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We present a model of a `gas of circles': regions in the image domain composed of a unknown number of
circles of approximately the same radius. The model has applications to medical, biological, nanotechno-
logical, and remote sensing imaging. The model is constructed using higher-order active contours (HOACs)
in order to include non-trivial prior knowledge about region shape without constraining topology. The
main theoretical contribution is an analysis of the local minima of the HOAC energy that allows us to
guarantee stable circles, fix one of the model parameters, and constrain the rest. We apply the model
to tree crown extraction from aerial images of plantations. Numerical experiments both confirm the
theoretical analysis and show the empirical importance of the prior shape information.

© 2008 Published by Elsevier Ltd.

1. Introduction

Forestry is a domain in which image processing and computer vi-
sion techniques can have a significant impact. Resource management
and conservation require information about the current state of a
forest or plantation. Much of this information can be summarized in
statistics related to the size and placement of individual tree crowns
(e.g. mean crown area and diameter, density of the trees). Currently,
this information is gathered using expensive field surveys and time-
consuming semi-automatic procedures, with the result that partial
information from a number of chosen sites frequently has to be ex-
trapolated. An image processing method capable of automatically
extracting tree crowns from high resolution aerial or satellite images
and computing statistics based on the results would greatly aid this
domain.

The tree crown extraction problem can be viewed as a special
case of a general image understanding problem: the identification of
the region R in the image domain � corresponding to some entity or
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entities in the scene. In order to solve this problem in any particu-
lar case, we have to construct, even if only implicitly, a probability
distribution on the space of regions P(R|I,K). This distribution de-
pends on the current image data I and on any prior knowledge K
we may have about the region or about its relation to the image
data, as encoded in the likelihood P(I|R,K) and the prior P(R|K) ap-
pearing in the Bayes' decomposition of P(R|I,K) (or equivalently in
their energies − ln P(I|R,K) and − ln P(R|K)). This probability distri-
bution can then be used to make estimates of the region we are
looking for.

In the automatic solution of realistic problems, the prior knowl-
edge K, and in particular prior knowledge about the `shape' of the
region, as described by P(R|K), is critical. The tree crown extraction
problem provides a good example: particularly in plantations, R takes
the form of a collection of approximately circular connected compo-
nents of similar size. There is thus a great deal of prior knowledge
about the region sought. The question is then how to incorporate
such prior knowledge into a model for R. If the model does not in-
clude enough prior knowledge, it will be necessary for the user to
provide it.

The simplest prior information concerns the smoothness of the
region boundary. For example, the Ising model and many active
contour models [1–3] use a combination of region boundary length
and region area as their prior energies, but curvature can be used too
[1]. Such models are integrals over the region boundary of a func-
tion of various derivatives of the boundary. In consequence, they
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capture local differential geometric information, corresponding to lo-
cal interactions between boundary points, but can say nothing more
global about the shape of the region. To go further, one must intro-
duce longer range interactions. There are two principal ways to do
this: one is to introduce hidden variables, given which the original
variables of interest are (more or less) independent. Marginalizing
over the hidden variables then introduces interactions between the
original variables. Another is to include explicit long-range interac-
tions between the original variables.

The first approach has been much investigated, in the form of
template shapes and their deformations. Here a probability distri-
bution or an energy is defined based on a distance measure of some
kind between regions. One region, the template, is fixed, while the
other is the variable R. Template regions may be learned from ex-
amples [4–9] or fixed by hand [10]; similarly the distance function
maybe based, for example, on the learned covariance of a Gaussian
distribution [5–9], or chosen a priori [4,10,11]. The most sophisti-
cated methods use the kernel trick to define the distance as a pull-
back from a high-dimensional space, thereby allowingmore complex
behaviours [12]. Multiple templates may also be used, correspond-
ing to a mixture model [12,13].

These methods assign high probability to regions `close' to cer-
tain points in the space of regions. The set of regions with high
probability is thus in some sense bounded. As such, it is difficult
to construct models of this type that favour regions for which the
topology, and in particular the number of connected components,
is unknown a priori, because the set of regions in this case is un-
bounded, and cannot be described as variations around one or more
templates. There are many problems, however, for which the topol-
ogy is unknown a priori, for example, the extraction of networks, or
the extraction of an unknown number of objects of a particular type
from astronomical, biological, medical, or remote sensing images.
For this type of prior knowledge, a different type of model is needed.
Higher-order active contours (HOACs) are one such category of
models.

HOACs [14] take the second approach mentioned above. They in-
troduce explicit long-range interactions between region boundary
points via energies that contain multiple integrals over the bound-
ary, thus avoiding the use of template shapes. HOAC energies can
be made intrinsically Euclidean invariant, and, as required by the
above analysis, incorporate sophisticated prior information about re-
gion shape without necessarily constraining region topology. As with
other methods incorporating significant prior knowledge, it is not
necessary to introduce extra knowledge via an initialization close to
the target region: a generic initialization suffices, thus rendering the
method quasi-automatic. Rochery et al. [14] applied the method to
road extraction from satellite and aerial images using a prior which
favours network-like objects.

In this paper, we describe a HOAC model of a `gas of circles': the
model favours regions composed of an a priori unknown number of
circles of a certain radius. For such a model to work, the circles must
be stable to small perturbations of their boundaries, i.e. they must
be local minima of the HOAC energy, for otherwise a circle would
tend to `decay' into other shapes. The main theoretical contribution
of this paper is an analysis of the stability of local minima of the
HOAC energy that allows us to ensure that circles of a given radius
are stable. In addition, it allows us to fix one of the model param-
eters in terms of the others, and to constrain the rest. This type of
calculation has wide applicability to other active contour models and
to other shapes. For example, it shows that no stable circle is possi-
ble using a classical active contour model containing only boundary
length and interior area terms. The calculation proceeds by perform-
ing a functional Taylor expansion of the HOAC energy around a circle
(or more generally, any shape), and then demanding that the first
order term be zero for all perturbations, and that the second order
term be positive semi-definite. Gradient descent experiments using

the HOAC energy, with parameters fixed using the stability calcula-
tions, produce stable circles of the expected radii, thereby demon-
strating empirically the coherence between the stability calculations
and the numerical computations used in practice to minimize the
energy.

