
Motion Compensated Color Video Classification
Using Markov Random Fields?

Zoltan Kato, Ting-Chuen Pong, John Chung-Mong Lee

Hong Kong University of Science and Technology, Computer Science Dept.,
Clear Water Bay, Kowloon, Hong Kong, Tel: +852 2358 7000 — Fax:+852 2358 1477,

email: kato@cwi.nl, tcpong@cs.ust.hk, cmlee@cs.ust.hk

Abstract. This paper deals with the classification of color video se-
quences using Markov Random Fields (MRF) taking into account motion
information. The theoretical framework relies on Bayesian estimation as-
sociated with MRF modelization and combinatorial optimization (Sim-
ulated Annealing). In the MRF model, we use the CIE-luv color metric
because it is close to human perception when computing color differ-
ences. In addition, intensity and chroma information is separated in this
space. The sequence is regarded as a stack of frames and both intra- and
inter-frame cliques are defined in the label field. Without motion com-
pensation, an inter-frame clique would contain the corresponding pixel in
the previous and next frame. In the motion compensated model, we add
a displacement field and it is taken into account in inter-frame interac-
tions. The displacement field is also a MRF but there are no inter-frame
cliques. The Maximum A Posteriori (MAP) estimate of the label and
displacement field is obtained through Simulated Annealing. Parameter
estimation is also considered in the paper and results are shown on color
video sequences using both the simple and motion compensated models.

1 Introduction

Image classification is an important early vision task where pixels with similar
features are grouped into homogeneous regions. Many high level processing tasks
(surface description, object recognition, for example) are based on such a prepro-
cessed image. Using color information can considerably improve capabilities of
image classification algorithms compared to purely intensity-based approaches.
However, we need a good color space in order to use color information in the
same way as humans perceive color differences. There are several metrics pro-
posed for computer vision [5]. We use the CIE-luv [5] color space here because
it separates luminance and chroma information and it is easy to compute color
differences in this metric.

The visual motion derived from a sequence of time-varying images [11, 4] is
also a valuable source of information. Basically, it can be used to detect motion
in the scene but it is also possible to derive more detailed information such as
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position, orientation of a visible surface or 3D reconstruction of a scene. Herein,
we are interested in computing displacement vectors [11, 13, 4] in order to build
a motion compensated Markov Random Field (MRF) image classification model.

When we have a sequence of color images, still image MRF models [2, 9, 12, 7]
can be easily extended to take into account the information in the previous and
next frames [13, 11] (see Section 2.1). Instead of a 2D neighborhood system, we
can use a 3D one with inter-frame cliques. If the camera or the objects in the
scene are not moving then this model yields good segmentations. In the case of
moving objects, however, this static model can fail.

To overcome the problem caused by moving objects, we introduce a dis-
placement field (DF) [13] in Section 2.2 in order to take into account motion
information in the label field. For simplicity, the DF is defined over the same
lattice as the label field by placing a new lattice between two neighboring frames.
DF is a vector-valued MRF giving the displacement vector at each site between
two frames in the sequence. The estimation of the DF is done in parallel with
the label field and no external algorithm or initialization is needed. The energy
function of the so-defined system is minimized by the Metropolis algorithm [10].
The result is the classification of the input frames and the displacement vectors
between frames.

Usually, MRF-based segmentation methods suffer from a lack of parameter
estimation. The majority of the proposed methods are supervised, which limits
their practical use because a human intervention is needed to compute the model
parameters. Herein, we are interested in completely data driven algorithms since
in real-life applications, these parameters are usually unknown and one has to
estimate them without human intervention. In Section 2.3, we consider param-
eter estimation of the proposed model. Finally, some results are presented in
Section 3.

2 MRF model

In this section, we describe a spatio-temporal MRF model for color video clas-
sification. First, we define a model which uses only color information and then
we extend our model to take into account motion information.

2.1 Color video sequence classification (Label Field)

Let us suppose that the observed images consist of three spectral component
values (luv) at each pixel denoted by the vector f t

s, where s ∈ S is the spatial
index and t ∈ T is the temporal index. We are looking for the labeling ω̂,
which maximizes the a posteriori probability P (ω | F), that is the maximum a
posteriori (MAP) estimate. Bayes theorem tells us that:

P (ω | F) =
1

P (F)
P (F | ω)P (ω). (1)



Actually P (F) does not depend on the labeling ω and we make the assumption
that:

P (F | ω) =
∏

t∈T

∏

s∈S
P (f t

s | ωt
s). (2)

It is then easy to see that the global labeling, which we are trying to find, is
given by:

ω̂ = arg max
ω∈Ω

∏

t∈T

∏

s∈S
P (f t

s | ωt
s)

∏

C∈CS
exp(−VC(ωC))

∏

C∈CT
exp(−VC(ωC)) , (3)

where CS is the set of spatial (or intra-frame) cliques and CT is the set of temporal
(or inter-frame) cliques. It is obvious from this expression that the a posteriori
probability also derives from a MRF. The energies of cliques of order 1 directly
reflect the probabilistic modeling of labels without context, which could be used
for labeling the pixels independently. This item ties the resulting segmentation
to the original input.

