicing

As we already showed, detailed information on macro expansions may be used in two ways.
For a macro call, the natural question is to find all the definitions which take part in the full
expansion of the macro. This is the most frequently used direction, from calls to definitions. The
previously mentioned macro folding mechanism is a good example of this approach. However in
the maintenance environment, the other direction may be more important: “Which parts of the
program are affected by a change in a macro definition?”

The intuitive method of searching the source tree with a grep-like tool fails for several reasons:
(1) includes and configurations, (2) macro re-definitions and (3) hidden macro invocations using
## operators. We presented a formalism to answer similar questions by adapting notions of
program slicing.
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Figure 5: (a) Graph representation of the elements of a macro call, and (b) The callm and the
depm relations on the simplified structure

Elements of macros may be represented as graphs. Figure 5 on the left hand side (a) contains
an example construct with macro calls, arguments and macro definitions with macro body; and
relations among the elements. On the right hand side of the figure (b) the same structure is
represented in a compact form: the macro call relation (callm) together with the dependency
relation (depm) plays an important role in the dependency-based slicing of macros.

The adaptation of traditional slicing concepts required a careful examination of the similarities
and differences. With the help of the key definitions, we constructed the Macro Dependence Graph
(MDG). A common problem that arises when analyzing macros is the so-called potential macro
problem. The result of a macro call is determined by the place of the call and not by the place
of the called macro definition. More precisely, any identifier in the macro body may become a
macro name at a later point of the program. If the definition of the above-mentioned identifier
precedes the call of the original macro, then the original macro body will contain an additional
macro call. Therefore one macro definition may be expanded in many ways depending on the
place (context) of the call. To overcome these problems and assure the appropriate properties
for slicing, dependency edges are colored in the graph. Hence dependence graphs of complete
software projects (not just compilation units or individual programs) can be built and used for
slicing purposes.

We defined both forward and backward type of macro slices, which are computable on the
dependence graph. The forward and backward directions also needed reinterpretating. In the
dependency-based slicing of C/C++ programs, for example, the direction of the dependency
relation is the same as the call relation. In the case of macros, the direction of a macro call is
the opposite of the dependency relation. While the called function is dependent on the caller,
with macros the situation is just the opposite: the macro (caller) is dependent on the (called)
macro definition. This definition may seem confusing at first, but it is appropriate for linking the
two kinds of slices. Finally, we should add that using macro slices, complex macro-related issues
may be addressed in a change impact analysis context.

Own contribution

The elaboration of macro dependency-related definitions and the construction of the Macro
Dependence Graph are the work of the author. The discussion of the notions of C/C++ and
macro slicing, and the definitions of forward and backward slices are shared results. The results
of this contribution point were published in research paper [21].
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II/2 Combining C/C++ and preprocessor slicing

Here, our novel result is the combination of traditional C/C++ slices with macro slices, giving
a more complete dependency set for slicing. The idea of linking the two kinds of slices was
already introduced earlier via the motivating example. The dependency-based slicing methods
of C/C++ programs and preprocessor macros use a disjunct base set for computing slices. The
SDG contains program points, but this notion may have several definitions. A general property of
C/C++ program points is that they may overlap each other. Various kinds of program elements
are represented by different program points. For instance, line 4 in Listing 3 contains a declaration
and an assignment expression as well. A typical SDG does not contain any macro-related program
points. However, some program points are the result of macro expansion, which opens up the
possibility of combining dependence graphs. the SDG contains the final replacement of the called
macro, instead of the macro call. Therefore MDG nodes which represent macro calls may be
linked to SDG program points which are derived from the macro replacement (there may be
several such program points for a given macro call). In our view, program points are also linked
which only partly come from a macro expansion.