The model has many potential applications, to medical, biolog-
ical, physical, and remote sensing imagery in which the entities to
be identified are circular. We choose to apply it to the problem of
extracting tree crowns from aerial imagery, using the `gas of circles'
model as a prior energy, and an appropriate likelihood. We will see
that the extra prior knowledge included in the `gas of circles' model
permits the separation of trees that cannot be separated by simpler
methods, such as maximum likelihood or classical active contours.
We focus on images of plantations and orchards, for which the model
is well adapted. The case of general forests is much harder, and will
be left for future work.

In the next section, we present a brief introduction to HOACs.
In Section 3, we describe the `gas of circles' HOAC model, the
stability analysis, and the results of geometric experiments. In
Section 4, we apply the new model to tree crown extraction.
We describe a likelihood energy for trees, and then present ex-
perimental results on synthetic data and on aerial images. We
conclude in Section 5, and discuss some open issues with the
model.

2. Higher-order active contours

HOAC models, like all active contour models, represent a region R
by its boundary, �R, a closed 1-chain � in the image domain � ([15]
is a useful reference for the following discussion). Although region
boundaries correspond to a special subset of closed 1-chains known
as domains of integration, active contour energies themselves are
defined for general 1-chains. It is convenient to use this more general
context to distinguish HOAC energies from classical active contours,
because it allows for notions of linearity to be used to characterize
the complexity of energy functionals.

Using this representation, HOAC energies can be defined as fol-
lows [14]. Let � be a 1-chain in �, and dom � be its domain. Then
�n : (dom �)n → �n is an n-chain in �n. We define a class of (n−p)-
forms on �n that are 1-forms with respect to (n − p) factors and
0-forms with respect to the remaining p factors (by symmetry, it
does not matter which p factors). These forms can be pulled back to
(dom �)n by �n. The Hodge duals of the p 0-form factors with respect
to the induced metric on dom � can then be taken independently
on each such factor, thus converting them to 1-forms, and render-
ing the whole form an n-form on (dom �)n. This n-form can then be
integrated on (dom �)n.

In the (n,p) = (n, 0) cases, we are simply integrating a general n-
form on the image of �n in �n, thus defining a linear functional on
the space of n-chains in �n, and hence an nth-order monomial on
the space of 1-chains in �. Taking arbitrary linear combinations of
such monomials then gives the space of polynomial functionals on
the space of 1-chains. By analogy we refer to the general (n,p) cases
as `generalized nth-order monomials' on the space of 1-chains in
�, and to arbitrary linear combinations of the latter as `generalized
polynomial functionals' on the space of 1-chains in �. HOAC ener-
gies are generalized polynomial functionals. Standard active contour
energies are generalized linear functionals on 1-chains in this sense,
hence the term `higher-order'.

The (1, 1) case is simply the boundary length in some metric.
The (1, 0) case gives the region area in some metric. An interesting
application of the (2, 2) case to topology preservation is described
by Sundaramoorthi [16]. We specialize to the (2, 0) case. Let F be
a 2-form on �n. Using the antisymmetry of F together with the
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symmetry of �2, we can write the energy functional in this case as

E(�) =
∫
(�R)2

F =
∫
(dom �)2

(� × �)∗F

=
∫ ∫

(dom �)2
dt dt′ �(t) · F(�(t), �(t′)) · �(t′), (2.1)

where F(x, x′), for each (x, x′) ∈ �2, is a 2×2 matrix, t is a coordinate
on dom �, and � = �̇ is the tangent vector to �.

By imposing Euclidean invariance on this term, and adding linear
terms, Rochery et al. [14] defined the following higher-order active
contour prior:

Eg(�) = �CL(�) + �CA(�) − �C
2

∫ ∫
dt dt′ �(t′) · �(t) �(R(t, t′)), (2.2)

where L is the boundary length functional, A is the interior area func-
tional and R(t, t′)=|�(t)−�(t′)| is the Euclidean distance between �(t)
and �(t′). Rochery et al. [14] used the following interaction function
�:

�(z) =
⎧⎨
⎩

1
2

(
1 − z − d

	
− 1



sin


(z − d)
	

)
|z − d| < 	,

H(d − z) else.
(2.3)

In this paper, we use this same interaction function with d = 	,
but other monotonically decreasing functions lead to qualitatively
similar results.

3. The `gas of circles' model

For certain ranges of the parameters involved, the energy in equa-
tion (2.2) favours regions in the form of networks, consisting of long
narrow arms with approximately parallel sides, joined together at
junctions, as described by Rochery et al. [14]. It thus provides a good
prior for network extraction from images. This behaviour does not
persist for all parameter values, however, and we will exploit this
parameter dependence to create a model for a `gas of circles', an en-
ergy that favours regions composed of an a priori unknown number
of circles of a certain radius.

For this to work, a circle of the given radius must be stable, that
is, it must be a local minimum of the energy. In Section 3.1, we show
that stable circles are indeed possible provided certain constraints
are placed on the parameters. More specifically, we expand the en-
ergy Eg in a functional Taylor series to second order around a circle
of radius r0. The constraint that the circle be an energy extremum
then requires that the first order term be zero, while the constraint
that it be a minimum requires that the operator in the second or-
der term be positive semi-definite. These requirements constrain the
parameter values. In Section 3.2, we present numerical experiments
using Eg that confirm the results of this analysis.

3.1. Stability analysis

We denote a member of the equivalence class of maps represent-
ing the 1-chain defining the circle by �0, and a small perturbation
by ��. To second order,

Eg(�) = Eg(�0 + ��) � Eg(�0) +
〈
��

∣∣∣∣∣�Eg��

〉
�0

+ 1
2

〈
��

∣∣∣∣∣�
2Eg
��2

∣∣∣∣∣��

〉
�0

,

(3.1)

where 〈·|·〉 is a metric on the space of 1-chains.
Since �0 represents a circle, it is easiest to express it in terms

of polar coordinates r,� on �. For a suitable choice of coordinate
on S1, a circle of radius r0 centred on the origin is then given by
�0(t) = (r0(t),�0(t)), where r0(t) = r0, �(t) = t, and t ∈ [−
,
). We

are interested in the behaviour of small perturbations �� = (�r,��).
Because the energy Eg is defined on 1-chains, tangential changes in
� do not affect its value. We can therefore set ��=0, and concentrate
on �r.

