DNS számítási modellek

Jordaloma:

G. Păun, G. Rozenberg, A. Salomaa:
DNA Computing (New Computing Paradigms),

J. Amos: Theoretical and Experimental DNA
Computation (New Computing Series),

N. Jonoska, G. Păun, G. Rozenberg (eds.): Aspects of Molecular
(Essays Dedicated to Tom Head on the Occasion
of his 70th Birthday)

C. Martín-Vide, V. Mitrane (eds.): Where Mathematics,
Computer Science, Linguistics and Biology Meet,
(Essays in Honour of Gheorghe Păun)
DNS számítási modellek

DNS (dezoksinbonukleinsav rövidítése)
DNS molekula az 'elő sejtkeben (in vivo) van.
1944. Avery, McLeod, McCarty:
DNS szerepe az átöröklődésben
1953. James Watson, Francis Crick:
DNS térszerkezet leírása

kettős - helix (double - helix):
 két nukleotid sorozattól álló lánc
 csigavonalban helyezkedik el;
 a nukleotidok közötti kémiai kötések
 biztosítják az adott szerkezeted;
Nukleotid szerkezete:

Foszfat

Cukor

Bázis (timidilsav)

Bázisok:

A adenilsav
C citidilsav
G guanilisav
T timidilsav

láncon belül a nukleotidok kapcsolódása

5' P 3'

1' 3'

B 5'

a lánc iránya 3' → 5'
Watson-Crick komplementaritás a láncok között

$B_1 = T \text{ és } B_2 = A$ (gyengébb)

vagy

$B_1 = C \text{ és } B_2 = G$ (emberi)

cukor-foszfát géninc

$5' \rightarrow 3$
AGTC
T CAG
$3' \leftarrow 5'$
1978. Arber, Smith, Nathans
restrikciós endonukleáz felfedezése

↓

lehetőség nyílik a DNS molekulák jól-definiált kisebb
mintű szakaszokra bontására

↓

génszemenet kialakulása (in vitro)

1980. Gilbert, Sanger
DNS nukleotid sorrendjét meghatározza

70-es években a DNS mesterséges kémiai szintézise
(tetszőleges nukleotid sorrenddel rendelkező DNS-
szakaszok elsőállítása).

DNS-ben nukleotidok kicsereése egy másikra

1985. Kary Mullis
PCR (Polymerase Chain Reaction) módszer:

kémésőben (in vitro) a DNS molekula egy
adott hosszúságú szakaszának megsokszorozása
(néhány óra alatt többzérszeresre
növelhető egy adott DNS-szakasz példány-
száma)

↓

Nincs mennyiségi akadály a DNS-el
kapcsolatban.

↓

Ezek az eredmények alaposíták meg a
DNS számítógépes kialakulásának.
Különböző DNS molekulákának

- Kettős láncból egyszerű láncokra bontás és fordítás.

\[
\begin{align*}
5' & \text{GGATAGCTA} \\
3' & \text{CCTATCGAT} \\
\end{align*}
\]

melegítés

\[
\begin{align*}
3' & \text{GGATAGCTA} \\
5' & \text{CCTATCGAT} \\
\end{align*}
\]

hűtés

- Nem-teljes DNS molekula nukleotidokból való kiegészítése (szükséges nukleotid jelenlét mellett enzimekkel)

- DNS lánc hosszabbítása

\[
\begin{align*}
5' & \text{GGG} \\
3' & \text{GGG} \\
\end{align*}
\]

\[
\begin{align*}
\text{enzim} & + \\
\text{G nukleotidok} \\
\end{align*}
\]

- DNS lánc merődítése (enzimekkel)

- DNS lánc szétvágása

Eltérő hatású enzimek: egyszerű láncok, kettős láncok egyenes végés vagy lépcsőztes végés

\[
\begin{align*}
5' & \text{GAATTC} \\
3' & \text{CTTAAAG} \\
\end{align*}
\]

\[
\begin{align*}
\text{enzim} & \\
\end{align*}
\]

\[
\begin{align*}
5' & \text{GAATTC szakasz felismerő enzim} \\
\end{align*}
\]

\[
\begin{align*}
5' & \text{GAATTC} \\
3' & \text{CTTAA} \\
\end{align*}
\]

\[
\begin{align*}
\text{enzim} & \\
\end{align*}
\]
- DNS lánkok összekapcsolódása
 - egyszenű lánkok egyszenű lánccso kapcsolódása
 - kettős lánkok lineáris kapcsolódása
 - egymáshoz illeszkedő nyúlványú lánkok kapcsolódása

