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Abstract

This paper deals with the problem of unsupervised classification of images modeled by Markov random fields (MRF).
If the model parameters are known then we have various methods to solve the segmentation problem (simulated
annealing (SA), iterated conditional modes (ICM), etc). However, when the parameters are unknown, the problem
becomes more difficult. One has to estimate the hidden label field parameters only from the observed image. Herein, we
are interested in parameter estimation methods related to monogrid and hierarchical MRF models. The basic idea is
similar to the expectation—maximization (EM) algorithm: we recursively look at the maximum a posteriori (MAP)
estimate of the label field given the estimated parameters, then we look at the maximum likelihood (ML) estimate of the
parameters given a tentative labeling obtained at the previous step. The only parameter supposed to be known is the
number of classes, all the other parameters are estimated. The proposed algorithms have been implemented on
a Connection Machine CM200. Comparative experiments have been performed on both noisy synthetic data and real
images. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Markov random field model; Hierarchical model; Parameter estimation; Parallel unsupervised image
classification

1. Introduction

Image classification is an important early vision task
where pixels with similar features are grouped into
homogeneous regions. Many-high level processing tasks
(surface description, object recognition, indexing, for
example) are based on such a preprocessing. Our

*Corresponding author. Tel.: #33 4 92.38.78.57; fax:#33
4 92.38.76.43; e-mail: zerubia@sophia.inria.fr

1This work has been partially funded by CNES (French Space
Agency), AFIRST and DRED/GdRISIS.

2Now at CWI-P.O. Box 94079, NL-1090 GB Amsterdam, The
Netherlands

approach consists in building a probabilistic model and
finding the most likely labeling (or classification). To do
so, we need to define some probability measure on the set
of all possible labelings. In real images, neighboring
pixels usually have similar properties. Within a probabil-
istic framework, such regularities are well expressed by
means of MRF. Another reason for dealing with MRF
models is the Hammersley—Clifford theorem, which allows
to define MRFs through clique-potentials.

In real-life applications, clique-potentials are usually
unknown, one has to estimate [1, 2] them only from the
observed image. From a statistical viewpoint, this means
that we want to estimate parameters from random vari-
ables whose joint distribution is a mixture of distribu-
tions. If we have a realization of the label field then the
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problem is relatively easy, many classical methods are
available to do such a parameter estimation (maximum
likelihood, coding method [3] etc). Unfortunately, such
a realization is usually unknown, so the direct use of the
above mentioned algorithms is impossible. Therefore, we
have to work with incomplete data methods.

Some algorithms are iterative, [4—6] generating a
labeling, estimating parameters from it, then generating
a new labeling using these parameters, etc. For such
methods, we need a reasonably good initial value for
each parameter. Since the classes are represented by
Gaussian distributions in the models considered herein,
the initialization of the mean and the variance of each
class is very important because of the influence of such
initial conditions on subsequent labelings and hence on
the quality of the final estimates. This problem is related
to the determination of the modes of a Gaussian mixture
without any a priori information. Many techniques are
available: Method of moments [7], Prony’s method [8],
or geometrical analysis of the histogram [9], for instance.

In this paper, we propose parameter estimation
methods for both monogrid [10] and hierarchical
[11, 12] MRF models. The algorithms described herein
have been tested on image segmentation problems. Com-
parative tests have been conducted on noisy synthetic
data and on real satellite images.

In Section 2, we give a general overview of the para-
meter estimation problem. In Section 3, we present
a monogrid and a hierarchical MRF segmentation model
and show how to estimate the related parameters. In
Section 4, we give some details concerning the parallel
implementation of the proposed methods. Finally, in
Section 5, we present experimental results obtained on
a Connection Machine CM200.