On the circle, using the arc length parameterization t, the inte-
grands of the different terms in Eg are functions of t − t′ only; they
are invariant to translations around the circle. In consequence, the
second derivative �2Eg/��(t)��(t′) is also translation invariant, and
this implies that it can be diagonalized in the Fourier basis of the
tangent space at �0. It is thus easiest to perform the calculation by
expressing �r in terms of this basis: �r(t) = ∑

kake
ir0kt, where k ∈

{m/r0 : m ∈ Z}. Below, we simply state the resulting expansions to
second order in the ak for the three terms appearing in Eq. (2.2).
Details can be found in Appendix A.

The boundary length and interior area of the region are given to
second order by

L(�) =
∫ 


−

dt |�(t)| � 2
r0

⎧⎨
⎩1 + a0

r0
+ 1

2

∑
k

k2|ak|2
⎫⎬
⎭ (3.2)

A(�) =
∫ 


−

d�

∫ r(�)

0
dr′ r′ � 
r20 + 2
r0a0 + 


∑
k

|ak|2. (3.3)

Note that there are no stable solutions using these terms alone. For
the circle to be an extremum, we require �C2
 + �C2
r0 = 0, which
tells us that �C = −�C/r0. The criterion for a minimum is, for each k,
�Cr0k2 + �C �0. We must have �C >0 for stability at high frequen-
cies. Substituting for �C , the condition becomes �C(r0k2 − r−1

0 )�0.

Substituting k = m/r0, gives the condition m2 − 1�0: the zero fre-
quency perturbation is never stable.

The quadratic term can be expressed to second order as∫ ∫ 


−

dt dt′ G(t, t′) = 2


∫ 


−

dp F00(p) + 4
a0

∫ 


−

dp F10(p)

+
∑
k

2
|ak|2
{[

2
∫ 


−

dp F20(p)

+
∫ 


−

dp e−ir0kpF21(p)

]

−
[
2ir0k

∫ 


−

dp e−ir0kpF23(p)

]

+
[
r20k

2
∫ 


−

dp e−ir0kpF24(p)

]}
, (3.4)

where G(t′, t′)= �(t′) · �(t) �(R(t, t′)). The Fij are functionals of � (and
hence of d), and functions of r0, as well as of p.

Combining Eqs. (3.2)–(3.4), we find, up to second order:

Eg(�0 + ��) � e0(r0) + a0e1(r0) + 1
2

∑
k

|ak|2e2(k, r0), (3.5)

where

e0(r0) = 2
�Cr0 + 
�Cr
2
0 − 
�CG00(r0)

e1(r0) = 2
�C + 2
�Cr0 − 2
�CG10(r0)

e2(k, r0) = 2
�Cr0k
2 + 2
�C − 2
�C[2G20(r0) + G21(k, r0)

− 2ir0kG23(k, r0) + r20k
2G24(k, r0)],

where Gij = ∫ 

−
 dp e−ir0(1−�(j))kpFij(p). Note that there are no off-

diagonal terms linking ak and ak′ for k� k′: the Fourier basis diago-
nalizes the second order term.

3.1.1. Parameter constraints
Note that a circle of any radius is always an extremum for non-

zero frequency perturbations (ak for k�0), as these Fourier coeffi-
cients do not appear in the first order term (this is also a consequence



702 P. Horváth et al. / Pattern Recognition 42 (2009) 699 -- 709

0 0.5 1 1.5 2 2.5 3
0
2
4
6
8

10
12
14
16

r0

e 0

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

r0 k

e 2

Fig. 1. Plots of e0 against r0 and e2 against r̂0k. Left: the energy of a circle e0 plotted against radius r0 for �C = 1.0, � = 0.8, and �C = 1.39 calculated from Eq. (3.6) with
r̂0 = 1.0. (The parameters of � are d = 1.0 and 	 = 1.0, but note that it is not necessary in general that d = r̂0.) The function has a minimum at r0 = r̂0 as desired. Right: the
second derivative of Eg, e2, plotted against r̂0k for the same parameter values. The function is non-negative for all frequencies.

βC

r 0 (βC
(0), r0

(0))

Fig. 2. Schematic plot of the positions of the extrema of the energy of a circle
versus �C .

of invariance to translations around the circle). The condition that a
circle be an extremum for a0 as well (e1 = 0) gives rise to a relation
between the parameters:

�C(�C ,�C , r̂0) = �C + �Cr̂0
G10(r̂0)

, (3.6)

where we have introduced r̂0 to indicate the radius at which there is
an extremum, to distinguish it from r0, the radius of the circle about
which we are calculating the expansion (3.1). The left-hand side of
Fig. 1 shows a typical plot of the energy e0 of a circle versus its
radius r0, with the �C parameter fixed using Eq. (3.6) with �C = 1.0,
�=0.8, and r̂0 =1.0. The energy has a minimum at r0 = r̂0 as desired.
The relationship between r̂0 and �C is not quite as straightforward
as it might seem though. As can be seen, the energy also has a
maximum at some radius. It is not a priori clear whether it will
be the maximum or the minimum that appears at r̂0. If we graph
the positions of the extrema of the energy of a circle against �C
for fixed �C , we find a curve qualitatively similar to that shown in
Fig. 2 (this is an example of a fold catastrophe). The solid curve
represents the minimum, the dashed the maximum. Note that there
is indeed a unique �C for a given choice of r̂0. Denote the point at

the bottom of the curve by (�(0)
C , r̂(0)0 ). Note that at �C = �(0)

C , the

extrema merge and for �C <�(0)
C , there are no extrema: the energy

curve is monotonic because the quadratic term is not strong enough
to overcome the shrinking effect of the length and area terms. Note
also that the minimum cannot move below r0 = r(0)0 . This behaviour
is easily understood qualitatively in terms of the interaction function

in Eq. (2.3). If 2r0 < d− 	, the quadratic term will be constant, and no
force will exist to stabilize the circle. In order to use Eq. (3.6) then,
we have to ensure that we are on the upper branch of Fig. 2.