Képnyi molekulák kialakulása

\[
\begin{align*}
5' & \quad d_1 \quad \text{CCGG} \quad d_2 \quad \text{CCGG} \\
3' & \quad \text{GGCC} \quad \text{GGCC} \\
\downarrow \quad \text{(HpaII)} \\
5' & \quad d_1 \quad \text{CGGC} \quad d_2 \quad \text{CGGC} \\
3' & \quad \text{GGCG} \quad \text{GGCG} \\
\downarrow \quad \text{DNS ligase} \\
5' & \quad d_1 \quad \text{CCGG} \quad d_2 \quad \text{CCGG} \\
3' & \quad \text{GGCC} \quad \text{GGCC}
\end{align*}
\]

- DNS lánccal adott ponton való bővítése adott lánccso sakadással
- DNS lánccal adott helyen egy lánccso sakadás
 törlése
- DNS molekulák többszörözése \((PCR)\)
- DNS molekulákat tartalmazó keverék ből adott tulajdonsági molekulák szűrésé
- DNS molekulák kiválasztása hossz alapján egy keverék ből
- DNS molekulák oldasára
DNS műveleteket alkalmazó modellek

V ábécé

V^* a V felett szavak halmaza

$S \subseteq V \times V$ szimmetrikus reláció (a komplementáris adható meg)

$(x, y) \in V^* \times V^*$ jelölés helyett $(x^*) \in (V^*)^*$ jelölés;

konkatenáció a $V^* \times V^*$ elemei között:

\[
\begin{pmatrix}
(x_1) : (y_1) \\
(x_2) : (y_2)
\end{pmatrix} \in \left(\begin{pmatrix} V \end{pmatrix}\right)^* \quad \text{akkor} \quad \begin{pmatrix} x_1 \cdot y_1 \\
X
\end{pmatrix} = \begin{pmatrix} x_1 \cdot y_1 \\
x_2 \cdot y_2
\end{pmatrix}
\]

O hosszúsága orvosi: λ

\[
\begin{pmatrix} V \end{pmatrix} = \left\{ \begin{pmatrix} a \end{pmatrix} : a, b \in V, (a, b) \in S \right\}
\]

\[
WK_S(V) = \left[V \right]^* \quad \text{Watson-Crick domain a V ábécé}
\]

és S reláció felett

\[
\begin{pmatrix} a_1 \end{pmatrix} \cdots \begin{pmatrix} a_n \end{pmatrix} \in WK_S(V) \quad \text{helyett} \quad \begin{pmatrix} [a_i] \end{pmatrix} \in \left[V \right]
\]

\[
\begin{pmatrix} b_1 \end{pmatrix} \cdots \begin{pmatrix} b_n \end{pmatrix} \in WK_S(V) \quad \text{jelölés, ahonél w₁ felől lánc, w₂ őlső lánc}
\]

\[
\begin{pmatrix} x_1 \end{pmatrix} : \begin{pmatrix} y_1 \end{pmatrix} \in WK_S(V), \text{akkor} \begin{pmatrix} x_1 y_1 \\
x_2 y_2
\end{pmatrix} \in WK_S(V)
\]

\[
WK_S(V) \text{ monoid, egységeleme } \begin{pmatrix} \lambda \end{pmatrix}
\]

(teljes DNS kettős láncok)
$W_8(V) -$ tetszőleges DNS láncokat tartalmazó

$L_8(V) = \left(\left[\frac{\lambda}{V^*} \right] \cup \left[\frac{\lambda}{V*} \right] \right) \left[V \right]_{*}$

$R_8(V) = \left[V \right]_{*} \left(\left[\frac{\lambda}{V*} \right] \cup \left[\frac{\lambda}{V*} \right] \right)$

$LR_8(V) = \left(\left[\frac{\lambda}{V*} \right] \cup \left[\frac{\lambda}{V*} \right] \right) \left[V \right]_{*} \left(\left[\frac{\lambda}{V*} \right] \cup \left[\frac{\lambda}{V*} \right] \right)$

$W_8(V) = L_8(V) \cup R_8(V) \cup LR_8(V) -$ domínók

$LR_8(V)$ elemei pól-induló kettős láncok

Legyen $x, y \in W_8(V)$, x pól-induló kettős lénc.