2. The parameter estimation problem

Image labeling is a general framework to solve low-
level vision tasks, such as image classification, edge detec-
tion, etc. To each pixel of the image, we assign a label.
The meaning of the labels depends on the problem that
we want to tackle. For image classification, for example,
a label means a class; for edge detection, it means the
presence or the direction of an edge, etc. Thus, we have to
deal with the following general problem:

We are given a set of pixels (an image)
S"Ms

1
, s

2
, 2 , s

N
N and F"M f

s
: s3SN a set of image

data (grey levels, for instance). Each of these pixels may
take a label from ""M0, 1, 2 , ¸!1N. The configura-
tion space ) is the set of all global discrete labelings
u"(u

sÇ
, 2 , u

sN
), u

s
3". The label process is denoted

by X and it is modeled by a MRF. Furthermore, we are
given n parameters forming a vector # which appears in
the MRF model.

Now, we construct a Bayesian estimator to find the
optimal labeling, that is the labeling which maximizes the

posterior distribution of the label field:

uL "arg max
u|)

P#(uDF, #), (1)

where uL is the MAP estimate of the label field, given F,
under the model P# (hereafter, the index # will be omit-
ted). If both # and u are unknown, the maximization
problem in Eq. (1) becomes: [13,14]:

(uL , #ª )"arg max
u,#

P(u, F D#). (2)

The pair (uL , #ª ) is the global maximum of the joint
probability P (u, F D#). If we regard # as a random
variable, the above maximization is an ordinary MAP
estimation in the following way [13]. Let us suppose that
# is restricted to a finite volume domain D# and # is
uniform onD# (that is P(#) is constant). Then, we get [13]:

arg max
u,#

P(u, #DF)"arg max
u,#

P (u, F D#)P (#)

P (F)

"arg max
u,#

P (u, F D#). (3)

However, this maximization is very difficult, having no
direct solution. Even SA is not implementable because
the local characteristics with respect to the parameters
# cannot be computed from P(u, F D#). A possible solu-
tion is to adopt the following criterion instead [13,14]:

uL "arg max
u

P(u, F D#ª ) (4)

#ª "arg max
#

P(uL , F D#) (5)

Of course, the solution of the above equations is not
necessarily the joint maximum corresponding to Eq. (3),
but in practice it is a good approximation. Clearly, Eq. (4)
is equivalent to Eq. (2) for #"#ª and Eq. (5) is equiva-
lent to Eq. (2) with u"uL . Furthermore, Eq. (4) is equiva-
lent to the MAP estimate of u in the case of known
parameters:

arg max
u

P(u, F D#ª )"arg max
u

P (uDF, #ª )

P(F D#ª )"arg max
u

P(uDF, #ª ). (6)

Hereafter, we briefly overview two estimation methods
that can be used to solve the system Eqs. (4) and (5). In
Section 3, we propose two unsupervised image segmenta-
tion methods based on these algorithms.

2.1. Adaptive simulated annealing (ASA)

Adaptive Simulated Annealing (ASA) has been pro-
posed by Geman in Ref. [13]. The algorithm was adapted
to image segmentation problems in Ref. [14], where the
convergence of ASA has also been proved.
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Algorithm 2.1. (ASA)

r Set k"0 and initialize #ª 0.
s Do n iterations (n*1) of Gibbs sampling from

P(uDF, #ª k). ¹he resulting labeling is denoted by uL k`1.
t ºpdate the current estimate of the parameters, #ª k`1 to

the M¸ estimate based on the current labeling uL k`1.
u Goto Step s with k"k#1 until #ª stabilizes.

If the ML estimate is not tractable, which is often the
case when dealing with MRF models, one can use an
approximation (Maximum Pseudo Likelihood (MPL),
for instance). We remark that a similar algorithm has
been reported in Ref. [3]. It uses ICM instead of the
Gibbs Sampler in Step s. We also use this latter version
in Section 3.

2.2. Iterative conditional estimation (ICE)

Another solution to the incomplete data problem has
been proposed by Pieczynski et al. [15, 16, 6] Let us
consider an estimator E#(F, u) of # (ML, for instance).
Since realizations of the label field are unknown, the
direct use of E#(F, u) is impossible, we have to approx-
imate it. The best approximation, in the mean-square
sense, is the conditional expectation. Since EME#DF, uN
depends on the parameters #, we need a parameter
#ª k previously defined in some way. This yields an iter-
ative procedure, called ICE [16,6].