Eq. (3.6) gives the value of �C that provides an extremum of e0
with respect to changes of radius a0 at a given r̂0 (e1(r̂0) = 0), but
we still need to check that the circle of radius r̂0 is indeed stable
to perturbations with non-zero frequency, i.e. that e2(k, r̂0) is non-
negative for all k. Scaling arguments mean that in fact the sign of e2
depends only on the combinations r̃0 = r0/d and �̃C = (d/�C)�C . The
equation for e2 can then be used to obtain bounds on �̃C in terms of
r̃0. (Details of these calculations and bounds can be found in [17].)
The right-hand side of Fig. 1 shows a plot of e2(k, r̂0) against r̂0k for
the same parameter values used for the left-hand side, showing that
it is non-negative for all r̂0k.

We call the resulting model, the energy Eg with parameters cho-
sen according to the above criteria, the `gas of circles' model.

3.2. Geometric experiments

To illustrate the behaviour of the `gas of circles' model, in this
section we show the results of some experiments using Eg (there are
no image terms). Fig. 3 shows the result of gradient descent using
Eg starting from various different initial regions. (For details of the
implementation of gradient descent for higher-order active contour
energies using level set methods, see [14].) In the first column, four
different initial regions are shown. The other three columns show
the final regions, at convergence, for three different sets of param-
eters. In particular, the three columns have r̂0 = 15.0, 10.0, and 5.0,
respectively.

In the first row, the initial shape is a circle of radius 32 pixels.
The stable states, which can be seen in the other three columns, are
circles with the desired radii in every case. In the second row, the
initial region is composed of four circles of different radii. Depending
on the value of r̂0, some of these circles shrink and disappear. This
behaviour can be explained by looking at Fig. 1. As already noted,
the energy of a circle e0 has a maximum at some radius rmax. If
an initial circle has a radius less than rmax, it will `slide down the
energy slope' towards r0=0, and disappear. If its radius is larger than
rmax, it will finish in the minimum, with radius r̂0. This is precisely
what is observed in this second experiment. In the third row, the
initial condition is composed of four squares. The squares evolve to
circles of the appropriate radii. The fourth row has an initial condition
composed of four differing shapes. The nature of the stable states
depends on the relation between the stable radius, r̂0, and the size
of the initial shapes. If r̂0 is much smaller than an initial shape, this
shape will `decay' into several circles of radius r̂0.
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(Initial) ˆ(r0 = 15) ˆ(r0 = 10) ˆ(r0 = 5)

Fig. 3. Experimental results using the geometric term: the first column shows the
initial conditions; the other columns show the stable states for various choices of
the radius.

4. Likelihood energy and experiments

In this section, we apply the `gas of circles' model to the extrac-
tion of trees from aerial images. We give a brief state of the art for
tree crown extraction, and then present the likelihood energy we use
in Section 4.2. In Section 4.3, we describe tree crown extraction ex-
periments on aerial images and compare the results to those found
using a classical active contour model. In Section 4.4, we examine
the robustness of the method to noise using synthetic images. This
illuminates the principal failure modes of the model, which will be
further discussed in Section 5, and which point the way for future
work. In Section 4.5, we illustrate the importance of prior informa-
tion via tree crown separation experiments on synthetic images, and
compare the results to those obtained using a classical active con-
tour model.

4.1. Previous work

The problem of locating, counting, or delineating individual trees
in high resolution aerial images has been studied in a number of
papers. For example, Gougeon [18] observes that trees are brighter
than the areas separating them. Local minima of the image are found
using a 3×3 filter, and the `valleys' connecting them are then found
using a 5× 5 filter. The tree crowns are subsequently delineated us-
ing a five-level rule-based method designed to find circular shapes,
but with some small variations permitted. While the method is quite
effective in separating trees, the size of the filters results in signifi-
cant overestimation of the size of the trees. Larsen [19] concentrates
on spruce tree detection using a template matching method. The 3D
shape of the tree is modelled using a generalized ellipsoid, while il-
lumination is modelled using the position of the sun and a clear-sky
model. Template matching is used to calculate a correlation measure
between the tree image predicted by the model and the image data.
The local maxima of this measure are treated as tree candidates,
and various strategies are then used to eliminate false positives.
This method provides 3D information about the trees, but requires

specific models for each species of tree, as well as knowledge of a
number of extraneous parameters, for example, illumination. Brandt-
berg and Walter [20] decompose an image into multiple scales, and
then define tree crown boundary candidates at each scale as zero
crossings with convex grey-scale curvature. Edge segment centres of
curvature are then used to construct a candidate tree crown region
at each scale. These are then combined over different scales and a
final tree crown region is grown.

The above methods use a series of ad hoc steps rather than a sin-
gle unified model, which makes identifying the assumptions behind
the methods difficult. Closer in spirit to the present work is that of
[21], which models the collection of tree crowns by a marked point
process, where the marks are circles or ellipses. An energy is defined
that penalizes, for example, overlapping shapes, and controls the pa-
rameters of the individual shapes. Compared to the work described
in this paper, the method has the advantage that overlapping trees
can be represented as two separate objects, but the disadvantage
that the tree crowns are not precisely delineated due to the small
number of degrees of freedom for each mark.

4.2. Likelihood energy and gradient descent

In order to couple the region model Eg to image data, we need
a likelihood, P(I|R,K). The images we use for the experiments are
coloured infrared (CIR) images. Originally they are composed of three
bands, corresponding roughly to green, red, and near infrared (NIR).
Analysis of the one-point statistics of the image in the region cor-
responding to trees and the image in the background, shows that
the `colour' information does not add a great deal of discriminating
power compared to a `greyscale' combination of the three bands, or
indeed the NIR band on its own. We therefore model the latter.

