Institute of Informatics Eötvös Loránd University Budapest, Hungary

Basic Algorithms for Digital Image Analysis: a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó

http://visual.ipan.sztaki.hu

Lecture 6: Template Matching and Feature Detection

Template matching

- Similarity and dissimilarity measures
- Interior matching versus contour matching
- Invariance
- Distortion-tolerant matching
- Stable matching
- Fast implementations
- Types of local image features
 - Edges
 - Lines
 - Corners
 - \circ Blobs

Interior matching versus contour matching

Numerical examples of matching by unnormalised (CC) and normalised (NCC) cross-correlations. In output, values below 1 are set to 0 and not shown.

Observation in the numerical example: The perfect match value (1.7) is not much better than the near misses in position and shape.

• The match is not sharp.

Matching of the **outlines** yields **sharper** matches:

0

input image			template				output of NCC							
				0	0	0	0	0				1.2		
1	1	1		0	1	1	1	0			1.3	2.0	1.3	
1	1	1		0	1	1	1	0		1.2	2.0	3.0	2.0	1.2
1	1	1		0	1	1	1	0			1.3	2.0	1.3	
				0	0	0	0	0				1.2		
				0	0	0	0	0				1.3		
1	1	1		0	1	1	1	0				1.4		

1	1	1
1	0	1
1	1	1

-	-	U
0	1	С
1	1	С
0	0	С

		1.3		
		1.4		
1.3	1.4	2.8	1.4	1.3
		1.4		
		1.3		

Trade-off between localisation accuracy and reliability of matching

- Matching the contours: faster, yields sharp matches, but sensitive to distortions;
- Matching the interior: slower and less sharp, but more robust.

Contours matching versus interior matching. Template: Dashed rectangle. Object: Solid line. Circles: Overlapping points of contours.

- Left: Small shift of template results in drastic decrease of contour overlap and negligible descrease of area overlap.
 - \Rightarrow Contour matching is sharper.
- Right: Distortion of pattern has a similar effect.
 - \Rightarrow Contour matching is less robust.

Critical issues in template matching

• Sensitivity to changes in size and rotation

- Sensitivity to pattern distortion
 - For example, because of varying viewing angle

 'Noisy' matches: Unexpected configurations may occur that produce high matching values

Heavy computational load

Handling variations in size and orientation

Options:

- Normalisation: Transform image to standard size and orientation
 - $\circ\,$ Works only if there is no size or orientation variation within the image
 - Requires definition of orientation
- Adaptivity: Spatially scale and rotate the template in each position, select the best matching scale and rotation
 - \circ Very slow if number of scales and rotations is large \Rightarrow Used only for small number of scales and rotations
- Alternative solution: Use scale and rotation invariant description
 - $\circ~$ Compare descriptions instead of patterns

template

original image

normalised image

Normalising an image for size and orientation.

- The letter A in the top right corner differs in size and orientation.
 - \Rightarrow This letter will not match.
- The other four letters will match.
- How to define image orientation?

Distortion-tolerant matching

Use flexible templates composed of spatially connected subtemplates with flexible links ('springs').

- The springs allow for a moderate spatial variation of the template.
 - $\circ\,$ A cost function is introduced to penalise large variations
 - \Rightarrow The larger the variation the larger the penalty
- Works well when the subtemplates are characteristic enough for reliable matching.

Representing a face template as a set of flexibly connected subtemplates.

Matching segmented patterns

Matching two patterns by segmenting them into regions.

- Segment patterns into regions and find correspondences by comparing region properties.
 - A distance measure between properties of regions should be defined.
- This solution works well when the segmentation is reliable.

Algorithm 1: Stable Matching of Two Images

- 1. Compute distance matrix D_{ij} ; i: i^{th} region of image 1, j: j^{th} region of image 2.
- 2. Calculate forward matching matrix C_{ij} : $C_{ij} = 1$ if $D_{ij} < D_{ik}$ for all $k \neq j$; otherwise, $C_{ij} = 0$.
- 3. Calculate backward matching matrix B_{ij} : $B_{ij} = 1$ if $D_{ij} < D_{kj}$ for all $k \neq i$; otherwise, $B_{ij} = 0$.
- 4. Match regions *i* and *j* if $C_{ij}B_{ij} = 1$.
- 5. Remove established correspondences from D_{ij} .
- 6. Iterate until no further matching is possible.