Algorithm 2.2. (ICE)

r Set k"0 and initialize #ª 0.
s Generate n realizations (n is a priori chosen)

uL i(1)i)n) of the label field based on #ª k.
t Based on the sample uL i(1)i)n), #ª k`1 is obtained as

the conditional expectation

#ª k`1"EME# DX"uN+
1

n

n
+
i/1

E#(F, uL i). (7)

u Goto Step s until #ª stabilizes.

3. Unsupervised image segmentation

3.1. Monogrid model

Herein, we consider a monogrid MRF segmentation
model originally presented in Ref. [10] but with un-
known parameters [17]. Let us first review the model.
We are given the gray-levels F of an image
S"Ms

1
, s

2
, 2 , s

N
N, which is the only observed at-

tribute. Moreover, we are given a set of labels denoted by
""M0, 1, 2, ¸!1N. The problem is to estimate the
model parameters # and find the MAP estimate of the
label field X among all the possible discrete labelings

)""N"Mu"(u
s1
, 2 , u

sN
), u

s
3"N. As explained be-

fore, in the case of unknown parameters, the maximiza-
tion problem becomes (cf. Eq. (2)):

(uL , #ª )"arg max
u,#

P(u, F D#). (8)

Since this maximization is not tractable, we use Eqs. (4)
and (5) instead. The maximization problem in Eq. (4)
corresponds to the ordinary MAP estimate with known
parameters. Herein, we are interested in the solution of
the ML estimation using Eq. (5):

#ª "arg max
#

P(uL , F D#) (9)

The probability on the right-hand side can be written as

P(uL , F D#)"P(F DuL , #) P (uL D#) (10)

Using the model defined in Ref. [10], the first term is
a product of independent Gaussian densities and the
second term is a first-order MRF, also known as the
Potts model in statistical mechanics [18]:

P(uL , F D#)"<
s|S

1

J2npuL s
expA!

( f
s
!kuˆ s)2
2p2uˆ s B

]
exp(!b +

Ks,rL|C
d (uL

s
, uL

r
))

Z(b)
(11)

with

Z(b)" +
u|)

expA!b +
Ks,rL|C

d (u
s
, u

r
)B (12)

and

d(uL
s
, uL

r
)"G

0 if û
s
"uL

r
,

1 otherwise,
b'0. (13)

We have 2¸#1 parameters (two for each class and one
hyperparameter b). The first 2¸ parameters are estimated
from the Gaussian term and the last one is computed
from the Markovian term. Instead of the likelihood func-
tion defined in Eq. (11), we consider the simpler logarith-
mic likelihood:

ln(¸(#))"+
s|S
A!ln(J2npuˆ s )!

( f
s
!kuˆ s)2
2p2uˆ s B

!b +
Ks,rL|C

d(uL
s
, uL

r
)!ln(Z(b)) (14)

"+
j|"

+
s|Sj
A!ln(J2npj)!

( f
s
!kj)2
2p2j B

hgggggigggggj
G(kj,pj)

!b +
Ks, rL|C

d (uL
s
, uL

r
)!ln(Z(b)) ,

hggggiggggj
M(b)

(15)

where Sj is the set of pixels where uL "j. To get the
maximum of the likelihood function, #ª must satisfy the
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following equations:

∀j3" :
LG(kj, pj)

Lkj
"0, (16)

LG(kj, pj)
Lpj

"0, (17)

and
LM(b)

Lb
"0 . (18)

The solution of the above system for kj and pj is simply
the empirical mean and variance:

∀j3": kj"
1

DSj D
+

s|Sj

f
s
,

p2j"
1

DSj D
+
s|Sj

( f
s
!kj)2. (19)

The solution for b, however, is not as easy. Let us con-
sider the derivative of M(b):

L
Lb A!bNih(uL )!lnA +

u|)
exp(!bNih(u))BB

"!Nih(uL )#
+

u|)
Nih(u) exp(!bNih(u))

+
u|)

exp(!bNih(u))
"0

(20)

with Nih(uL )"+
Ks, rL|C

d (uL
s
, uL

r
) is the number of in-

homogeneous cliques in uL . From Eq. [20], we get

Nih(uL )"
+

u|)
Nih(u) exp(!bNih(u))

+
u|)

exp(!bNih(u))
. (21)

The right-hand side of the above equation is also called
the energy mean. Since ln(Z (b)) is convex in #, [18,13],
the gradient can be approximated by stochastic relax-
ation [13].