$m :$ egy parcialis művelet a $W_8(V)$ elemei között

(DNS láncok összekapcsolódását és tapadását modellíza)

x egyértelműen felbontatható

$x = x_1 x_2 x_3$, ahol $x_1, x_3 \in \left[\frac{\lambda}{V*} \right] \cup \left[\frac{\lambda}{V*} \right], x_2 \in \mathcal{W}_8(V) \setminus \left[\frac{\lambda}{V*} \right]$,

$m(x, y)$ definíciója:

1. $x = \left(\frac{u}{\lambda} \right), y = \left(\frac{u}{V} \right), u, v \in V^*, \left[\frac{u}{v} \right] \in \mathcal{W}_8(V), y' \in R_8(V)$ akkor

 $m(x, y) = x_1 x_2 \left[\frac{u}{v} \right] y'$

 ![Diagram 1](image)

2. $x = \left(\frac{u}{V} \right), y = \left(\frac{u}{\lambda} \right), u, v \in V^*, \left[\frac{u}{v} \right] \in \mathcal{W}_8(V), y' \in R_8(V)$ akkor

 $m(x, y) = x_1 x_2 \left[\frac{u}{v} \right] y'$

 ![Diagram 2](image)
3. \(x_3 = \left(\begin{array}{c} u_1 \\ \lambda \end{array} \right), \quad y = \left(\begin{array}{c} u_2 \\ \lambda \end{array} \right), \quad u_1, u_2 \in V^* \) \\
\(\mathcal{M}(x, y) = x_1 x_2 \left(\begin{array}{c} u_1 u_2 \\ \lambda \end{array} \right) \)

4. \(x_3 = \left(\begin{array}{c} u_1 u_2 \\ \lambda \end{array} \right), \quad y = \left(\begin{array}{c} \lambda \\ v \end{array} \right), \quad u_1, u_2, v \in V^*, \quad \left[\begin{array}{c} u_1 \\ v \end{array} \right] \in \mathcal{WK}_S(V) \) \\
\(\mathcal{M}(x, y) = x_1 x_2 \left[\begin{array}{c} u_1 \\ v \end{array} \right] \left(\begin{array}{c} u_2 \\ \lambda \end{array} \right) \)

5. \(x_3 = \left(\begin{array}{c} u \\ \lambda \end{array} \right), \quad y = \left(\begin{array}{c} \lambda \\ v_1 v_2 \end{array} \right), \quad u_1, u_2, v \in V^*, \quad \left[\begin{array}{c} u \\ v_1 \\ v_2 \end{array} \right] \in \mathcal{WK}_S(V) \) \\
\(\mathcal{M}(x, y) = x_1 x_2 \left[\begin{array}{c} u \\ v_1 \\ v_2 \end{array} \right] \left(\begin{array}{c} \lambda \\ \\ \end{array} \right) \)

6. \(x_3 = \left(\begin{array}{c} \lambda \\ v_1 v_2 \end{array} \right), \quad y = \left(\begin{array}{c} \lambda \\ v_1 v_2 \end{array} \right), \quad u_1, u_2 \in V^* \) \\
\(\mathcal{M}(x, y) = x_1 x_2 \left(\begin{array}{c} \lambda \\ v_1 v_2 \end{array} \right) \)
7. \[x_3 = \begin{pmatrix} \lambda \\ u_1, u_2 \end{pmatrix}, \quad y = \begin{pmatrix} u_1 \\ \lambda \end{pmatrix}, \quad u_1, u_2, v \in V^* : \begin{bmatrix} u_1 \\ v \end{bmatrix} \in WK_3(V) \text{ elektor} \]
\[m(x_1, y) = x_1 x_2 \begin{bmatrix} u_1 \\ v \end{bmatrix} \begin{pmatrix} \lambda \\ u_2 \end{pmatrix} \]