The image resolution is ∼ 0.5m/pixel, and tree crowns have di-
ameters of the order of 10pixels. Little dependence remains between
the pixels at this resolution, which means, when combined with the
paucity of statistics within each tree crown, that pixel dependencies
(i.e. texture) are very hard to use for modelling purposes. We there-
fore model the interior of tree crowns using a Gaussian distribution
with mean  and covariance �2�R, where �A is the identity operator
on images on A ⊂ �.

The background is very varied, and thus hard tomodel in a precise
way. We use a Gaussian distribution with mean ̄ and variance �̄2�R̄.
In general,  > ̄, and � < �̄; trees are brighter and more constant in
intensity than the background. The boundary of each tree crown
has significant inward-pointing image gradient, and although the
Gaussian models should in principle take care of this, we have found
in practice that it is useful to add a gradient term to the likelihood
energy. Our likelihood thus has three factors:

P(I|R,K) = Z−1 gR(IR) gR̄ (IR̄) f�R(I�R),

where IR and IR̄ are the images restricted to R and R̄, respectively,
and gR and gR̄ are proportional to the Gaussian distributions already
described, i.e.

− ln gR(IR) =
∫
R
d2x

1
2�2

(IR(x) − )2 (4.1)

and similarly for gR̄. The function f�R depends on the gradient of the
image �I on the boundary �R:

− ln f�R(I�R) = �i

∫
dom �

dt n(t) · �I(t), (4.2)

where n is the unnormalized outward normal to �. The normalization
constant Z is thus a function of , �, ̄, �̄, and �i. Z is also a functional
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Fig. 4. Left: real image with a planted forest �IFN (0.3, 0.06, 0.05, 0.05). Right: the result obtained using the `gas of circles' model (529, 5.88, 5.88, 5.64, 4, 4).

Fig. 5. From left to right: image of poplars �IFN (0.73, 0.11, 0.23, 0.094); the best result with a classical active contour (880, 13, 73); result with the 'gas of circles' model
(100, 6.7, 39, 31, 4.2, 4.2).

of the region R. To a first approximation, it is a linear combination
of L(�R) and A(R). It thus has the effect of changing the parameters
�C and �C in Eg. However, since these parameters are essentially
fixed by hand (the criteria described in Section 3.1.1 only allow us to
fix �C and constrain �C), knowledge of the normalization constant
does not change their values, and we ignore it once the likelihood
parameters have been learnt.

The full model is then given by E(R) = Ei(I,R) + Eg(R), where

Ei(I,R) = − ln gR(IR) − ln gR̄(IR̄) − ln f�R(I�R).

The energy is minimized by gradient descent. The functional deriva-
tives of all terms except the quadratic term in Eg are standard. The
functional derivative of the quadratic term gives rise to a gradient
descent force given by

n̂ · ��
��

(t) = �
∫
dom �

dt′ R̂(t, t′) · n(t′)�̇(R(t, t′)), (4.3)

where R̂(t, t′)= (�(t)− �(t′))/|�(t)− �(t′)|. To evolve the region we use
the level set framework of [22] extended to the demands of nonlocal
forces such as Eq. (4.3) [14].

The computational complexity of the algorithm is unknownwith-
out a bound on the number of iterations. However, the complexity
of one iteration is easily analysed. Eq. (4.3) involves an integration
over the contour for each contour point. The worst case complexity is
thus O(L2), where L is the length of the contour. The implementation
however, only integrates over those points within interaction range
(i.e. d + 	), and so the complexity depends on the average length l
of contour within interaction range of a point, becoming O(Ll). Typ-
ically l is a local quantity that does not depend on the size of the
image. In our application, L, on the other hand, is proportional to
the number of trees, which is in turn proportional to the size of the
image, n. So the complexity of one iteration is O(n).

4.3. Tree crown extraction from aerial images

In this section, we present the results of the application of the
above model to 50 cm/pixel colour infrared aerial images of poplar
stands located in the `Saône et Loire' region in France. The images
were provided by the French National Forest Inventory (IFN). As
stated in Section 4.2, we model only the NIR band of these images,
as adding the other two bands does not increase discriminating
power. The tree crowns in the images are ∼8–10 pixels in diameter,
i.e. ∼4–5m.

In the experiments, we compare our model to a classical active
contour model (�C =0). The parameters , �, ̄, and �̄ were the same
for both models, and were learned from hand-labelled examples in
advance. The classical active contour prior model thus has three free
parameters (�i, �C and �C), while the `gas of circles' model has six
(�i, �C , �C , �C , d and r0). We fixed r0 based on our prior knowledge
of tree crown size in the images, and dwas then set equal to r0. Once
�C and �C have been fixed, �C is determined by Eq. (3.6). There are
thus three effective parameters for the HOAC model. In the absence
of any method to learn �i, �C and �C , they were fixed by hand to give
the best results, as with most applications of active contour models.
The values of �i, �C and �C were not the same for the classical
active contour and HOAC models; they were chosen to give the best
possible result for each model separately. The initial region in all
experiments was a rounded rectangle slightly bigger than the image
domain. The image values in the region exterior to the image domain
were set to ̄ to ensure that the region would shrink inwards.

Fig. 4 illustrates the first experiment. On the left are the data,
showing a regularly planted poplar stand. The result is shown on
the right. We applied the algorithm to the central part of the image
only, for reasons that will be explained in Section 5.

Fig. 5 illustrates a second experiment. On the left are the data. The
image shows a small piece of an irregularly planted poplar forest.



P. Horváth et al. / Pattern Recognition 42 (2009) 699 -- 709 705

Fig. 6. From left to right: image of poplars �IFN (0.71, 0.075, 0.18, 0.075); the best result with a classical active contour (24000, 100, 500); result with the `gas of circles'
model (1500, 25, 130, 100, 3.5, 3.5).

Fig. 7. From left to right: image of poplars �IFN (0.71, 0.075, 0.18, 0.075); the best result with a classical active contour (35000, 100, 500); result with the `gas of circles'
model (1200, 20, 100, 82, 3.5, 3.5).

