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Euclidean alignment of two 3D point sets

• Given two roughly pre-registered 3D point sets, P (data) and M (model), find
shift & rotation that bring P into best possible alignment with M. BB

• Applications:

◦ 3D model acquisition – reverse engineering, scene reconstruction
◦ motion analysis – model-based tracking

• Problems:

◦ partially overlapping point sets – incomplete measurements
◦ noisy measurements
◦ erroneous measurements – outliers
◦ shape defects

Note: We consider Euclidean alignment. Other alignments, e.g., affine, are also
studied.
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Iterative Closest Point (ICP) algorithm

Besl and McKay (1992): Standard solution to alignment problem.

Algorithm 1: Iterative Closest Point

1. Pair each point of P to closest point in M.

2. Compute motion that minimises mean square error (MSE) between paired points.

3. Apply motion to P and update MSE.

4. Iterate until convergence.

Chen and Medioni (1992): A similar iterative scheme using different pairing
procedure based on surface normal vector.
We use Besl’s formulation: applicable to volumetric measurements.
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• Pre-registration required:

◦ manual
◦ known sensor motion between two measurements

• Point pairing:

◦ computationally demanding
◦ special data structures used to speed up (k-D trees, spatial bins)

• Optimal motion: closed-form solutions available

• Proved to converge to a local minimum

• Applicable to surface as well as volumetric measurements

• Drawbacks:

◦ not robust: assumes outlier-free data and P ⊂M
◦ converges quite slowly



6Closed-form solutions for optimal rigid motion

• Unit Quaternions (Horn 1987): used by original ICP and our TrICP

• Singular Value Decomposition (Arun 1987)

• Orthogonal Matrices (Horn 1988)

• Dual Quaternions (Walker 1991)

Properties of the methods (Eggert 1997)

Method Accuracy 2D Stability∗ Speed, small Np Speed, large Np
UQ good good fair fair
SVD good good fair fair
OM fair poor good poor
DQ fair fair poor good

∗
Stability in presence of degenerate (2D) data.
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Existing variants of ICP

Goal: Improve robustness and convergence (speed).
Categorisation criteria (Rusinkiewicz 2001): How variants

1. Select subsets of P and M
• random sampling for a Monte-Carlo technique

2. Match (pair) selected points

• closest point
• in direction of normal vector: faster convergence when normals are precise

3. Weight and reject pairs

• distribution of distances between paired points
• geometric constraints (e.g., compatibility of normal vectors)

4. Assign error metric and minimise it

• iterative: original ICP
• direct: Levenberg-Marquardt algorithm



8Robustness and convergence: critical issues

ICP assumes that each point of P has valid correspondence in M.
Not applicable to partially overlapping sets or sets containing outliers.

Previous attempts to robustify ICP: Reject wrong pairs based on

• Statistical criteria. Monte-Carlo type technique with robust statistics:

◦ Least median of squares (LMedS)
◦ Least trimmed squares (LTS)

• Geometric criteria. For example, Iterative Closest Reciprocal Point (Pajdla 1995)
uses ε-reciprocal correspondence:

◦ if point p ∈ P has closest point m ∈M, then
◦ back-project m onto P by finding closest point p′ ∈ P
◦ reject pair (p,m) if ‖p− p′‖ > ε

Heterogeneous algorithms: heuristics combined, convergence cannot be proved.
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Sort distances between paired points, minimise

• LMedS: value in the middle of sorted sequence

◦ operations incompatible with computation of optimal motion

• LTS: sum of certain number of least values (e.g., least 50%)

◦ operations compatible with computation of optimal motion
◦ better convergence rate, smoother objective function

Previous use of LMedS and LTS: Randomised robust regression

• estimate optimal motion parameters by repeatedly drawing random samples

• detect and reject outliers, find least squares solution for inliers

Robust to outliers, but breakdown point 50% ⇒ minimum overlap 50%.
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Trimmed Iterative Closest Point

Assumptions:

1. 2 sets of 3D points: data set P = {pi}
Np
1 and model set M = {mi}Nm1 .

(Np 6= Nm.) Points may be surface as well as volumetric measurements.

2. Minimum guaranteed rate of data points that can be paired is known∗: minimum
overlap ξ. Number of data points that can be paired Npo = ξNp.

3. Rough pre-registration: max initial relative rotation 30◦.

4. Overlapping part is characteristic enough to allow for unambiguous matching∗∗:

• no high symmetry
• no ‘featureless’ data

∗
If ξ is unknown, it is set automatically: run TrICP several times, select best result.

∗∗
Typical for most registration algorithms.



11Problem statement and notation

Informal statement: Find Euclidean transformation that brings an Npo-point
subset of P into best possible alignment with M.

For rotation R and translation t, transformed points of P are

pi(R, t) = Rpi + t, P(R, t) = {pi(R, t)}Np1

Individual distance from data point pi(R, t) to M:

mcl(i,R, t) .= arg min
m∈M

‖m− pi(R, t)‖

di(R, t) .= ‖mcl(i,R, t)− pi(R, t)‖

Formal statement: Find rigid motion (R, t) that minimises sum of least Npo
square distances d2

i (R, t).

