Image and Pattern Analysis (IPAN) Group Computer and Automation Research Institute, HAS Budapest, Hungary

The Trimmed Iterative Closest Point Algorithm

Dmitry Chetverikov and Dmitry Stepanov

http://visual.ipan.sztaki.hu

Contents

- Alignment of two roughly pre-registered 3D point sets
- Iterative Closest Point algorithm (ICP)
- Existing variants of ICP
- Trimmed Iterative Closest Point algorithm (TrICP)
 - \circ implementation
 - \circ convergence
 - \circ robustness
- Tests
- Future work

Euclidean alignment of two 3D point sets

Given two roughly pre-registered 3D point sets, *P* (data) and *M* (model), find shift & rotation that bring *P* into best possible alignment with *M*. ▷▷

• Applications:

- 3D model acquisition reverse engineering, scene reconstruction
- motion analysis model-based tracking

• Problems:

- partially overlapping point sets incomplete measurements
- noisy measurements
- erroneous measurements outliers
- shape defects

Note: We consider Euclidean alignment. Other alignments, e.g., affine, are also studied.

Iterative Closest Point (ICP) algorithm

Besl and McKay (1992): Standard solution to alignment problem.

Algorithm 1: Iterative Closest Point

- 1. Pair each point of \mathcal{P} to closest point in \mathcal{M} .
- 2. Compute motion that minimises mean square error (MSE) between paired points.
- 3. Apply motion to \mathcal{P} and update MSE.
- 4. **Iterate** until convergence.

Chen and Medioni (1992): A similar iterative scheme using different pairing procedure based on surface normal vector. We use Besl's formulation: applicable to volumetric measurements.

Properties of ICP

- Pre-registration required:
 - manual
 - $\circ\,$ known sensor motion between two measurements

• Point pairing:

- computationally demanding
- \circ special data structures used to speed up (k-D trees, spatial bins)
- Optimal motion: closed-form solutions available
- Proved to converge to a local minimum
- Applicable to surface as well as volumetric measurements
- Drawbacks:
 - $\circ\,$ not robust: assumes outlier-free data and $\mathcal{P}\subset\mathcal{M}$
 - converges quite slowly

Closed-form solutions for optimal rigid motion

- Unit Quaternions (Horn 1987): used by original ICP and our TrICP
- Singular Value Decomposition (Arun 1987)
- Orthogonal Matrices (Horn 1988)
- Dual Quaternions (Walker 1991)

Properties of the methods (Eggert 1997)

Method	Accuracy	2D Stability*	Speed, small N_p	Speed, large N_p
UQ	good	good	fair	fair
SVD	good	good	fair	fair
OM	fair	poor	good	poor
DQ	fair	fair	poor	good

 st Stability in presence of degenerate (2D) data.

Existing variants of ICP

Goal: Improve robustness and convergence (speed). Categorisation criteria (Rusinkiewicz 2001): How variants

- 1. Select subsets of ${\mathcal P}$ and ${\mathcal M}$
 - random sampling for a Monte-Carlo technique
- 2. Match (pair) selected points
 - closest point
 - in direction of normal vector: faster convergence when normals are precise
- 3. Weight and reject pairs
 - distribution of distances between paired points
 - geometric constraints (e.g., compatibility of normal vectors)
- 4. Assign error metric and minimise it
 - iterative: original ICP
 - direct: Levenberg-Marquardt algorithm

Robustness and convergence: critical issues

ICP assumes that each point of \mathcal{P} has valid correspondence in \mathcal{M} . Not applicable to partially overlapping sets or sets containing outliers.

Previous attempts to robustify ICP: Reject wrong pairs based on

- Statistical criteria. Monte-Carlo type technique with robust statistics:
 - Least median of squares (LMedS)
 - Least trimmed squares (LTS)

 Geometric criteria. For example, Iterative Closest *Reciprocal* Point (Pajdla 1995) uses *ϵ*-reciprocal correspondence:

 \circ if point $\mathbf{p}\in\mathcal{P}$ has closest point $\mathbf{m}\in\mathcal{M}$, then

- $\circ\,$ back-project m onto $\mathcal P$ by finding closest point $p'\in \mathcal P$
- \circ reject pair (\mathbf{p}, \mathbf{m}) if $\|\mathbf{p} \mathbf{p}'\| > \epsilon$

Heterogeneous algorithms: heuristics combined, convergence cannot be proved.