We composed a combined dependence graph, which contains both the MDG and the SDG,
and the link between them was defined by an extended dependency relation. Technically, the
extension for existing dependency relations is based on the source code positions of the macro
calls and the replaced texts. Here, the detailed analysis of macro calls is required, which is supplied
by the preprocessor schema. An outline of the forward direction of the combining process with
macro nodes, program points and the dependency relations is shown in Figure 6. In the forward
direction the stating point is a macro definition, then the slice continues via dependent definitions
and the MDG part ends in several macro calls. Macro calls are linked to program points, which
are the result of the call, and the slice goes on with traditional C/C++ slicing.
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P
P
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dep dep
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dep

dep

dep

dep

dep
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dep

dep

dep

Macro definition
(slicing criterion)

Dependent 
definitions

Dependent 
toplevel macros

Program points
from macros C/C++ slice sets

D

Figure 6: The forward direction for combining the slices, with the dependency relation between
macros and C/C++ program points

The combined dependence graph is suitable for computing slices, whose computing process
may switch from macro-related nodes to C/C++ program points and vice versa. We gave a
formal definition of the combined dependence graph and the combined forward and backward
slice sets as well. The combined graph of the motivating example is shown in Figure 7. Graph
nodes corresponding to the forward slice starting from the first line, and corresponding to the
backward slice starting from the last line are marked with letters F and B, respectively.

Algorithms for computing both forward and backward combined slices are also given. These
algorithms were designed for the global computation of slices, and slightly modified to fit the
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#define ASSIGN

#define SGN

#define DECLI

printf("%u\n",i);

DECLI(i,2) unsigned int i = 2;D dep

D
dep

D dep T
P

Pdep
dep

F

F
FFFB

B

B B B
B

Figure 7: Nodes and slices of the motivating example

tool architecture proposed in the next section. These contributions are significant improvements
of traditional C/C++ slicing. In the forward case the improvement is more apparent because
C/C++ slicing would miss even the slicing criterion itself.

Own contribution

The construction of the combined dependence graph and the slicing algorithms are the work of the
author. The definitions of combined forward and backward slices are shared results. The results
of this contribution point were published in research papers [24, 22]. Our work was honored with
the Best Paper Award of the 16th IEEE International Conference on Program Comprehension in
2008.

II/3 Experimental evaluation of slicing methods

Besides the theoretical results related to macro slicing and combining, we performed experiments
to evaluate the outcome of our proposed methods. These experiments were performed both in
macro slicing and combined slicing areas.

Macro slices

The macro slicer tool is implemented on the top of schema instances, since schema instances
contain all the information necessary for slicing, and they play the role of the Macro Dependence
Graph. As schema instances can be produced from large, industrial-size software, our question
was whether macro slicing could be done on a large scale. A more important aspect was that,
although a thorough empirical study on the preprocessor provided clues on macro use [6], before
our study the size of the slices and the distribution of small and large slices could only be roughly
estimated. Our experiments were performed on the source code of Mozilla Firefox – which would
be a hard task for a C/C++ slicer.

No. of macro No. of macros No. of full
definitions called expansions

33214 15648 305117

Table 1: Summary of macro definitions and expansions
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The number of macro definitions and full expansions found in the source code are listed in
Table 1. The number of macro calls is high, there being 90 macro definitions which are called
over 1000 times. Table 2 contains the number of total calls in the configuration and also the size
of slices computed for each macro definition.

Individual calls Slice sizes

Average 53 43
Median 2 4
Max 47,046 20,040
Min 1 1
Sum 834,866 674,440

Table 2: Summary of macro calls and slice sizes
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Figure 8: Histogram of slice sizes relative to the graph size

In our case the slice size is compared to the size of the graph. We used the number of nodes
as the size of the graph, which is the sum of the calls and definitions. Figure 8 shows a histogram
of the relative macro slice sizes. The shape of the histogram is just as we expected. The majority
of the slices are smaller than 0.01% of the graph size. In the figure the area associated with
this value has been removed. Also, there are 144 slices which are larger than 0.15%, and which
have been omitted from the figure. (Their sizes are between 0.15% and 6.25%.) The sizes are
relatively small, which is one advantage of the approach, but they tell us that in many cases it is
hopeless to try to locate them by hand.

The use of ## operators to create macro calls is another issue which motivated our work and
the development of the tool. The number of definitions containing a call with the concatenate
operator is 24. There were 337 macro calls made via these, which confirms that this strange
construction does indeed occur in real-life software.