Herein, we use a simpler heuristic, which is computa-
tionally less expensive and gives reasonably good results,
in practice: Suppose that we have an estimate of the label
field uL . The algorithm aims at finding a bK which does not
change the labeling uL during a few iterations of a fixed
temperature Metropolis algorithm [17]. The temper-
ature ¹ is chosen empirically on a trial and error basis. In
our tests, we have set ¹"2.5. The idea behind ¹"2.5 is
that a too high value (¹*4) would result in a completely
random labeling independent of uL and the algorithm will
not converge. On the other hand, a too small value
(¹)1) turns the Metropolis algorithm into a determin-
istic one, which permits a large variation in bK without
really disturbing uL . The formulation of the proposed
algorithm is the following:

Algorithm 3.1. (Hyperparameter estimation)

r Set k"0, initialize bK 0 and let Nih(uL ) denote the num-
ber of inhomogeneous cliques in the labeling estimate.

s ºsing Metropolis algorithm at a fixed temperature ¹,
generate a new labeling g, sampling from

P(X"u)"
exp(!bK k

T
+

Ks, rL|S
d (u

s
, u

r
))

Z(bK k)
. (22)

Compute the number of inhomogeneous cliques Nih(g)
in g.

t If Nih(g)+Nih(uL ) then stop, else k"k#1. If
Nih(g)(Nih(uL ) then decrease bK k, if Nih(g)'Nih(uL )
then increase bK k, and goto Step s.

The complete parameter estimation process is the follow-
ing:

Algorithm 3.2. (Unsupervised segmentation)

r Given an imageF, initialize b, kj and pj for each j3".
s (Estimation) ºsing Algorithm 2.2 (ICE), get an esti-

mate #ª of the parameters.
t (Segmentation) Given the parameters #ª , do an ordi-

nary segmentation with known parameters to get the
MAP estimate of the label field given F and #ª .

3.2. Hierarchical model

First, let us briefly review the hierarchical model pro-
posed in Ref. [12]. In the followings, we suppose that
S"Ms

1
, s

2
, 2 , s

N
N is a ¼]H lattice, so that:

S,L"M(i, j) : 1)i)¼ and 1)j)HN, (23)

and ¼"wn, H"hm. This assumption introduces some
restrictions on L but this is not crucial, in practice, since
we work mostly on images where both ¼ and H are
a power of 2. First, we generate a label pyramid but we
keep the whole observation field: For all 1)i)M
(M"inf(n, m)), S is divided into blocks of size wi]hi,
denoted by bi. These blocks will form a coarser scale Bi.
The labels assigned to the sites of a block are supposed to
be the same over the whole block. Then, a block bi is
‘‘transformed’’ into a unique site si at the corresponding
level in the pyramid. We have the same neighborhood
structure at coarser grids in the pyramid as on the finest
(initial) grid (we note the cliques at level i by Ci). Let
SM "MsN

1
, 2 , sN

N
N denote the sites of this pyramid. We

introduce new interactions between two neighbor grids
in the pyramid (see Fig. 1). GM denotes this new neighbor-
hood system defined on the whole pyramid. Further-
more, let XM be a MRF overGM with energy function ºM and
potentials M»M

C1
N
C1 |C1

. The energy function is of the follow-
ing form:

ºM (u6 , F)"ºM
1
(u6 , F)#ºM

2
(u6 ), (24)

ºM
1
(u6 , F)"+

s6 |SM
»M
1
(u6

s6
, F) "

M
+
i/0

+
si|Si

»i
1
(ui

si
, F)

"

M
+
i/0

ºi
1
(ui, F), (25)
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Fig. 1. Hierarchical MRF model.
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where CM
3

denotes the new cliques siting astride two
neighbor grids. »M

2
(u6

C
) is the potential function over these

cliques which favors similar classes at neighboring pixels:

»M
2
(u6

C
)"cd (u6

C
) (27)

with d(u6
C
)"d(u6

s
, u6

r
)"G

0 if u6
s
"u6

r
,

1 otherwise.
(28)

(29)

Ci is the set of cliques and Si is the set of sites on
the grid i. »i

1
(ui

si
, F) (resp. »i

2
(ui

C
)) denotes the first

(resp. second) order potentials at level i, which are de-
rived by simple computation from the potentials on
the finest grid (for more details see Ref. [12]:

»i
1
(ui

si
, F)"+

s|bisi
A!ln(J2npus

)!
( f

s
!kus

)2

2p2us
B , (30)

»i
2
(ui

C
)"bqid(ui

C
), (31)

(32)

where bi
si

denotes the block of pixels which corresponds
to the site si in the pyramid. qi denotes the number of
cliques siting astride two neighboring blocks at scale Bi.
For example, considering 2]2 blocks and a first-order
neighborhood system, we simply get qi"2i.

Now, let us discuss the parameter estimation of the
hierarchical model. It is clear from the above equations
that we have the following logarithmic likelihood func-
tion:

M
+
i/0

+
si|Si

+
s|bisi
A!ln(J2npus

)!
( f

s
!kus

)2

2p2us
B

!b
M
+
i/0

qi +
Ci|Ci

d (uL
Ci)!c +

C|CM 3

d (uL
C
)!ln(Z (b, c)),

hggiggj hgigj
Nih(uˆ ) NM ih(uˆ )

(33)

Nih(uL ) denotes the number of inhomogeneous cliques
siting at the same scale and NM ih(uL ) denotes the number of
inhomogeneous cliques siting astride two neighboring levels
in the pyramid. First, let us consider the first term:

M
+
i/0

+
si|Si

+
s|bisi
A!ln(J2npus

)!
( f

s
!kus

)2

2p2us
B

"+
j|"

M
+
i/0

+
si|S ij

+
s|bisi
A!ln(J2npj)!

( f
s
!kj)2
2p2j B, (34)

where Sij is the set of sites at level i where uL
si
"j.

Derivating with respect to kj and pj, we get

∀j3": kj"
1

+M
i/0

DSij D
M
+
i/0

+
si|S ij

+
s|bisi

f
s
,

p2j"
1

+M
i/0

DSij D
M
+
i/0

+
si|S ij

+
s|bisi

( f
s
!kj)2 . (35)

Note that a gray-level value f
s
may be considered several

times. More precisely, f
s

is considered m-times in the
above sum for a given j if there is m scales where uL as-
signs the label j to the site s. m can also be seen as
a weight. Obviously, the more s has been labeled by j at
different levels, the more probable that s belongs to class
j. Hence, its gray-level value f

s
better characterizes the

class j. We note, however, that in practice, we only use
the finest level because it reduces computing time and
gives estimates quite close to the ones obtained by
Eq. (35).

The derivative of the logarithmic likelihood function
with respect to b and c is given by

L
Lb

(!bNih(uL )!ln(Z(b, c)))

"!Nih(uL )!
L
Lb

ln(Z(b, c)), (36)

L
Lc

(!cNM ih(uL )!ln(Z (b, c)))

"!NM ih(uL )!
L
Lc

ln(Z(b, c)). (37)
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P(X"u)"
exp(!bK k/¹ +M

i/0
+

Ks,rL|Ci
d (u

s
, u

r
)#cL k/¹ +

Ks, rL|C1
d (u

s
, u

r
))

Z(bK k, cL k)
. (40)

From which, we get

Nih(uL )"
+

u|)
Nih(u) exp(!bNih(u)!cNM ih(u))

+
u|)

exp(!bNih(u)!cNM ih(u))
, (38)

NM ih(uL )"
+

u|)
NM ih(u) exp(!bNih(u)!cNM ih(u))

+
u|)

exp(!bNih(u)!cNM ih(u))
. (39)

The solution of the above equations, as in the monogrid
case, can be obtained using Algorithm 3.1 with some
modifications as presented below.