Robust statistics: LMedS and LTS

Sort distances between paired points, minimise

- LMedS: value in the middle of sorted sequence
 - operations incompatible with computation of optimal motion
- LTS: sum of certain number of least values (e.g., least 50%)
 - operations compatible with computation of optimal motion
 - better convergence rate, smoother objective function

Previous use of LMedS and LTS: Randomised robust regression

- estimate optimal motion parameters by repeatedly drawing random samples
- detect and reject outliers, find least squares solution for inliers

Robust to outliers, but breakdown point $50\% \Rightarrow$ minimum overlap 50%.

Trimmed Iterative Closest Point

Assumptions:

- 1. 2 sets of 3D points: data set $\mathcal{P} = \{\mathbf{p}_i\}_1^{N_p}$ and model set $\mathcal{M} = \{\mathbf{m}_i\}_1^{N_m}$. $(N_p \neq N_m.)$ Points may be surface as well as volumetric measurements.
- 2. Minimum guaranteed rate of data points that can be paired is known^{*}: minimum overlap ξ . Number of data points that can be paired $N_{po} = \xi N_p$.
- 3. Rough pre-registration: max initial relative rotation 30° .
- 4. Overlapping part is characteristic enough to allow for unambiguous matching**:
 - no high symmetry
 - no 'featureless' data

* If ξ is unknown, it is set automatically: run TrICP several times, select best result.

** Typical for most registration algorithms.

Problem statement and notation

Informal statement: Find Euclidean transformation that brings an N_{po} -point subset of \mathcal{P} into best possible alignment with \mathcal{M} .

For rotation ${f R}$ and translation ${f t}$, transformed points of ${\cal P}$ are

$$\mathbf{p}_i(\mathbf{R},\mathbf{t}) = \mathbf{R}\mathbf{p}_i + \mathbf{t}, \quad \mathcal{P}(\mathbf{R},\mathbf{t}) = \{\mathbf{p}_i(\mathbf{R},\mathbf{t})\}_1^{N_p}$$

Individual distance from data point $\mathbf{p}_i(\mathbf{R}, \mathbf{t})$ to \mathcal{M} :

$$\begin{aligned} \mathbf{m}_{cl}(i,\mathbf{R},\mathbf{t}) &\doteq \arg\min_{\mathbf{m}\in\mathcal{M}} \|\mathbf{m} - \mathbf{p}_i(\mathbf{R},\mathbf{t})\| \\ d_i(\mathbf{R},\mathbf{t}) &\doteq \|\mathbf{m}_{cl}(i,\mathbf{R},\mathbf{t}) - \mathbf{p}_i(\mathbf{R},\mathbf{t})\| \end{aligned}$$

Formal statement: Find rigid motion (\mathbf{R}, \mathbf{t}) that minimises sum of least N_{po} square distances $d_i^2(\mathbf{R}, \mathbf{t})$.

Conventional ICP: $\xi = 1$ and $N_{po} = N_p$. TrICP: smooth transition to ICP as $\xi \to 1$. Basic idea of TRiCP: Consistent use of LTS in deterministic way.

Start with previous $S'_{TS} = huge_number$. Iterate until any of stopping conditions is satisfied.

Algorithm 2: Trimmed Iterative Closest Point

- 1. Closest point: For each point $\mathbf{p}_i \in \mathcal{P}$, find closest point in \mathcal{M} and compute d_i^2 .
- 2. Trimmed Squares: Sort d_i^2 , select N_{po} least values and calculate their sum S_{TS} .
- 3. Convergence test: If any of stopping conditions is satisfied, exit; otherwise, set $S'_{TS} = S_{TS}$ and continue.
- 4. Motion calculation: For N_{po} selected pairs, compute optimal motion (\mathbf{R}, \mathbf{t}) that minimises S_{TS} .
- 5. Data set transformation: Transform \mathcal{P} by (\mathbf{R}, \mathbf{t}) and go to 1.

Stopping conditions

- Maximum allowed number of iterations N_{iter} has been reached, or
- Trimmed MSE is sufficiently small, or
- Change of Trimmed MSE is sufficiently small.