3. \[x_3 = \begin{pmatrix} \lambda \\ u_1, u_2 \end{pmatrix}, \quad y = \begin{pmatrix} u_1, u_2 \\ \lambda \end{pmatrix}, \quad u_1, u_2, v \in V^* : \begin{bmatrix} u_1 \\ v \end{bmatrix} \in WK_3(V) \text{ elektor} \]
\[m(x_1, y) = x_1 x_2 \begin{bmatrix} u_1 \\ v \end{bmatrix} \begin{pmatrix} u_2 \\ \lambda \end{pmatrix} \]

\(m(y, x) \) definíciójára szimmetriával a \(m(x_1, y) \)-hoz.

Vegyük észre, hogy ez egy jól-induló kettős láncot \(x \) a bal végén bővít dominoval \(y \).

A jobbról (illetve balról történő bővítés jelölésben nincs megkülönböztetve), viszont minden esetben a \(m \)-nek legalább az egyik argumentumának jól-induló kettős láncnak kell lenni.

Mindennél esetén társoljuk a nem tepedő végi \(x \) jól-induló kettős lánc bővítését is.

\(m'(x_1, y) \): korlátozott tepedés művelet

azonos a \(m(x_1, y) \) definícióval, kevésbé a 3 és 6.

esetet nem társoljuk.
\(\delta = (V, \sigma, A, D) \) egy sticker rendszer, ahol

V: egy \(\sigma \)-üvék

\(\delta \subseteq V \times V \) szimmetrikus reláció

A \(\subseteq LR_\delta(V) \) véges halmaz, elemei az axiómák

D \(\subseteq W_\delta(V) \times W_\delta(V) \) véges halmaz, elemei a domináns

Legyen \(x, y \in LR_\delta(V) \)

\[x \Rightarrow y \iff \exists (u, v) \in D, \ y = \mu(u, \mu(x, v)) \]

\(\mu(u, \mu(x, v)) = \mu(\mu(u, x), v) \)

Kiszámítás \(\delta \)-ben: \(x_1 \Rightarrow \ldots \Rightarrow x_k \), \(x_1 \in A \)

Teljes kiszámítás \(\delta \)-ban: \(x_1 \Rightarrow x_k \), \(x_k \in WK_\delta(V) \)

\[LM_n(\delta) = \{ w \in WK_\delta(V) \mid x \Rightarrow w, x \in A \} \]

(\(LM \) - language of molecules; \(n \) - non-restricted)

\(\delta \) által generált nyelv:

\[L_n(\delta) = \{ w \in V^* \mid \exists w' \in V^*, \left[\frac{w}{w'} \right] \in LM_n(\delta) \} \]

Négszökött kiszámítások:

- egy \(x_1 \Rightarrow x_2 \Rightarrow \ldots \Rightarrow x_k \) teljes kiszámítás a \(\delta \)-ben
- primitív, ha \(\forall 1 \leq i < k \) esetén \(x_i \notin WK_\delta(V) \)
- d készletű, ha \(\forall 1 \leq i < k \) esetén \(d(x_i) \leq d \)
- \(d(x) \) az \(x \) nyúlványának hossza
D elemeirek tulajdonsága alapján megszöntött
\[\delta = (V, \delta, A, I, D) \]

- egyoldalú, ha \(\forall (u, v) \in D \) esetén vagy \(u = \lambda \) vagy \(v = \lambda \)
- reguláris, ha \(\forall (u, v) \in D \) esetén \(u = \lambda \)
- egyszerű, ha vagy \(\forall (u, v) \in D \) esetén \(u, v \in \left(V^* \right) \),
 vagy \(\forall (u, v) \in D \) esetén \(u, v \in \left(V^* \right) \)

Nyelvcsaládok jelölése:

Legyen \(\lambda \in I \cup \{w, p, b, y, \} \),

\[ASL(\lambda) = \{ L_\lambda(x) | \lambda \text{ tetszőleges sticker rendszer} \} \]

pl.:

- \(ASL(b) \) a korlátozott készletetésű sticker rendszernek által generált nyelvek családja,
- \(OSL(\lambda) \) - egyoldalú rendszerek
- \(RSL(\lambda) \) - reguláris rendszerek
- \(SSL(\lambda) \) - egyszerű rendszerek

Néhány nyelvcsaládokra vonatkozó állítás:

\[REG = OSL(b) = RSL(b) = OSL(w) = RSL(w) \]

(egy lépésben csak egy oldalon illeszt dominót)

\[LIN = ASL(b) \]
\[ASL(w) \supset LIN \]
\[XSL(\lambda) \subseteq CS \text{ minden } x \in \{A, O, R, S, SO, SR\} \]

(minos törles)
Példa 1.