The image is difficult because the intensities of the crowns are varied
and the gradients are blurred. In the middle is the best result we
could obtain using a classical active contour. On the right is the result
we obtain with the `gas of circles' model.1 Note that in the classical
active contour result several trees that are in reality separate are
merged into single connected components, and the shapes of trees
are often rather distorted, whereas the prior geometric knowledge
included when ��0 allows the separation of almost all the trees and
the regularization of their shapes.

Fig. 6 illustrates a third experiment. Again the data is on the left,
the best result obtained with a classical active contour model is in
the middle, and the result with the `gas of circles' model is on the
right. The trees are closer together than in the previous experiment.
Using the classical active contour, the result is that the tree crown
boundaries touch in the majority of cases, despite their separation
in the image. Many of the connected components are malformed
due to background features. The HOAC model produces more clearly
delineated tree crowns, but there are still some joined trees. We will
discuss this further in Section 5.

Fig. 7 shows a fourth experiment. Again the data is on the left, the
best result obtained with a classical active contour model is in the

1 Unless otherwise specified, in the figure captions the values of the parameters
learned from the image are shown when the data is mentioned, in the form (,�, ̄, �̄).
The other parameter values are shown when each result is mentioned, in the form
(�i ,�C ,�C ,�C , d, r0), truncated if the parameters are not present. All parameter values
are truncated to two significant figures. Unless otherwise specified, images were
scaled to take values in [0, 1]. The region boundary is shown in white.

Table 1
Results on real images using a classical active contour model (left) and the `gas of
circles' model (right)

Figure CD % FP % FN % CD % FP % FN %

Fig. 5 85 0 15 97 0 3
Fig. 6 96.2 2.8 1.9 97.7 0 2.3
Fig. 7 89.4 5 5.6 95.5 0.6 3.9

CD: correct detections; FP: false positives; FN: false negatives (two joined trees
count as one false negative).

middle, and the result with the `gas of circles' model is on the right.
Again, the `gas of circles' model better delineates the tree crowns and
separates more trees, but some joined trees remain also. The HOAC
model selects only objects of the size chosen, so that false positives
involving small objects do not occur.

Table 1 shows the percentages of correct tree detections, false
positives and false negatives (two joined trees count as one false
negative), obtained with the classical active contour model and the
`gas of circles' model in the experiments shown in Figs. 5–7. The
`gas of circles' model outperforms the classical active contour in all
measures, except in the number of false negatives in the experiment
in Fig. 6.

The typical runtime of the `gas of circles' model in these experi-
ments (image size O(100) pixels) is of the order of 10minutes on a
normal personal computer. In our implementation, this is approxi-
mately ten times slower than using classical active contours.
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Fig. 8. One of the synthesized images, with six different levels of added white Gaussian noise. Reading from left to right, top to bottom, the image variance to noise power
ratios are 20, 15, 10, 5, 0, −5dB. Parameter values in the form (,�, ̄, �̄,�C ,�C ,�C) are shown under the six images. The parameters d and r0 were fixed to 8 throughout.

Table 2
Results on synthetic noisy images

Noise (dB) 20 15 10 5 0 −5

FP % 0 0 0 2 6.4 27.6
FN % 0 0 0 0 4 3.6
J % 0 0 0 0 0 23

FP, FN, J: percentages of false positive, false negative, and joined circle detections,
respectively, with respect to the potential total number of correct detections.

4.4. Noisy synthetic images

In this section, we present the results of tests of the sensitivity of
the model to noise in the image. Fifty synthetic images were created,
each with ten circles with radius 8 pixels and 10 circles with radius
3.5 pixels, placed at random but with overlaps rejected. Six different
levels of white Gaussian noise, with image variance to noise power
ratios from −5 to 20dB, were then added to the images to generate
300 noisy images. Six of these, corresponding to noisy versions of
the same original image, were used to learn , �, ̄, and �̄. The model
used was the same as that used for the aerial images, except that �i
was set equal to zero. The parameters were adjusted to give a stable
radius of 8 pixels.

The results obtained on the noisy versions of one of the 50 images
are shown in Fig. 8. Table 2 shows the proportion of false negative
and false positive circle detections with respect to the total number
of potentially correctly detectable circles (500 = 50 × 10), as well
as the proportion of `joined circles', when two circles are grouped
together (an example can be seen in the bottom right image of Fig. 8).
Detections of one of the smaller circles (which only occurred a few
times even at the highest noise level) were counted as false positives.

The method is very robust with respect to all but the highest levels of
noise. The first errors occur at 5dB, where there is a 2% false positive
rate. At 0 dB, the error rate is ∼ 10%, i.e. one of the 10 circles in each
image was misidentified on average. At −5dB, the total error rate
increases to ∼ 30%, rendering the method not very useful.

Note that the principal error modes of the model are false posi-
tives and joined circles. There are good reasons why these two types
of error dominate. We will discuss them further in Section 5.

4.5. Circle separation: comparison to classical active contours

In a final experiment, we simulated one of the most important
causes of error in tree crown extraction, and examined the response
of classical active contour and HOAC models to this situation. The
errors, which involve joined circles similar to those found in the pre-
vious experiment, are caused by the fact that in many cases nearby
tree crowns in an image are connected by regions of significant in-
tensity with significant gradient with respect to the background,
thus forming a dumbbell shape. Calling the bulbous extremities, the
`bells', and the join between them, the `bar', the situation arises when
the bells are brighter than the bar, while the bar is in turn brighter
than the background, and most importantly, the gradient between
the background and the bar is greater than that between the bar and
the bells.

The first row of Fig. 9 shows a sequence of bells connected by
bars. The intensity of the bar varies along the sequence, resulting
in different gradient values. We applied the classical active contour
and `gas of circles' models to these images.