Trimmed MSE e: For sorted distances $d_{s1} \leq d_{s2} \leq \ldots \leq \overline{d_{sN_{po}} \leq \ldots \leq d_{sN_p}}$,

$$S_{TS} \doteq \sum_{si=s1}^{sN_{po}} d_{si}^2 \qquad e \doteq \frac{S_{TS}}{N_{po}}$$

Change of Trimmed MSE: $|S_{TS} - S'_{TS}|$

Implementation details

- Finding closest point: Use boxing structure (Chetverikov 1991) that partitions space into uniform boxes, cubes. Update box size as \mathcal{P} approaches \mathcal{M} .
 - simple
 - fast, especially at beginning of iterations
 - uses memory in inefficient way
- Sorting individual distances and calculating LTS: Use heap sort.
- Computing optimal motion: Use Unit Quaternions.
 - robust to noise
 - stable in presence of degenerate data ('flat' point sets)
 - relatively fast

Automatic setting of overlap parameter ξ

When ξ is unknown, it is set automatically by minimising objective function

$$\psi(\xi) = \frac{e(\xi)}{\xi^{1+\lambda}}, \qquad \lambda = 2$$

• $\psi(\xi)$ minimises trimmed MSE $e(\xi)$ and tries to use as many points as possible.

- Larger λ : avoid undesirable alignments of symmetric and/or 'featureless' parts.
- $\psi(\xi)$ minimised using modified Golden Section Search Algorithm.

Typical shapes of objective functions $e(\xi)$ and $\psi(\xi)$.

Convergence

Theorem: *TrICP* always converges monotonically to a local minimum with respect to trimmed MSE objective function.

Sketch of proof:

- Optimal motion does not increase MSE: if it did, it would be inferior to identity transformation, as the latter does not change MSE.
- Updating the closest points does not increase MSE: no individual distance increases.
- Updating the list of N_{po} least distances does not increase MSE: to enter the list, any new pair has to substitute a pair with larger distance.
- Sequence of MSE values is nonincreasing and bounded below (by zero), hence it converges to a local minimum.

Convergence to global minimum depends on initial guess.

Tests

Aligning two partial measurements of Frog. (\approx 3000 points) $\triangleleft \triangleleft$

Numerical results for Frog data

Method	N_{iter}	MSE	Exec.time*
ICP	45	5.83	7.4 sec
TrICP 70%	88	0.10	2.5 sec

* On 1.6 GHz PC

Aligning four measurements of Skoda part. (\approx 6000 points)

Aligning four measurements of Fiat part. (overlap $\approx 20\%$.)

Aligning two measurements of chimpanzee Skull. (\approx 100000 points)

Comparing TrICP to ICRP for SQUID database

SQUID (University of Surrey, UK): 1100 shapes of different fishes

- \mathcal{P} rotated by known angle. $(1^{\circ} \dots 20^{\circ})$
- Different parts of $\mathcal M$ and $\mathcal P$ deleted.
- Noise added to both shapes.

Aligning deteriorated SQUID shapes. Fish: original noise-free shape.

TrICP/ICRP errors for noisy SQUID data, degrees

	100%	90%	80%	70%	60%
1°	0.05/0.05	0.08/0.06	0.07/0.08	0.10/0.12	0.19/0.23
5°	0.05/0.05	0.09/0.07	0.08/0.11	0.12/0.18	0.34/0.31
10°	0.05/0.05	0.09/0.07	0.10/0.18	0.19/0.60	0.58/1.70
15°	0.05/0.06	0.11/0.11	0.16/0.36	0.34/1.09	1.14/2.54
20°	0.05/0.11	0.10/0.16	0.20/0.49	0.69/1.51	1.79/3.03

- ICRP is efficient at small rotations and noise-free data.
- TrICP is more robust to rotations and incomplete, noisy data. Procedure for automatic setting of overlap available. Convergence proved.
- Execution times per alignment are comparable. Skoda 6000 pts: 8.3/7.2 sec, Skull 100000 pts: 38/182 sec.

Future work

- Compare to other methods for a large set of shapes.
- To better avoid local minima, perturb initial orientation of data set.
- Extension to multiple point sets N > 2.
- Faster operation.
- More efficient usage of memory.