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1. This paper contains two proofs, seeming to be never published,
of Cauchy’s convergence test, i. e. of the theorem to the effect that the
condition

(€) to any positive ¢ there is a ¢ = g(¢) such that we have | a, — a,| < ¢
for every m, n > o(¢)
is necessary and sufficient for the convergence of the infinite sequence
Qy, (g, ..., Uy ... Both proofs might be useful for lecture purposes. The first
of them has the advantage over the usual class-room proofs of being direct,
1. e. not based on the Bolzano-Weierstrass theorem. The second proof furnishes
an equivalent form of Cauchy’s test allowing some simplifications in Cantor’s
theory of real numbers, as to be shown in a subsequent paper.

2. Cauchy’s convergence test is proved in lectures on Calculus usually
by means of the Bolzano-Weierstrass theorem, stating the existence of a
convergent subsequence of every bounded infinite sequence. The latter theo-
rem is usually proved by means of successive halving of the interval containing
the sequence in question, choosing for the next halving in each case the half,
or one of the halves, containing an infinity of terms of the sequence, and
considering the common point of the intervals formed thus.

Now, the same idea, slightly modified, leads directly to (the sufficiency! of)
Cauchy’s convergence test. The modification consists in replacing the halves
of an interval by two overlapping parts?, e. g. by its left and right two-thirds.
Indeed, let a, be (the general term of) a sequence satisfying condition (C).
We define b, and ¢, recursively as follows. Let b, = aypiq — 1, ¢, =
2bedaidlCr ¢ = lﬁ—_*-_ and
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= ayp+, + 1, and, given b, and ¢, let b, =

1 The necessity of condition (O) for the convergence of the sequence a, is obvious.

2 The idea of this modification is due to BrouwEer who applied, in several publi-
cations, overlapping intervals for the construction of numbers the mere existence of
which has been proved by means of non-overlapping intervals.
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define b, , = b,, ¢, = ¢, if for all but a finite number of terms of the sequence
a, we have b, < a, < ¢,, and b, 1= br, ¢, +1 = ¢, in the opposite case. We prove
by induction b, < a, < ¢, for every r and for every but a finite number of n.
Indeed, this is true for » = 1 by (C), ¢ = 1. Suppose it to be true for an r
and to be false for » - 1. Then, by definition of b,+, and ¢, we should have
= an < ¢ and b, < a,= b, for an infinity of values of m and %, hence
Ap — Qp = (o by, contrarily to (C), ¢ = cli=p

Let @ be the common point of the intervals b, = x = ¢,; then we have

20\1=1 :
lan —a| <c — b =2 (5) for all but a finite number of n, hence a, > a.

3. We next show that (C') is equivalent to the condition?

(C") any two subsequences? of a, differ but in a 0-sequence (i.e. in a
sequence converging to 0).
Hence, Cauchy’s convergence test is equivalent to the theorem:

Condition (C") s mecessary and sufficient for the convergence of the
sequence dy.

Indeed, suppose the sequence a, satisfies condition (C'). Let a;, and @,
be any two subsequences of a, (b, <k, <... I, <ly <...). Then for
any positive ¢, we have |a, — a; | < & for k,, I, > o(¢), hence, on account
of kn, l,=mn, for n > o(¢), i.e., we have ay, — 4, > 0, thus, a, satisfies
condition (C’) too. On the other hand, suppose the sequence a, does not
satisfy condition (C), i. e., for a positive &, and for every positive integer g,
there are integers m = w(¢) and n = v(p) such that m, n>p and
I ==, | =¢, Define k;=1,=1 and, given %k and I, let k. ,=
= p(max (k,!)) and Iy, = v(max (&, [;)). Then we have &k, <k, < ...,
lh<ly<...and |a, —a; |=¢, for every n. Hence ay, —a;, does not
converge to 0 and the sequence a, does not satisfy condition (C").

4. Now, we prove the theorem, equivalent to Cauchy’s convergence
test, formulated in the preceding section. The necessity of condition (C’)
for the convergence of the sequence a, being obvious, we have to prove its
sufficiency only. First we prove that a sequence a, satisfying condition (C")
is necessarily bounded. Indeed, let a, be a sequence unbounded from above.
Define k, as the least k& for which we have a;, > a, + 1 and, given k,, define
k, 1, as the least & > k, for which we have ax > a,,, + 1 (existing, for other-
wise a,, -+ 1 would be an upper bound for the sequence ay, iy, @k, +a, - - -5

3 See alsy K. Knorr, Theorie und Anwerdung der unerdichen Reihen (Berlin, 1931)
pp. 89—90 (LI. Hauptkriterium (3. Form)).