The middle row of Fig. 9 shows the best results obtained using
the classical active contour model. The model was either unable to
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Fig. 9. Results on circle separation comparing the HOAC `gas of circles' model to
the classical active contour model. Top: original images. The intensity of the bar
takes values equally spaced between 48 and 128 from left to right; the background
is 255; the bells are 0. In the middle: the best results obtained using the classical
active contour model (8, 1, 1). Either the circles are not separated or the region
vanishes. Bottom: the results using the `gas of circles' model (2, 1, 5, 4.0, 8, 8). All
the circles are segmented correctly.

separate the individual circles, or the region completely vanished.
The intuition is that if there is insufficient gradient to stop the region
at the sides of the bar, then there will also be insufficient gradient
to stop the region at the boundary between the bar and the bells, so
that the region will vanish. On the other hand, if there is sufficient
gradient between the bar and the background to stop the region, the
circles will not be separated, and a `bridge' will remain between the
two circles.2

The corresponding results using the `gas of circles' model are
shown in the bottom row of Fig. 9. All the circles were segmented
correctly, independent of the grey level of the bar. Encouraging as
this is, it is not the whole story, as we indicated in Section 4.4. We
make a further comment on this issue in Section 5.

5. Conclusion

Higher-order active contours allow the inclusion of sophisticated
prior information in active contour models. HOACs are particularly
well adapted to cases in which the topology is unknown a priori. In
this paper, we have shown via a stability analysis that a HOAC energy
can be constructed that describes a `gas of circles', that is, it favours
regions composed of an a priori unknown number of circles of a cer-
tain radius. The requirement that circles be stable, i.e. local minima
of the energy, fixes one of the prior parameters and constrains the
others.

The `gas of circles' model has many uses in computer vision and
image processing. Combined with a suitable likelihood, we have ap-
plied it to the problem of tree crown extraction from aerial images
of plantations. It performs better than simpler techniques such as
maximum likelihood and classical active contours. In particular, it is
better able to separate trees that appear joined in the data than is a
classical active contour model.

The model is not without its issues, however. First, the com-
putation time is too long. We are currently working on a phase
field HOAC [23] version of the `gas of circles' model that we hope
will significantly reduce this time. Second, there are two significant

2 `Bar' and `bell' refer to image properties; we use `bridge' and `circle' to refer
to the corresponding pieces of a dumbbell-shaped region.

errormodes, as shown in the noise experiments of Section 4.4: circles
are found where the data do not ostensibly support them (`phantom
circles'), and two circles may be joined into a dumbbell shape and
never separated. We discuss these in turn.

The first issue is that of `phantom' circles. Circles of radius r̂0 are
local minima of the prior energy. It is the effect of the data that
converts such configurations into global minima. Were we able to
find the global minimum of the energy, this would be fine. How-
ever, gradient descent finds only a local minimum. This can create
problems in areas where the data do not support the existence of
circles because a circle, once formed during gradient descent, cannot
disappear unless there is an image force acting on it. We thus find
that circles can appear and remain even though there is no data to
support them.

The second issue is that of joined circles, discussed in Section 4.5.
Although the current HOAC model is better able to separate circles
than a classical active contour, it still fails to do so in a number
of cases, leaving a bridge between the circles. The issue here is a
delicate balance between the parameters, which must be adjusted
so that the sides of the bridge attract one another, thus breaking the
bridge, and so that nearby circles repel one another at close range,
so that the bridge does not re-form. Again, this is at least in part
an algorithmic issue. Even if the two separated circles have a lower
energy than the joined circles, separation may never be achieved
due to a local minimum caused by the bridge.

We propose to solve the first problem via a more detailed theo-
retical analysis of the circle energy that will allow us to remove the
local minima causing the problem, and the second via an in-depth
analysis of the energy of the dumbbell configuration. Both these
studies should lead to further constraints on the parameters, which
is a desirable goal in itself.
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Appendix A. Details of stability computations

In this appendix, we give most of the steps involved in reaching
Eq. (3.5). The equation of the region boundary is

�(t) = �0(t) + ��(t) = (r(t),�(t)) = (r0(t) + �r(t),�0(t)), (A.1)

where �0(t)=(r0(t)),�0(t))=(r0, t), �r(t)=
∑

kake
ir0kt, and k ∈ {m/r0 :

m ∈ Z}. The components of �̇ are

�̇(t) = 1 and ṙ(t) = �̇r(t) =
∑
k

akir0ke
ir0kt. (A.2)

The tangent vector field is given by

�(t) = ṙ(t)�r + �̇(t)��. (A.3)

A.1. Linear terms

To compute the length, we need the magnitude of � to second
order. The metric in polar coordinates is ds2 = dr2 + r2 d�2, so we
have that |�(t)|2 = ṙ(t)2 + r(t)2 by Eqs. (A.2). Substituting from Eqs.
(A.1) and (A.2) gives

|�(t)|2 = r20 + 2r0
∑
k

ake
ir0kt +

∑
k,k′

akak′eir0(k+k′)t(1 − r20kk
′). (A.4)
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Taking the square root, expanding it as
√
1 + x ≈ 1 + 1

2 x − 1
8 x

2, and
keeping terms to second order in the ak then gives

|�(t)| = r0

⎧⎨
⎩1 +

∑
k

ak
r0

eir0kt − 1
2

∑
k,k′

akak′kk′eir0(k+k′)t
⎫⎬
⎭ . (A.5)

Using Eq. (A.5), the boundary length is then given to second order
by

L(�) =
∫ 


−

dt |�(t)| = 2
r0

⎧⎨
⎩1 + a0

r0
+ 1

2

∑
k

k2|ak|2
⎫⎬
⎭ ,

where we have used the reality of �r to set a−k = a∗
k, where * indi-

cates complex conjugation, and orthonormality of the Fourier basis
elements.

We can write the interior area of the region as

A(�) =
∫ 


−

d�

∫ r(�)

0
dr′ r′ =

∫ 


−

d�

1
2
r2(�)

Thus, using Eq. (A.1), and again using orthonormality, we have that

A(�) = 
r20 + 2
r0a0 + 

∑
k

|ak|2. (A.6)

A.2. Quadratic terms

To compute the expansion of the quadratic term in Eq. (2.2) for
Eg, we need the expansions of �(t) · �(t′) and �(R(t, t′)).

