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Lecture 6: Template Matching and Feature
Detection

• Template matching

◦ Similarity and dissimilarity measures
◦ Interior matching versus contour matching
◦ Invariance
◦ Distortion-tolerant matching
◦ Stable matching
◦ Fast implementations

• Types of local image features

◦ Edges
◦ Lines
◦ Corners
◦ Blobs

2



Interior matching versus contour matching
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Numerical examples of matching by unnormalised (CC) and normalised (NCC)
cross-correlations. In output, values below 1 are set to 0 and not shown.
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Observation in the numerical example: The perfect match value (1.7) is not much
better than the near misses in position and shape.

• The match is not sharp.

Matching of the outlines yields sharper matches:
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Trade-off between localisation accuracy and reliability of matching

• Matching the contours: faster, yields sharp matches, but sensitive to distortions;

• Matching the interior: slower and less sharp, but more robust.

Contours matching versus interior matching. Template: Dashed rectangle.
Object: Solid line. Circles: Overlapping points of contours.

• Left: Small shift of template results in drastic decrease of contour overlap and
negligible descrease of area overlap.

⇒ Contour matching is sharper.

• Right: Distortion of pattern has a similar effect.

⇒ Contour matching is less robust.
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Critical issues in template matching

• Sensitivity to changes in size and rotation

• Sensitivity to pattern distortion

◦ For example, because of varying viewing angle

• ‘Noisy’ matches: Unexpected configurations may occur that produce high
matching values

• Heavy computational load
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Handling variations in size and orientation

Options:

• Normalisation: Transform image to standard size and orientation

◦ Works only if there is no size or orientation variation within the image
◦ Requires definition of orientation

• Adaptivity: Spatially scale and rotate the template in each position, select the
best matching scale and rotation

◦ Very slow if number of scales and rotations is large
⇒ Used only for small number of scales and rotations

• Alternative solution: Use scale and rotation invariant description

◦ Compare descriptions instead of patterns
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Normalising an image for size and orientation.

• The letter A in the top right corner differs in size and orientation.

⇒ This letter will not match.

• The other four letters will match.

• How to define image orientation?
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Distortion-tolerant matching

Use flexible templates composed of spatially connected subtemplates with flexible
links (‘springs’).

• The springs allow for a moderate spatial variation of the template.

◦ A cost function is introduced to penalise large variations
⇒ The larger the variation the larger the penalty

• Works well when the subtemplates are characteristic enough for reliable matching.

Representing a face template as a set of flexibly connected subtemplates.
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Matching segmented patterns

Matching two patterns by segmenting them into regions.

• Segment patterns into regions and find correspondences by comparing region
properties.

◦ A distance measure between properties of regions should be defined.

• This solution works well when the segmentation is reliable.
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Algorithm 1: Stable Matching of Two Images

1. Compute distance matrix Dij; i: i
th region of image 1, j: jth region of image 2.

2. Calculate forward matching matrix Cij: Cij = 1 if Dij < Dik for all k 6= j;
otherwise, Cij = 0.

3. Calculate backward matching matrix Bij: Bij = 1 if Dij < Dkj for all k 6= i;
otherwise, Bij = 0.

4. Match regions i and j if CijBij = 1.

5. Remove established correspondences from Dij.

6. Iterate until no further matching is possible.
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Comments to the Stable Matching algorithm:

• The backward matching (steps 2–4) is a consistency check.

⇒ This is a standard way to discard noisy (unreliable or erroneous) matches

• The iterative procedure is based on an algorithm for the Stable Marriage Problem.

left image right image original ME consistent ME

Matching a stereo pair in presence of occlusion. ME is the matching error.
The consistency check removes wrong matches due to occlusion.
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Fast impementations of matching

• Work with local features of images and templates rather that the patterns
themselves

◦ For example: Edges, contours
◦ Useful for sparse and reliable features
◦ Caution: Remember sensitivity to distortions!

• For large templates (> 13 × 13 pixels), use implementation of cross-correlation
via Fast Fourier Transform (FFT):

f ⊗ w = IFFT
[
FFT

[
f(x, y)

]∗ · FFT [w(x, y)
]]
,

where IFFT is the inverse FFT and X∗ is the complex conjugate of X.

◦ Needs O(N2 logN) operations for N ×N images
◦ Straightforward implementation needs O(N4) operations
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Another solution: Use a fast procedure to

1. Select match candidates and reject mismatches rapidly, then

2. Test the selected candidates

Options for fast selection and rejection:

• Use a coarsely spaced grid of template positions, then rectify the candidates.

◦ This is a coarse-to-fine sampling method for the cross-correlation function
◦ It works if peaks of cross-correlation are smooth and broad (no spikes).

• Compute simple properties of template and image region. Reject region if its
properties differ from properties of the template.

• Use subtemplates to reject a mismatch rapidly when a subtemplate does not
match.

• If a cumulative measure of mismatch is used, reject a candidate when the
mismatch exceeds a preset threshold.
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Image features

BlobEdge Line Corner

Basic image features.

Types of local image features considered in this course:

• Edges – More detail

• Lines – Less detail

• Corners – Less detail

• Blobs – No details
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Edges and blobs

An image edge is a drastic change of intensity across object contour.

• Image edges do not necessarily coincide with physical edges

◦ Image edges are intensity discontinuities
◦ Physical edges are surface discontinuities
◦ Example: Edges of shadows are not surface discontinuities

• Importance of intensity edges: Human eye detects them ‘in hardware’, at the
initial level of visual processing.

A blob is a compact image region of approximately constant intensity.

• Blobs are elementary patterns used to build more sophisticared patterns.

◦ Example: Eyes in a face model

• Blob detectors exist, but they are less frequently used than edge and corner
detectors.
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Lines

A line is a narrow, elongated image region of approximately constant width and
intensity.

• Formally, a line can be viewed as two parallel sequences of edges.

◦ In practice, a thin line is rarely detected like that

• Blurred lines and other linear objects may have different cross-sections.

◦ Example: Roof-shaped.

• Two different operations are often called line detection:

◦ Line filtering (enhancement), detecting pieces of lines. This is a local operation
similar to edge detection.
◦ Detecting lines (curves) of a given shape. This is a global operation, whose

typical example is the Hough transform.
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Corners

A corner is a sharp turn of a contour.

• Corners are used in shape analysis and motion analysis

• Corners and other points of high curvature are dominant in human perception
of 2D shapes

◦ Shapes can be approximately reconstructed from their dominant points

• Two different operations but related operations are called corner detection:

◦ Detection of corners in digital curves
⇒ This assumes extracted contours
◦ Detection of corners in greyscale images
⇒ This does not assume extracted contours
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unambiguityambiguity

?

The aperture problem and the use of corners in motion analysis. The displacement
vectors are ambiguous at an edge, but unambiguous at a corner.

The Attneave’s Cat. The original smooth shape has been restored based on a
small number of high curvature points. The cat is easy to recognise.
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LineEdge

Blurred blobBlurred edge Blurred line

Blob

Three image features and their intensity profiles along the indicated lines.
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