Algorithm 3.3. (Hierarchical hyperparameter estimation)

r Set k"0 and initialize bK 0 and cL 0. Furthermore, let
Nih(uL ) denote the number of inhomogeneous cliques at
the same scale and NM ih(uL ) denotes the number of in-
homogeneous cliques between levels.

s ºsing Metropolis algorithm at a fixed temperature ¹,
generate a new labeling g sampling from

Compute the number of inhomogeneous cliques Nih(g)
and NM ih(g) in g.

t If Nih(g)+Nih(uL ) and NM ih(g)+NM ih(uL ) then stop, else
k"k#1. If Nih(g)(Nih(uL ) then decrease bK k, if
Nih(g)'Nih(uL ) then increase bK k. cL k is obtained in the
same way. Continue Step s with (bK k, cL k).

Algorithm 3.2 can also be applied to the hierarchical
model with trivial modifications. Hereafter, we give the
algorithm used for the simulations:

Algorithm 3.4. (Unsupervised hierarchical segmentation)

r Given an image F, initialize b, c; kj and pj for each
j3".

s (Estimation) ºsing Algorithm 2.1 (ASA), get an esti-
mate #ª of the parameters.

t (Segmentation) Given the parameters #ª , do an ordi-
nary supervised segmentation to get the MAP estimate
of the label field given F and #ª .

We remark, that in Step s, the Gaussian parameters
were computed considering only the finest level and not
the entire pyramid (cf. Eq. (35)).

4. Implementation on a connection machine CM200

The Connection Machine [19, 20] is a data parallel
(single instruction multiple data — SIMD) computing
system associating one processor with each pixel. This

Fig. 2. Coding sets in the case of a first order monogrid MRF.

computing style is well adapted to early vision problems
where a large mass of data need to be processed. On the
other hand, algorithms related to MRF models usually
require the same local computations on a small neigh-
borhood of each pixel.

An important feature of the Connection Machine is the
virtual processor facility. This means that a program can
assume to use any appropriate number of processors (vir-
tual processors) and the machine will map it onto physical
processors. The virtual processor ratio (»PR) indicates how
many times each physical processor must perform a task in
order to simulate the appropriate number of virtual proces-
sors. Indeed, the greater the VPR, the more time consum-
ing the computation.

As MRF models require computation over a small
neighborhood of each pixel, fast interprocessor commun-
ication capability is especially important. The Connec-
tion Machine offers an efficient nearest-neighbor
communication called NEWS (‘‘North, East, West, South’’).

Fig. 3. Relaxation scheme on the pyramid. The levels connected
by arrows are updated at the same time.
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Fig. 4. Supervised and unsupervised segmentation results on the ‘‘checkerboard’’ image with two classes.

Thanks to a specialized hardware support, NEWS grids
of any dimension can be handled with great speed. If we
are working with the monogrid model, we use this type of
communication. If we have no such regularity in the
model, we have to use the general communication via the
router. In this case, each processor can send data to or
receive data from any other processor. Of course, the
time required to deliver the message is much larger than
in the previous case. For the hierarchical model, we must
use this type of communications for the inter-level inter-
actions. This is the main reason of the high computing
time needed for the optimization of the associated energy
function.

We can easily parallelize the algorithms described in
this paper using the coding technique proposed by Besag

in Ref. [3]. It consists of constructing coding sets such
that pixels belonging to the same set are conditionally
independent, given the data of all the other sets. Thus,
pixels belonging to the same coding set can be updated at
the same time. We show the coding sets of the monogrid
model in Fig. 2 and those of the hierarchical model in
Fig. 3.

5. Experimental results

We have tested the proposed monogrid and hierarchi-
cal unsupervised algorithms on noisy synthetic and
real images. The algorithms were implemented on a
Connection Machine CM200 [19, 20] We have
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Fig. 5. Supervised and unsupervised segmentation results on the ‘‘triangle’’ image with four classes.

compared the obtained parameters and segmentation
results to the supervised results already presented in
Ref. [12]. In general, the quality of unsupervised
results are as good, or sometimes slightly better, than
the results of supervised segmentation. We observed,
however, that the unsupervised algorithm is more
sensitive to noise than the supervised one. This is due
to the initial conditions, in particular, the initialization
of the mean and the variance of the classes (the in-
itialization of b and c are not crucial). For example, in
the case of the ‘‘triangle’’ image (see Fig. 5) with
SNR"3 dB one class has been lost. But with
SNR"5 dB, the result is as good as for the supervised
algorithm.