A.2.1. Inner product of tangent vectors
The tangent vector is given by Eq. (A.3), but we must take care as

�(t) and �(t′) live in different tangent spaces, at �(t) and �(t′), respec-
tively. It is easiest to convert the tangent vectors to the Euclidean co-
ordinate basis, �r=cos(�)�x+sin(�)�y and ��=−r sin(�)�x+r cos(�)�y
as these basis vectors are preserved by parallel transport. Taking the
inner product then gives

� · �′ = cos(�′ − �)[r20 + r0�r + r0�r
′ + �r�r′ + �̇r�̇r

′
]

+ sin(�′ − �)[r0�̇r
′ − r0�̇r + �r�̇r

′ − �̇r�r′],

where unprimed quantities are evaluated at t and primed quantities
at t′.

A.2.2. Interaction function
First, we expand R(t, t′). The squared distance between �(t′) and

�(t) is given by

|�(t′) − �(t)|2 = [(r0 + �r′) cos(�′) − (r0 + �r) cos(�)]2

+ [(r0 + �r′) sin(�′) − (r0 + �r) sin(�)]2,

which after expansion gives

R2(t, t′) = 2r20(1 − cos(�t))

{
1 + 1

r0
(�r + �r′)

+�r2 + �r′2 − 2 cos(�t)�r�r′

2r20(1 − cos(�t))

}
,

where �t=�′ −�= t′ − t. Expanding
√
1 + x ≈ 1+ 1

2 x− 1
8 x

2 to second
order and collecting terms, we then find

R(t, t′) = 2r0| sin(�t/2)| + | sin(�t/2)|(�r + �r′) + A(�t)
4r0

(�r − �r′)2,

(A.7)

where A(z) = cos2(z/2)| sin(z/2)|−1.

Expanding �(z) in a Taylor series to second order, and then sub-
stituting R(t, t′) for z using the approximation in Eq. (A.7), and keep-
ing only terms up to second order in �� then gives

�(R(t, t′)) = �(X0) +
∣∣∣∣sin �t

2

∣∣∣∣�′(X0)(�r + �r′)

+ 1
4r0

A(�t)�′(X0)(�r − �r′)2

+ 1
2
sin2

(
�t
2

)
�′′(X0)(�r + �r′)2, (A.8)

where X0 = 2r0| sin(�t/2)|.

A.3. Combining terms

Using the above equations gives

G(t, , t′)

= r20 cos(�t)�(X0)︸ ︷︷ ︸
F00,even

+ (�r + �r′) r0 cos(�t)
{
�(X0) + r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F10,even

+ (�̇r
′ − �̇r) r0 sin(�t)�(X0)︸ ︷︷ ︸

F11,odd

+ (�r2 + �r′2) r0 cos(�t)
{
1
4
A(�t)�′(X0)+ 1

2
r0sin2

(
�t
2

)
�′′(X0)+

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F20,even

+(�r�r′) cos(�t)
{
�(X0)+2r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)− 1
2
r0A(�t)�′(X0)+r20sin

2
(
�t
2

)
�′′(X0)

}
︸ ︷︷ ︸

F21,even

+ (�r′�̇r
′ − �r�̇r) r0

∣∣∣∣sin �t
2

∣∣∣∣ sin(�t)�′(X0)︸ ︷︷ ︸
F22,odd

+ (�r�̇r
′ − �r′�̇r) sin(�t)

{
�(X0) + r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F23,odd

+ (�̇r�̇r
′
) cos(�t)�(X0)︸ ︷︷ ︸

F24,even

,

where the Fij denote the functions appearing in the terms of G, and
`odd' and `even' refer to parity under exchange of t and t′. Each
line, and hence G, is symmetric in t and t′, as it should be. We
can now substitute the expressions for �r and �̇r in terms of their
Fourier coefficients, and calculate

∫∫ 

−
dt dt

′ G(t, t′). We note that in
the terms involving F10, F11, F20, F22, and F23, the presence of the
symmetric or antisymmetric factors in �r and �r′ simply leads to a
doubling of the value of the integral for one of the terms in these
factors, due to the corresponding symmetry or antisymmetry of the F
functions. We therefore only need to evaluate one of these integrals
for the relevant terms.

Because the F's depend only on �t, the resulting integrals can be
reduced, via a change of variables p=�t, to integrals over p. For F00
and F10, we have

∫ ∫ 


−

dt dt′ F00(t′ − t) =

∫ ∫ 


−

dp dt′ F00(p) = 2


∫ 


−

dp F00(p),
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and∫ ∫ 


−

dt dt′ �r(t) F10(t′−t)=

∫ ∫ 


−

dt dt′

∑
k

ake
ir0kt F10(t

′−t)

=
∑
k

ak

∫ ∫ 


−

dp dt′ eir0k(−p+t′) F10(p)

=
∑
k

ak

∫ 


−

dt′eir0kt

′ ∫ 


−

dpe−ir0kpF10(p)

=
∑
k

ak2
�(k)
∫ 


−

dp e−ir0kp F10(p)

=2
a0

∫ 


−

dp F10(p).

The calculations for the other terms proceed in a very similar
fashion, using the same change of variable and the orthonormality
of the Fourier basis. We merely list the results (full details may be
found in [24]):∫ ∫ 


−

dt dt′ �̇r(t) F11(t′ − t) = 0

∫ ∫ 


−

dt dt′ �r2(t) F20(t′ − t) = 2


∑
k

|ak|2
∫ 


−

dp F20(p)

∫ ∫ 


−

dt dt′ �r(t)�r(t′) F21(t′−t)=2


∑
k

|ak|2
∫ 


−

dp e−ir0kp F21(p)

∫ ∫ 


−

dt dt′ �r(t)�̇r(t) F22(t′−t)=0

∫ ∫ 


−

dtdt′ �r(t)�̇r(t′)F23(t′−t)=−2


∑
k

|ak|2ir0k
∫ 


−

dpe−ir0kpF23(p)

∫ ∫ 


−

dtdt′ �̇r(t)�̇r(t′)F24(t′−t)=2


∑
k

|ak|2r20k2
∫ 


−

dp e−ir0kp F24(p).

Using these results then gives Eq. (3.4), which in combination with
Eqs. (3.2) and (3.3), gives Eq. (3.5).
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