Combined slices

We also outlined a tool architecture needed to implement a preprocessor-aware C/C++ slicer,
which computes combined slices. Our implementation was based on existing tools, a well-known
C/C++ slicer (CodeSurfer) and our macro slicer, and was extended with a slice combiner.

Traditional C/C++ and macro slices were evaluated based on slicing time and memory con-
sumption, the average and extreme slice sizes and the ratio of sizes.

Experiments were performed on 28 open source projects, starting from small programs to
medium-sized ones with about 20k lines of code. Many of the programs were selected based on
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Figure 9: Logical tool architecture for combined forward and backward slicing

comprehensive empirical studies on slicing [2] and preprocessor use [6]. We found a total of 240k
non-empty lines of code sufficient to justify the feasibility of the method. Table 3 contains a list
of projects used in our measurements and their basic statistics.

We found that macro slices were significantly smaller than static C++ slices on the same
source code (the difference is larger in the case of forward slices). Despite being smaller, macro
slices can provide a real improvement since they give precise information owing to their dynamic
nature. We are not aware of any other similar report published in this area.

Own contribution

The results relating to the evaluation of macro slicing are the work of the author (macro slicing
using schema instances, the implementation of the macro slicer, the experimental evaluation of
macro slices). The results relating to the evaluation of combined slicing are the work of the author
(tool architecture for combining slicing, the implementation of the combined slicer, the evaluation
of C/C++ and macro slices), except for the shared work on implementing the CodeSurfer plugin.
The key results of this contribution point were published in research paper [22].

Conclusions

Our research over the past few years has been dedicated to the support of program maintenance
activities impeded by the presence of preprocessor directives. Recognizing that after several years
of development and operation, the source code is the only relevant and complete documentation
of a program, we applied a source code-based reverse engineering approach. We presented a
complete solution for reverse engineering preprocessor-related software artifacts.

Our first contribution was the preprocessor schema (metamodel), which describes our pro-
gram representation from a preprocessing point of view. The schema represents the structure of
preprocessor directives and also the process of preprocessing with a step-by-step macro expansion.
A preprocessor tool was implemented within the Columbus framework, which generates schema
instance graphs based on the programs being analyzed. The tool is called CANPP, and is capable
of analyzing industrial sized software projects with millions of lines of code. The preprocessor
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Program Size MDG MDG SDG SDG Macro C/C++
name (LCode) build size build size slicing slicing

time (s) (nodes) time (s) (nodes) time (s) time (s)

replace 512 0.28 136 1.18 3205 0.26 7.85
copia 1085 0.45 7 6.13 94390 0.12 208.65
time 1119 1.88 162 4.15 5633 0.26 3.73
which 1246 1.87 146 5.41 7449 0.48 29.44
compress 1335 0.84 108 2.18 4408 0.16 8.29
wdiff 1364 2.12 217 4.57 7640 0.53 10.77
ed 2637 3.80 117 9.98 39412 0.73 716.82
barcode 2807 6.34 381 13.76 27970 3.1 427.62
tile 3549 1.93 1881 27.69 51095 19.72 146.43
acct 4008 9.37 899 12.50 24619 5.0 116.98
li 4793 10.71 1826 3006.31 943340 79.9 56238.38
EPWIC 5249 12.10 852 14.68 27099 12.23 443.48
lightning 5563 20.8 1750 69.42 56778 6954.21 572.75
gzip 5997 9.88 1725 17.88 37525 34.16 1315.92
userv 6016 5.47 1244 24.72 105902 23.30 3281.28
indent 7582 4.55 857 12.22 42102 17.98 1100.14
bc 9472 9.6 1554 24.90 59503 31.17 2080.13
diffutils 10124 18.91 1971 29.35 53928 31.54 1261.76
gnuchess 11045 13.87 2511 29.12 70782 143.8 4391.19
ctags 11670 12.96 1480 55.31 209357 106.61 12611.60
sed 13339 9.37 2527 26.28 89788 204.76 9374.67
nano 13698 14.96 3964 38.11 177879 591.88 23445.10
ijpeg 15253 25.82 4283 39.75 77531 212.62 6948.48
flex 17533 22.56 3188 112.12 126757 259.55 9912.45
bison 20673 35.74 4387 88.64 138972 98.92 16099.25
wget 21104 27.88 4146 95.28 269209 993.85 60294.88
espresso 21780 3.86 0 52.79 151802 0.18 9642.20
go 22118 5.40 5296 22.18 110236 499.19 22550.61

