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Euclidean alighment of two 3D point sets

Given two roughly pre-registered 3D point sets, P (data) and M (model), find
shift & rotation that bring P into best possible alignment with M. [>[>

Applications:

o 3D model acquisition — reverse engineering, scene reconstruction
o motion analysis — model-based tracking

Problems:

o partially overlapping point sets — incomplete measurements
o noisy measurements

o erroneous measurements — outliers

o shape defects

Note: We consider Euclidean alignment. Other alignments, e.g., affine, are also
studied.



Iterative Closest Point (ICP) algorithm

Besl and McKay (1992): Standard solution to alignment problem.

Algorithm 1: Iterative Closest Point

1. Pair each point of P to closest point in M.
2. Compute motion that minimises mean square error (MSE) between paired points.
3. Apply motion to P and update MSE.

4. |terate until convergence.

Chen and Medioni (1992): A similar iterative scheme using different pairing
procedure based on surface normal vector.
We use Besl's formulation: applicable to volumetric measurements.



Properties of ICP

Pre-registration required:

o manual
o known sensor motion between two measurements

Point pairing:

o computationally demanding
o special data structures used to speed up (k-D trees, spatial bins)

Optimal motion: closed-form solutions available
Proved to converge to a local minimum
Applicable to surface as well as volumetric measurements

Drawbacks:

o not robust: assumes outlier-free data and P C M
o converges quite slowly



Closed-form solutions for optimal rigid motion

Unit Quaternions (Horn 1987): used by original ICP and our TrlCP
Singular Value Decomposition (Arun 1987)
Orthogonal Matrices (Horn 1988)

Dual Quaternions (Walker 1991)

Properties of the methods (Eggert 1997)
Method Accuracy 2D Stability”™ Speed, small NV, Speed, large N,

UQ good good fair fair
SVD good good fair fair
OM fair poor good poor

DQ fair fair poor good



Existing variants of ICP

Goal: Improve robustness and convergence (speed).
Categorisation criteria (Rusinkiewicz 2001): How variants

1. Select subsets of P and M

random sampling for a Monte-Carlo technique

2. Match (pair) selected points

closest point
in direction of normal vector: faster convergence when normals are precise

3. Weight and reject pairs
distribution of distances between paired points
geometric constraints (e.g., compatibility of normal vectors)

4. Assign error metric and minimise it

iterative: original ICP
direct: Levenberg-Marquardt algorithm



Robustness and convergence: critical issues

ICP assumes that each point of P has valid correspondence in M.
Not applicable to partially overlapping sets or sets containing outliers.

Previous attempts to robustify ICP: Reject wrong pairs based on

Statistical criteria. Monte-Carlo type technique with robust statistics:

o Least median of squares (LMedS)
o Least trimmed squares (LTS)

Geometric criteria. For example, Iterative Closest Reciprocal Point (Pajdla 1995)
uses e-reciprocal correspondence:

o if point p € P has closest point m € M, then
o back-project m onto P by finding closest point p’ € P
o reject pair (p,m) if [|[p — p’|| > ¢

Heterogeneous algorithms: heuristics combined, convergence cannot be proved.



Robust statistics: LMedS and LTS

Sort distances between paired points, minimise

L MedS: value in the middle of sorted sequence

o operations incompatible with computation of optimal motion

LTS: sum of certain number of least values (e.g., least 50%)

o operations compatible with computation of optimal motion
o better convergence rate, smoother objective function

Previous use of LMedS and LTS: Randomised robust regression

estimate optimal motion parameters by repeatedly drawing random samples

detect and reject outliers, find least squares solution for inliers

Robust to outliers, but breakdown point 50% = minimum overlap 50%.
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Trimmed lterative Closest Point

Assumptions:

1. 2 sets of 3D points: data set P = {pi}ivp and model set M = {m;}; ™.
(N, # N,,.) Points may be surface as well as volumetric measurements.

2. Minimum guaranteed rate of data points that can be paired is known™: minimum
overlap £&. Number of data points that can be paired N,, = {N,,.

3. Rough pre-registration: max initial relative rotation 30°.

4. Overlapping part is characteristic enough to allow for unambiguous matching

no high symmetry
no ‘featureless’ data



Problem statement and notation

Informal statement: Find Euclidean transformation that brings an N,,-point
subset of P into best possible alignment with M.

For rotation R and translation t, transformed points of P are
pi(R,t) =Rp; +t, PR, t)={p:(R,t) ivp
Individual distance from data point p;(R,t) to M:

alt, Ryt) = ' —p:(R,t
m.; (¢ ) argnrlrgj{zllm pPi(R,t)||

dZ<R,t) ||mcl(i7R7t) _ pz<R7t)||

Formal statement: Find rigid motion (R, t) that minimises sum of least IV,,
square distances d?(R, t).