Conventional ICP: ξ = 1 and Npo = Np.
TrICP: smooth transition to ICP as ξ → 1.



12Basic idea of TRiCP: Consistent use of LTS in deterministic way.

Start with previous S′TS = huge number.
Iterate until any of stopping conditions is satisfied.

Algorithm 2: Trimmed Iterative Closest Point

1. Closest point: For each point pi ∈ P, find closest point in M and compute d2
i .

2. Trimmed Squares: Sort d2
i , select Npo least values and calculate their sum STS.

3. Convergence test: If any of stopping conditions is satisfied, exit; otherwise, set
S′TS = STS and continue.

4. Motion calculation: For Npo selected pairs, compute optimal motion (R, t) that
minimises STS.

5. Data set transformation: Transform P by (R, t) and go to 1.



13Stopping conditions

• Maximum allowed number of iterations Niter has been reached, or

• Trimmed MSE is sufficiently small, or

• Change of Trimmed MSE is sufficiently small.

Trimmed MSE e: For sorted distances ds1 ≤ ds2 ≤ . . . ≤ dsNpo ≤ . . . ≤ dsNp,

STS
.=
sNpo∑
si=s1

d2
si e

.=
STS
Npo

Change of Trimmed MSE: |STS − S′TS|



14Implementation details

• Finding closest point: Use boxing structure (Chetverikov 1991) that partitions
space into uniform boxes, cubes. Update box size as P approaches M.

◦ simple
◦ fast, especially at beginning of iterations
◦ uses memory in inefficient way

• Sorting individual distances and calculating LTS: Use heap sort.

• Computing optimal motion: Use Unit Quaternions.

◦ robust to noise
◦ stable in presence of degenerate data (‘flat’ point sets)
◦ relatively fast



15Automatic setting of overlap parameter ξ

When ξ is unknown, it is set automatically by minimising objective function

ψ(ξ) =
e(ξ)
ξ1+λ

, λ = 2

• ψ(ξ) minimises trimmed MSE e(ξ) and tries to use as many points as possible.

• Larger λ: avoid undesirable alignments of symmetric and/or ‘featureless’ parts.

• ψ(ξ) minimised using modified Golden Section Search Algorithm.
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ξ
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Typical shapes of objective functions e(ξ) and ψ(ξ).
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Theorem: TrICP always converges monotonically to a local minimum with
respect to trimmed MSE objective function.

Sketch of proof:

• Optimal motion does not increase MSE: if it did, it would be inferior to identity
transformation, as the latter does not change MSE.

• Updating the closest points does not increase MSE: no individual distance
increases.

• Updating the list of Npo least distances does not increase MSE: to enter the list,
any new pair has to substitute a pair with larger distance.

• Sequence of MSE values is nonincreasing and bounded below (by zero), hence
it converges to a local minimum.

Convergence to global minimum depends on initial guess.
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Tests

set P set M result of ICP result of TrICP

Aligning two partial measurements of Frog. (≈3000 points) CC

Numerical results for Frog data

Method Niter MSE Exec.time∗

ICP 45 5.83 7.4 sec
TrICP 70% 88 0.10 2.5 sec

∗
On 1.6 GHz PC
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Aligning four measurements of Skoda part. (≈6000 points)
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Aligning four measurements of Fiat part. (overlap ≈ 20%.)
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Aligning two measurements of chimpanzee Skull. (≈100000 points)



21Comparing TrICP to ICRP for SQUID database

SQUID (University of Surrey, UK): 1100 shapes of different fishes

• P rotated by known angle. (1◦ . . . 20◦)

• Different parts of M and P deleted.

• Noise added to both shapes.

Fish M P R

Aligning deteriorated SQUID shapes. Fish: original noise-free shape.
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TrICP/ICRP errors for noisy SQUID data, degrees

100% 90% 80% 70% 60%
1◦ 0.05/0.05 0.08/0.06 0.07/0.08 0.10/0.12 0.19/0.23
5◦ 0.05/0.05 0.09/0.07 0.08/0.11 0.12/0.18 0.34/0.31

10◦ 0.05/0.05 0.09/0.07 0.10/0.18 0.19/0.60 0.58/1.70
15◦ 0.05/0.06 0.11/0.11 0.16/0.36 0.34/1.09 1.14/2.54
20◦ 0.05/0.11 0.10/0.16 0.20/0.49 0.69/1.51 1.79/3.03

• ICRP is efficient at small rotations and noise-free data.

• TrICP is more robust to rotations and incomplete, noisy data. Procedure for
automatic setting of overlap available. Convergence proved.

• Execution times per alignment are comparable. Skoda 6000 pts: 8.3/7.2 sec,
Skull 100000 pts: 38/182 sec.
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Future work

• Compare to other methods for a large set of shapes.

• To better avoid local minima, perturb initial orientation of data set.

• Extension to multiple point sets N > 2.

• Faster operation.

• More efficient usage of memory.