A natural assumption is that P (f t
s | ωt

s) is Gaussian, the classes λ ∈ Λ =
{0, 1, . . . , L − 1} are represented by the mean vectors µλ and the covariance
matrices Σλ. It is then clear that

P (f t
s | ωt

s) =
1√

(2π)3 | Σωt
s
|
exp

(
−1

2
(f t

s − µωt
s
)Σ−1

ωt
s
(f t

s − µωt
s
)T

)
. (4)

We get the following energy function:

U(ω,F) = U1(ω,F) + U2(ω) + U3(ω) , (5)

U1(ω,F) =
∑

t∈T

∑

s∈S

(
ln(

√
(2π)3 | Σωt

s
|) +

1
2
(fs − µωt

s
)Σ−1

ωt
s
(f t

s − µωt
s
)T

)
(6)

U2(ω) =
∑

C∈CS
V2(ωC) (7)

where V2(ωC) = V{s,r}(ωt
s, ω

t
r) =

{
0 if ωt

s = ωt
r

β if ωt
s 6= ωt

r
(8)

U3(ω) =
∑

C∈CT
V3(ωC) (9)

where V3(ωC) = V{t,t+1}(ωt
s, ω

t+1
s ) =

{
0 if ωt

s = ωt+1
s

γ if ωt
s 6= ωt+1

s
(10)

where β > 0 and γ > 0 are model parameters controlling the homogeneity of
the regions and the importance of spatial and temporal interactions. As they
increase, the resulting regions become more homogeneous.



2.2 Using motion information (Displacement Field)

To further elaborate our model, we introduce a new field called the displacement
field (DF). In this way, we can take into account motion information when doing
classification of a video sequence. The DF could be defined over a different
lattice than the label field (one could use a lower resolution, for instance) but,
for simplicity, we define it over the same lattice, placing a new lattice between
each neighboring frames (t, t + 1). DF is a vector-valued field, φt

s ∈ Φ denotes
the displacement vector at site s between frames t and t + 1.

The energy function of the DF is defined as follows:

UDF = UDF
1 (ω, φ) + UDF

2 (φ)

UDF
1 (ω, φ) =

∑

t∈T

∑

s∈S
V DF

1 (ωt
s, φ

t
s) (11)

where V DF
1 (ωt

s, φ
t
s) =

{
0 if ωt

s = ωt+1
s+φt

s

α if ωt
s 6= ωt+1

s+φt
s

(12)

UDF
2 (φ) =

∑

C∈CDF

V DF
2 (φC) (13)

where V DF
2 (φC) =

∑

r∈C

‖φt
s, φ

t
r‖2. (14)

Unlike conventional approaches, herein we use the label field ω instead of the
color value in the first order potential (Equation (12)). The second order po-
tential (Equation (14)) is a smoothing constraint favoring similar displacement
vectors in neighboring sites. Note that we have only intra-frame cliques here. In
our tests, we have used a first order neighborhood system.

For motion compensated classification, we have to take into account the DF
in the energy function of the label field. For this purpose, we will redefine V3(ωC)
(see Equation (10)) in the following way:

V ′
3(ωC) = V ′

{t,t+1}(ω
t
s, ω

t+1
s ) =

{
0 if ωt

s = ωt+1
s+φt

s

γ if ωt
s 6= ωt+1

s+φt
s

(15)

The energy function of the motion compensated model is then given by the
following equation:

U(ω, φ,F) = U1(ω,F) + U2(ω) + U ′
3(ω) + UDF

1 (ω, φ) + UDF
2 (φ) (16)

where U ′
3(ω) is the motion compensated energy function of inter-level cliques

(see Equation (10) and Equation (15)). The MAP estimate of the label and
displacement field is obtained trough the minimization of U(ω, φ,F):

(ω̂, φ̂) = min
ω,φ

U(ω, φ,F). (17)

Since the energy function has many local minima, we use the Metropolis algo-
rithm [10] to find the global minima. At each iteration, the label field is updated
first followed by the DF.