Conventional ICP: £ =1 and N,, = N,,.
TrICP: smooth transition to ICP as & — 1.
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Basic idea of TRICP: Consistent use of LTS in deterministic way. .

Start with previous S7.¢ = huge_number.
Iterate until any of stopping conditions is satisfied.

Algorithm 2: Trimmed Iterative Closest Point

1. Closest point: For each point p; € P, find closest point in M and compute d%.

2

2. Trimmed Squares: Sort d7, select N, least values and calculate their sum Srg.

3. Convergence test: If any of stopping conditions is satisfied, exit; otherwise, set
S’ = Sts and continue.

4. Motion calculation: For N, selected pairs, compute optimal motion (R, t) that
minimises Stg.

5. Data set transformation: Transform P by (R,t) and go to 1.
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Stopping conditions

Maximum allowed number of iterations N,..,- has been reached, or
Trimmed MSE is sufficiently small, or

Change of Trimmed MSE is sufficiently small.

Trimmed MSE e: For sorted distances dy; < dgo < ... < dsN,, < ... < dsny,

SNpo

S
STSi Zd?z ei]\?s
po

s1=s1

Change of Trimmed MSE: |Sts — S/¢]



Implementation details

Finding closest point: Use boxing structure (Chetverikov 1991) that partitions
space into uniform boxes, cubes. Update box size as P approaches M.

o simple
o fast, especially at beginning of iterations
o uses memory in inefficient way

Sorting individual distances and calculating LTS: Use heap sort.

Computing optimal motion: Use Unit Quaternions.

o robust to noise
o stable in presence of degenerate data (‘flat’ point sets)
o relatively fast
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Automatic setting of overlap parameter ¢ .

When £ is unknown, it is set automatically by minimising objective function

P(§) = fel(fz" A=2

(&) minimises trimmed MSE e(£) and tries to use as many points as possible.
Larger \: avoid undesirable alignments of symmetric and/or ‘featureless’ parts.

(&) minimised using modified Golden Section Search Algorithm.

0
Typical shapes of objective functions e(&) and ¥ (§).



Convergence

Theorem: TrICP always converges monotonically to a local minimum with
respect to trimmed MSE objective function.

Sketch of proof:

Optimal motion does not increase MSE: if it did, it would be inferior to identity
transformation, as the latter does not change MSE.

Updating the closest points does not increase MSE: no individual distance
Increases.

Updating the list of IV, least distances does not increase MSE: to enter the list,
any new pair has to substitute a pair with larger distance.

Sequence of MSE values is nonincreasing and bounded below (by zero), hence
it converges to a local minimum.

Convergence to global minimum depends on initial guess.
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Tests

set P set M result of ICP result of TrICP

Aligning two partial measurements of Frog. (<3000 points) <1<

Numerical results for Frog data

Method Niter MSE  Exec.time®
|ICP 45 5.83 7.4 sec
TrICP 70% 88 0.10 2.5 sec

* On 1.6 GHz PC
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Aligning four measurements of Skoda part. (=6000 points)
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Aligning four measurements of Fiat part. (overlap =~ 20%.)

19



Aligning two measurements of chimpanzee Skull. (=100000 points)
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Comparing TrICP to ICRP for SQUID database -

SQUID (University of Surrey, UK): 1100 shapes of different fishes

P rotated by known angle. (1°...20°)
Different parts of M and P deleted.

Noise added to both shapes.

Fish

P R

Aligning deteriorated SQUID shapes. Fish: original noise-free shape.



1O
50
10°
15°
20°

TrICP/ICRP errors for noisy SQUID data, degrees

100%
0.05/0.05
0.05/0.05
0.05/0.05
0.05,/0.06
0.05/0.11

90%
0.08,/0.06
0.09/0.07
0.09/0.07
0.11/0.11
0.10/0.16

80%
0.07/0.08
0.08/0.11
0.10/0.18
0.16/0.36
0.20/0.49

70%
0.10/0.12
0.12/0.18
0.19/0.60
0.34/1.09
0.69/1.51

ICRP is efficient at small rotations and noise-free data.

60%
0.19/0.23
0.34/0.31
0.58/1.70
1.14/2.54
1.79/3.03
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TrICP is more robust to rotations and incomplete, noisy data. Procedure for

automatic setting of overlap available. Convergence proved.

Execution times per alignment are comparable. Skoda 6000 pts: 8.3/7.2 sec,
Skull 100000 pts: 38/182 sec.



Future work

Compare to other methods for a large set of shapes.

To better avoid local minima, perturb initial orientation of data set.
Extension to multiple point sets N > 2.

Faster operation.

More efficient usage of memory.
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