Total 242671 293.32 47615 3846,61 3014311 10326,21 243240,85

Table 3: Subject programs

schema, and the API that provides access to schema instances, together allow the use of detailed
information for further analysis purposes in program comprehension, like macro folding or for
investigating the include hierarchy. Inter-operation with other tools is also facilitated by the XML
exports of instance graphs.

Our further contributions were built upon the schema and on processing schema instances.
Refactoring preprocessor directives is barely mentioned in the literature, although refactoring
C/C++ programs is a frequent topic. We contributed viewpoints for an elaboration of concrete
macro refactorings based on higher level refactoring concepts. We designed and implemented a
tool architecture, mainly based on existing tools, capable of planning, performing and checking
refactorings on macros. The usability of the schema was also demonstrated by the developed
schema instance exporter, which supported the tool integration with a model transformation
system. The proposed method was demonstrated via an elaboration of concrete, applicable
refactorings and experiments on real-life programs where macro refactoring was performed at
every appropriate program point.

Change impact analysis seeks to provide answers to a central question in maintenance: what
parts of a program are affected by a particular change? A well-known method for aiding impact
analysis is called program slicing. Slicing was originally introduced to assist debugging, where a
set of program points is sought for, which affect the variables of interest at a chosen program
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point, called the slicing criterion. The area of slicing is fairly diverse, and today there exist a lot of
slicing methods and strategies. Their common attribute, however, is not to consider preprocessor
macros as program points, the basic unit of slicing. An extensively used approach is when a
so-called PDG or SDG (Program or System Dependence Graph) is built in order to compute
dependency-based slices. We introduced the novel approach of dependency-based macro slicing
in two steps. First, the notion of the Macro Dependence Graph (MDG) was outlined using the
macro call relation, and forward and backward macro slices were defined on the MDG. Using
macro slices we could tackle questions which could not be answered with traditional C/C++
slicing methods. E.g. which parts of the source code are affected by a change in a macro body?
Second, we integrated dependence graphs and defined connection points to extend traditional
C/C++ slices with macro slices. The definitions of combined dependence graph and combined
slices were also given. Forward and backward slicing algorithms used to calculate slices were listed
as well. We proposed a tool architecture for the global computation of combined slices, and the
slicing notions introduced in our work were validated by experiments. The schema instances
served as the MDG, and our macro slicer tool was implemented within the Columbus framework.
Combined slices were computed via the integration and extension of existing slicer tools. Both
macro slices and combined slices were empirically evaluated based on experiments on real-world
programs.

The detailed schema opens up possibilities in several research areas. Generating static in-
stances is an area where a number of configuration-related issues are waiting to be addressed.
In our macro refactoring solution, quantitative properties should be improved. The propagation
of model level changes to the source code is still an open issue. Program comprehension and
development could be aided by the intelligent visualization of macro constructs. In this area we
have already made progress by extending the Visual Studio plugin with graphical features. We
would like to see the notion of macro slicing incorporated into popular slicer tools like CodeSurfer.
Experiments in combining dynamic C/C++ slicing with macro slicing would also be helpful.

The relation between the contribution points and the supporting publications, which are
all first-author papers, can be seen in Table 4 below. We introduced novel methods to assist
the maintenance tasks of preprocessed languages. Both theoretical and practical results were
achieved, and several tools were implemented. Experiments were then performed to demon-
strate the practical utility of theoretical results in the areas of modelling, refactoring and slicing
preprocessed languages.

Contribution - short title Publications

I/1 Preprocessor metamodel [19] [20]
I/2 Model level refactoring [23] [18]
II/1 Macro slicing [21]
II/2 Combining slicing [24] [22]
II/3 Evaluation of slicing methods [22]

Table 4: Thesis contributions and supporting publications
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