2.3 Parameter Estimation

Our goal is to propose a completely data-driven, unsupervised classification algo-
rithm. Thus, we have to estimate the mean vector µλ and the covariance matrix
Σλ for each class, and the hyper-parameters α, β and γ. The mean vectors and
covariance matrices can be obtained from the first frame using an unsupervised
classification algorithm (for more details, see [7]). The hyper-parameters are less
sensitive. We have found in practice that α = 15.0, β = 2.5 and γ = 2.0 give
good results. Of course, one could also use an estimation algorithm (see [3, 8, 6])
to obtain the right values depending on the input video sequence. However, we
found that these algorithms need a huge computing power and the obtained val-
ues were very close to our ad hoc estimates. The mean vectors and covariance
matrices could also be re-estimated during the classification using an adaptive
classification algorithm similar to [7] but experiments show that the one frame
estimates are good enough to obtain a reasonably good classification.

3 Experiments

The proposed algorithm has been tested on a variety of color video sequences.
Herein, we present a few of our results obtained on a variety of color video
sequences and also compare the motion compensated and static models. In all
cases, the optimization algorithm has been stopped when the number of changed
sites was less than 0.01% of the sites.

In Table 1, we give the computing times for the presented video sequences.
One can see, that motion compensated classification needs more iterations and
more computing time because of the additional displacement field. However, the
quality of these results is also better. The computing time depends also on the
optimization method. ICM [1] is a deterministic algorithm which converges in a
few iterations but it finds only a local minima. This may not be as good as the
one given by a stochastic method, like the Metropolis algorithm [10].

In Figure 1 and Figure 2, we compare the results obtained by the static
and motion compensated model on two color video sequences. The results in
the second (resp. third) column has been obtained by the static (resp. motion
compensated) model. One can see that the results are better in the case of motion
compensation.

The proposed model can be easily applied to gray-level images, only the first
order clique-potentials have to be changed in Equation (6): Instead of a 3-variate
Gaussian distribution, we use here a univariate one. In Figure 3, we show the
results obtained on the “tennis” sequence using only gray-values. The result
clearly shows that color information can improve considerably the final results.
The computing time is only slightly lower than in the case of color images (see
Table 1).

In Figure 4, we give the classification and displacements obtained on the
“tennis” sequence using the Metropolis algorithm. The displacements are dis-
played over 16× 16 blocks. The displacement field is noisy inside homogeneous



regions but it is reasonably good over region boundaries. This is good enough for
the purpose of motion compensated classification. More accurate displacement
field could be obtained through a more elaborated homogeneity constraint in
Equation (14).

4 Conclusion

We have proposed an unsupervised, motion compensated color video classifica-
tion algorithm. The classification model is defined in a Markovian framework
and uses a first order potential derived from a three-variate Gaussian distribu-
tion in order to tie the final classification to the observed images. The label field
has spatio-temporal cliques and the displacement vectors are taken into account
by inter-frame (or temporal) cliques. In the DF’s energy function we use the
label field instead of computing the color differences of corresponding pixels in
order to reduce computing time. The energy function is minimized through a
Metropolis algorithm [10] and we obtain the classification of the frames and the
displacement vectors at the same time. The algorithm is unsupervised; only the
number of classes is supplied by the user. The method has been tested on a
variety of color video sequences and the results are encouraging.
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Model Method Num. of iterations CPU time

color “tennis” sequence (23 frames, 6 classes)

Static ICM 9 0.61 hours

Static Metropolis 58 1.94 hours

Motion compensated Metropolis 400 26.4 hours

gray-level “tennis” sequence (23 frames, 6 classes)

Motion compensated Metropolis 400 19.6 hours

color “car” sequence (21 frames, 4 classes)

Static ICM 12 0.53 hours

Static Metropolis 67 2.02 hours

Motion compensated Metropolis 400 21.8 hours

Table 1. Computing times on a SPARC station 1000.

Original frames Static Motion compensated

Fig. 1. Results obtained by the static and motion compensated model (21 frames, 4
classes) using the Metropolis algorithm.



Original frames Static Motion compensated

Fig. 2. Results obtained by the static and motion compensated model using the
Metropolis algorithm on the “tennis” sequence (23 frames, 6 classes).

Original gray-level frame Intensity-based Color-based

Fig. 3. Comparison of intensity- and color-based classification results on the “tennis”
sequence (23 frames, 6 classes) using the motion compensated model with the Metropo-
lis algorithm.

Fig. 4. Classification and displacements obtained on the “tennis” sequence (23 frames,
6 classes) using the Metropolis algorithm.