4 <“Subsequence” is meant in this paper so as to include the whole sequence too.
Obviously, (C') is equivalent to the condition that a, differs from any of its subsequences
but in a 0-sequence.
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and so, the whole sequence a, would be bounded from above). Then, for
l, = n, we have ax, > i, + 1 for every n, thus ax, — ai, does not converge
to 0 and the sequence a, does not satisfy condition (C"). Similarly, we can
show that a sequence unbounded from below does not satisfy condition (C").

Now, let a, be a sequence satisfying condition (C") and @, one of its
convergent subsequences existing on account of the Bolzano-Weicrstrass
theorem. Let aj, > a; by condition (C'), we have a, — ai, > 0; hence,
an > a .

5. In a lecture where Cauchy’s convergence test is based on the proof
given in the preceding two sections, it would be advisable, on reasons of
style, to give a “qualitative” proof of the Bolzano— Weierstrass theorem too.
The following such proof is due to the late Professor Kitrscudk. It is an
instance of a proof by cases of an unusual type®.

Obviously, it suffices to prove that every infinite sequence has a mono-
tonous subsequence; for if the sequence in question is bounded, the same holds
for its subsequences too and so a monotonous subsequence of it is necessarily
convergent. Now, let a, be the sequence in question; define k, as the least k for
which we have ay= a, for every n, and, given k,, define k, ., as the least
k> k, for which we have a; = a, for every n > k,. Of course, k, may fail
to exist; however, if it exists for every r, we have the increasing subsequence
ay, of a,. If, on the other hand, for a positive integer s, k; does not exist,
then the sequence Qg+15 kgt 9, - - .does not have a least term. In this case, define
ly =1k, +1 and, given I,, define l;+, as the least [ > I, for which @ < a,
(existing, for otherwise @, would be the least term of the sequence Q. @iy,
@+, ... and thus the sequence Akg+1, @k+y, - .. formed of the former by
subjoining a finite number of terms, would also have a least term¢). Then ¢;_ is
a decreasing subsequence of a,,

(Received 29 October 1949)

® This type of the proof by cases consists in giving first a proof method which does
not work always and in giving another proof method for the case in which the first method
does not work. The proofs for some particular cases, which I know from oral communica-
tion of Mr. BeErNAYS, of the arithmetical lemma to which the consistency of Analysis
has been reduced by Ackrrmany (see D. HiserT, Die Grundlagen der Mathematik,
Abhandlungen aus dem math. Seminar der Hamburgischen Universitit, 6 (1928), pp.
65—85, especially the last paragraph beginning on p. 84), belong to the same type.

¢ As a matter of fact, as easily seen, a;, would be the least term of the sequence
kgt 15 Qg+ 2, . . . toO.
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O KPUTEPUU CXOAUMOCTH ROIIA
JAACAO KAABMAP (Cerex)

(Peswne)

ABTOp JACT B HOBHX JOKABATEALCTBA Epurepist KNowtw, OTHOCAUETOCH K CXOMMMOCTH
Geckoneunnx nocteopareisnocreil, llepsoe L0RAATEILCTBO AUAIOTHUNO OOHYHOMY JOKAZATEILCTHY
teopeMb  Loavyano— Bedepurpacca, 1o NPUMEIIET LePeCCRAONe HUTEPBAIN ; 010  OCHOBH -
BAETCH HA TOM, YTO €CHll AHTEPBAL COACPEHT BCE “ACHEH GEeCROHEYNoil 10¢Ie L0BATeALHOCTH €
HCKADUEHHEM KOHEYHOr0 MHCAA WICHOB, TO WAH Jepad, Wl Npasag /3 YacTh HHTEPLAIA HNeeT
Takue ke cpoiicrpa. Bropoe AoKazaTEILCTBO OCHOBHBAETCH 1a Teopeme Boavyano — Beiep-
wrpacea Wojaer Kpirepnit Kowu B cAgayiomeii (opye : nocieoBaTeIbuocTh CXOXMTCH Torid i
TOXBKO TOPAL, ecan or A000f croeii 0eCKOHEUHON HOL-H0CIEAOBATEILHOCTI OHA  OTHIMACTCH
TOALKO HOCACLOBATEILIOCTBIO CXOLILefics K HYIb0. ABTop coOOMAeT Takke (10 AOKABATEABETEO
Eopwara rteopedn  Boavuano — Beiiepurpacca, KOTOPOE OCHOBMBAETCH Ha TOM, 110 Kk
HOCACL0BATENLHOCTL HMEET WM BO3PACTAONLYI0 1L YOMBAINLYIO 10 A-110CIE0BATEILHOCTD,