Egyenszámú sticker rendszer

\[\Sigma_1 = (V, \delta, A, D) \]

\[V = \{ a, b, c \} \]

\[\delta = \{ (a, a), (b, b), (c, c) \} \]

\[A = \{ a \} \]

\[D = \{ (b, a), (b, c), (c, c), (b, b), (b, a), (c, c), (c, a), (c, b) \} \]

\[WK_2(V) = \{ [a], [b], [c] \} \]

\[LM_n(\Sigma_1) = \{ w \in WK_2(V) \mid w = x [a][b]^m, m \geq 0, x \in [b][c] \} \]

\[L_n(\Sigma_1) \cap C^+b^+a^+b^+ = \{ c^m b^m a b^m \mid m \geq 1 \} \in \text{REG} \subseteq \text{CF} \]

\[L_n(\Sigma_1) \text{ nem CF} \]

Tehát

\[L_p(\Sigma_1) = L_n(\Sigma_1) \text{ (előbb a felső lánc kialakítás, utána az alsó)} \]

de

\[L_d(\Sigma_1) \subseteq L_n(\Sigma_1) \text{ minden } d \geq 1 \text{ esetén} \]

\[([c]^m [b]^m [a] [b]^m) \text{ nem állítható elő } m-vel kisebb korlátú készlettel kiskészletésszel kiszámítás-} \]

sak.
Feladat 2.

\(\sigma_2 = (V, \delta_1, A, D) \)

\(V = U \cup \bar{U} \cup U' \) ahonkívül egy altéteke

\(\delta = \{(a, \bar{a}, a, \bar{a}) | a \in U \} \)

\(A = \{ \left[\begin{array}{c} a_0 \\ a_1 \end{array} \right] \} \), ahonkívül \(a_0 \in U \) és nöpszített elem

\(D = \{(\alpha_1), [\alpha], ((\alpha), \left[\begin{array}{c} \bar{\alpha} \\ \bar{\alpha} \end{array} \right]) | \alpha \in U \} \)

\(L_N(\delta_2) = \{ \left[\begin{array}{c} x' \\ \bar{x}' \end{array} \right] \left[\begin{array}{c} a_{0} \\ a_{1} \end{array} \right] \left[\begin{array}{c} \bar{w} \\ w \end{array} \right] | x \in U^*, m_i(w) \in x \cup \bar{x} \} \)

\(L_N(\delta_2) = \{ x' a_0' w | w \in U^*, m_i(w) \in x \cup \bar{x} \} \)

ahonkívül \(x = a_1, \ldots, a_n, a_i \in V, 1 \leq i \leq n \), akkor

\(m_i(x) = a_n, \ldots, a_1 \)

\(m_i(L) = \left\{ m_i(x) | x \in L \right\}, \{ L \subseteq V^* \} \)

\(\bar{x} = \bar{a}_1, \ldots, \bar{a}_n \)

\(x \cup \bar{x} = \{ w \in \{a_1, \ldots, a_n, \bar{a}_1, \ldots, \bar{a}_n\}^* | \bar{w} \text{-ben } x \)

betűnövek sorrendje és \(\bar{x} \) betűnövek sorrendje

változatlan. \(y \)

\(T_{S,v} = \cup_{x \in V^*} \{ x \cup \bar{x} \} \)

degyezen

\(h : U \cup \bar{U} \cup U' \rightarrow U \cup \bar{U} \cup U \times \forall y \) morfizmus, ahonkívül

\(h(u') = \lambda \), \(h(u) = u \), \(h(\bar{u}) = \bar{u} \), \(u \in U, u \in U, \bar{u} \in U \)

\(h \) egy egyszerű kördolás

Ekkor

\(h(L_N(\delta_2)) = T_{S,u} \)