Table 1
Comparison of supervised and unsupervised segmentation re-
sults. (Number of misclassified pixels)

Model Image Supervised Unsupervised

Monogrid Checkerboard 260 (1.59%) 213 (1.41%)
Triangle 112 (0.68%) 103 (0.63%)

Hierarchical Checkerboard 115 (0.7%) 147 (0.9%)
Triangle 104 (0.63%) 111 (0.68%)

Before evaluating the results, let us explain some im-
portant points of the implementation. The only para-
meter which has to be defined by the user is the number
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Table 2
Parameters of the ‘‘checkerboard’’ image

Monogrid model Hierarchical model

Unsupervised Unsupervised

Parameter Initial Final Supervised Parameter Initial Final Supervised

k
0

123.5 117.3 119.2 k
0

123.5 126.7 119.2
p2
0

256.0 680.0 659.5 p2
0

256.0 903.4 659.5
k
1

170.0 151.5 149.4 k
1

170.0 151.5 149.4
p2
1

169.0 668.2 691.4 p2
1

169.0 689.3 691.4
b 0.7 0.7 0.9 b 0.7 0.7 0.7

c 0.1 0.1 0.3

Table 4
Parameters of the ‘‘triangle’’ image

Monogrid model Hierarchical model

Unsupervised Unsupervised

Parameter Initial Final Supervised Parameter Initial Final Supervised

k
0

83.5 84.3 85.48 k
0

83.5 84.3 85.48
p2
0

256.0 480.5 446.60 p2
0

256.0 483.9 446.60
k
1

100.0 117.3 115.60 k
1

100.0 115.5 115.60
p2
1

169.0 416.3 533.97 p2
1

169.0 444.6 533.97
k
2

152.5 148.1 146.11 k
2

152.5 146.7 146.11
p2
2

676.0 457.8 540.32 p2
2

676.0 502.1 540.32
k
3

181.5 178.5 178.01 k
3

181.5 177.9 178.01
p2
3

100.0 490.9 504.34 p2
3

100.0 500.0 504.34
b 0.7 1.0 1.0 b 0.7 1.0 0.7

c 0.1 0.1 0.1

Table 3
Computer time of the ‘‘checkerboard’’ image

Model VPR Total CPU Estimation Segmentation
time (s) (s) (s)

Monogrid 2 142.73 133.57 9.16
Hierarchi-
cal 4 1551.93 1042.46 446.52

of classes. All the other parameters are
automatically estimated from the data. Essentially, we
have followed Algorithm 3.2. First, the initial values of
the mean and variance have been estimated: we have
used a method proposed by Postaire and Vasseur [9]
which consists of the geometrical analysis of the histo-
gram, regarded as a Gaussian mixture, in order to deter-
mine its modes. For the hyperparameters, we have

Table 5
Computer time of the ‘‘triangle’’ image

Model VPR Total CPU Estimation Segmentation
time (s) (s) (s)

Monogrid 2 249.75 237.00 12.75
Hierarchi-
cal 4 1762.23 1232.82 529.41

chosen as initial values b"0.7 and c"0.1. Experiments
show that these initial values are not vital, practically any
value between 0.5 and 1 is good for b and a value close to
zero is good for c.

In the next step (Step s of Algorithm 3.2), we use the
ICE algorithm (see Algorithm 2.2) to iteratively reesti-
mate the parameters. We have chosen ICM to generate
labelings because of its rapidity: Given the parameters
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Fig. 6. Training areas on the ‘‘holland’’ SPOT image with ground truth data.