Comments to the Stable Matching algorithm:

- The backward matching (steps 2–4) is a consistency check.
 - \Rightarrow This is a standard way to discard noisy (unreliable or erroneous) matches
- The iterative procedure is based on an algorithm for the Stable Marriage Problem.

left image

right image

original ME

consistent ME

Matching a stereo pair in presence of occlusion. ME is the matching error. The consistency check removes wrong matches due to occlusion.

Fast impementations of matching

 Work with local features of images and templates rather that the patterns themselves

- For example: Edges, contours
- Useful for sparse and reliable features
- Caution: Remember sensitivity to distortions!

• For large templates (> 13×13 pixels), use implementation of cross-correlation via Fast Fourier Transform (FFT):

$$f \otimes w = IFFT \Big[FFT \Big[f(x,y) \Big]^* \cdot FFT \big[w(x,y) \Big] \Big],$$

where IFFT is the inverse FFT and X^* is the complex conjugate of X.

- Needs $O(N^2 \log N)$ operations for $N \times N$ images
- $\circ~{\rm Straightforward}$ implementation needs $O(N^4)$ operations

Another solution: Use a fast procedure to

- 1. Select match candidates and reject mismatches rapidly, then
- 2. Test the selected candidates

Options for fast selection and rejection:

- Use a coarsely spaced grid of template positions, then rectify the candidates.
 - This is a coarse-to-fine sampling method for the cross-correlation function
 It works if peaks of cross-correlation are smooth and broad (no spikes).
- Compute simple properties of template and image region. Reject region if its properties differ from properties of the template.
- Use subtemplates to reject a mismatch rapidly when a subtemplate does not match.
- If a cumulative measure of mismatch is used, reject a candidate when the mismatch exceeds a preset threshold.

Image features

Basic image features.

Types of local image features considered in this course:

- Edges More detail
- Lines Less detail
- Corners Less detail
- Blobs No details

Edges and blobs

An image edge is a drastic change of intensity across object contour.

• Image edges do not necessarily coincide with physical edges

- Image edges are intensity discontinuities
- Physical edges are surface discontinuities
- Example: Edges of shadows are not surface discontinuities

 Importance of intensity edges: Human eye detects them 'in hardware', at the initial level of visual processing.

A blob is a compact image region of approximately constant intensity.

- Blobs are elementary patterns used to build more sophisticared patterns.
 - Example: Eyes in a face model
- Blob detectors exist, but they are less frequently used than edge and corner detectors.

Lines

A line is a narrow, elongated image region of approximately constant width and intensity.

- Formally, a line can be viewed as two parallel sequences of edges.
 - $\circ\,$ In practice, a thin line is rarely detected like that
- Blurred lines and other linear objects may have different cross-sections.
 - Example: Roof-shaped.
- Two different operations are often called line detection:
 - Line filtering (enhancement), detecting pieces of lines. This is a local operation similar to edge detection.
 - Detecting lines (curves) of a given shape. This is a global operation, whose typical example is the Hough transform.

Corners

A corner is a sharp turn of a contour.

• Corners are used in shape analysis and motion analysis

 Corners and other points of high curvature are dominant in human perception of 2D shapes

• Shapes can be approximately reconstructed from their dominant points

• Two different operations but related operations are called corner detection:

- Detection of corners in digital curves
- \Rightarrow This assumes extracted contours
- Detection of corners in greyscale images
- \Rightarrow This does not assume extracted contours

The aperture problem and the use of corners in motion analysis. The displacement vectors are ambiguous at an edge, but unambiguous at a corner.

The Attneave's Cat. The original smooth shape has been restored based on a small number of high curvature points. The cat is easy to recognise.

Three image features and their intensity profiles along the indicated lines.