Table 6
Parameters of the ‘‘holland’’ SPOT image

Unsupervised

Parameter Initial Final Supervised

k
0

51.5 53.1 54.6
p2
0

36.0 10.3 93.1
k
1

60.0 77.2 73.5
p2
1

49.0 64.3 4.1
k
2

70.5 89.6 82.5
p2
2

49.0 30.7 35.5
k
3

80.5 102.5 93.8
p2
3

64.0 35.7 93.7
k
4

97.5 116.2 100.5
p2
4

441.0 27.6 308.8
k
5

122.5 127.2 122.8
p2
5

484.0 18.9 8.9
k
6

136.0 138.6 129.9

Table 6 (continued)

p2
6

1.0 20.2 37.4
k
7

152.5 152.7 146.6
p2
7

625.0 18.0 15.3
k
8

169.0 162.4 159.9
p2
8

1.0 7.4 31.3
k
9

181.5 174.2 182.3
p2
9

25.0 54.1 73.1
b 0.7 1.3 1.0

#ª n, the ICM is used to maximize the a posteriori prob-
ability of the label field u. Suppose that ICM converges
in N iterations (N is typically less than 10) given N realiz-
ations of u. Using these labelings, we have to compute
N ML estimates of # (see Algorithm 2.2 for more details).
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Table 7
Computer time of the ‘‘holland’’ SPOT image

Model VPR Total CPU time (s) Estimation (s) Segmentation (s)

Monogrid 32 3576.58 3270.78 305.81

Fig. 7. Supervised segmentation result with 10 classes.

For the hierarchical model, however, we have used
ASA (cf. Algorithm 3.4), because the ICE algorithm
would be too slow with such a model: Using ICM, we
maximize the a posteriori probability of u, given the
parameter estimates #ª n. Then, the ML estimate is com-
puted based on the obtained labeling. Another modifica-
tion is that the Gaussian parameters were computed
considering only the finest level and not the entire pyr-
amid as explained in Section 3.2. This is because the
variances obtained with the original algorithm were to
large. This modification also reduces the computing
time.

Once the sequence #ª n becomes steady, the estimation
step is completed and one proceeds to the segmentation
(with known parameters) using the Gibbs sampler, for
instance.

The algorithms were tested on the ‘‘checkerboard’’
(Fig. 4), ‘‘triangle’’ (Fig. 5) and ‘‘holland’’ SPOT (Figs. 6—8)
images. For the synthetic images, we also give the histo-
gram, since the initial estimates are based on it. In Table
2, Table 4 and Table 6, we compare the parameters
obtained by the unsupervised algorithm to the ones
used for the supervised segmentation. We remark
that the parameters of the supervised algorithm are not
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Fig. 8. Unsupervised segmentation result with 10 classes.

necessarily correct. They have been computed on train-
ing sets selected by an expert (cf. Fig. 6). In Table 3, Table
5 and Table 7, we give the computer time of the estima-
tion and segmentation steps. As we can see, the estima-
tion requires much more time than the segmentation.
The hyperparameter estimation requires the largest part
of the computer time since it consists of generating new
labelings by Metropolis algorithm in Step s of Algo-
rithm 3.1.

Table 1 provides an objective comparison of super-
vised and unsupervised segmentation results based on
the number of misclassified pixels. The obtained results
are practically the same for supervised and unsupervised
segmentation.

6. Conclusion

Developing a completely data-driven algorithm for
image classification is an extremely difficult problem. We

have presented some iterative unsupervised parallel seg-
mentation algorithms for both monogrid and hierarchi-
cal Markovian models. The first results are encouraging
but unsupervised algorithms require much more comput-
ing time due to the hyperparameter estimation. In the
current implementation, they are computed using Me-
tropolis algorithm, which is very time consuming. Mean-
field approximation would probably result in a faster
convergence [21, 22]. Another important point is the
initialization of the Gaussian parameters for each class.
We have noted that unsupervised algorithms are more
sensitive to noise than supervised ones. This sensitivity is
due to bad initial conditions in the case of noisy images.

In summary, the presented unsupervised algorithms
provide results comparable to those obtained by super-
vised segmentations, but they require much more com-
puting time and they are slightly more sensitive to noise.
The main advantage is, of course, that unsupervised
methods are completely data-driven. The only input
parameter is the number of classes.
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