

Outline of Presentation

- Introduction
- Classification of image registration methods
- Overview of geometric transformations
- Overview of registration algorithms
- Conclusion

Introduction

- Image registration (also called image matching) is an important problem in image analysis with many applications:
- Several images of the same object are taken using different imaging modality
- Several images of the same object are taken at different time instants
- It is necessary to compare two objects
- It is desired to match an image to a model (e.g. digital atlas)

The Problem

- The problem of image registration is to determine an unknown geometric transformation that maps one image into another (to a certain degree of accuracy)
- In other words, after registration problem is solved, for each pixel in the first image we know the corresponding pixel in the second image
- This assumes that the images are similar in the sense that both images contain the same (or similar) object, which may be rotated, translated, or elastically deformed

The Problem

- In medical applications, image registration is usually done for two-dimensional and three-dimensional images
- In general, registration problem can be solved in any number of spatial or temporal dimensions

Motivation

- When two images are registered it is possible to:
- Analyze (detect) differences between the images (e.g. images taken at two different time instants or difference between the template and a tested product in visual inspection)
- Combine information contained in multiple images into a single image (image fusion) with the goal of easier interpretation by humans (e.g. in radiology it is possible to do multimodality image registration - MR to CT, etc.)

Information Integration

- Information integration has the goal of combining several pieces of information into a single one
- E.g. merge several images into a single one
- In the context of image processing this is called image fusion
- There are several probabilistic theories for information integration such as:
- Bayesian approach
- Dempster-Schefer theory

Applications: Remote Sensing

- In remote sensing (e.g. meteorology) the same geographical area may be imaged in various spectral ranges
- In management of urban areas it is possible to take images of an urban area in regular time intervals and detect changes (e.g. new buildings)

Applications: Medicine

- Biomedicine is an important application area
- Developments in medical imaging resulted in powerful imaging modalities providing information about anatomy and function of the human body:
- Computed tomography (CT)
- Magnetic resonance (MR)
- Ultrasound
- Positron emission tomography (PET)
- Single photon emission computed tomography (SPECT)
- Gamma camera imaging
- X-ray imaging

Applications: Medicine

- Medical image registration is required for:
- Use of different imaging modalities (e.g. MR/PET, MR/CT)
- Progressive disease tracking (imaging in regular time intervals and detection of changes, e.g. for tumor treatment evaluation)
- In computer assisted surgery (e.g. in neurosurgery preoperative MR images may be registered with intraoperative MR images for surgical navigation)
- Matching of patient images to a model (e.g. for atlasguided image analysis)

Example: Hand Registration

- X-ray image (anatomical information)
- Nuclear medicine image (functional information)
- After registration, hand image obtained by nuclear medicine imaging is pseudocolored and superimposed on the gray scale X-ray hand image
- Red color corresponds to the largest isotope concentration

Example: Brain Registration

- MR image showing anatomy (left), PET FDG image showing function superimposed on MR image (right)

Outline of Presentation

- Classification of image registration methods
- Overview of geometric transformations
- Overview of registration algorithms
- Conclusion

Classification of Methods

- Registration methods can be classified with respect to several different criteria such as:
- Dimensionality of images that are registered (2-D, 3-D, 4-D methods)
- Image features being matched (extrinsic and intrinsic methods)
- Mechanism of interaction with the user
- Type of geometric transformation used for registration

Dimensionality

Image Features

- This classification is motivated by the type of image features used for image registration:
- Extrinsic methods (external objects or markers are used as reference points for registration)
- Intrinsic methods (registration is based on pixel values - no external objects are used)

Extrinsic Methods
 Extris Med

- Extrinsic methods use artificial external objects (markers) attached to the object to be registered
- Markers are detected in both images and used for registration
- Example: For brain image registration skin markers or stereotactic frames may be used
- Disadvantage: Registration is based on external markers so accuracy depends on the accuracy of marker detection (segmentation is required)

Intrinsic Methods

- Intrinsic registration methods do not use artificial external objects
- Intrinsic methods use:
- anatomical landmarks (points, contours, or surfaces), or
- pixel values (intensity-based methods)
- Anatomical landmarks must be detected and this represents a disadvantage (possibility of error)
- Intensity-based methods have advantage of relying only on pixel values without the need for detection of special landmarks

User Interaction

- With respect to user interaction, registration methods can be divided into:
- Interactive (require user interaction to define the geometric transformation for registration):
- Semi-automatic (user interaction is only required for initialization, guidance, or stopping the registration procedure)
- Automatic (do not require any user interaction)

Geometric Transformations

- This classification is based on the type of transformation used for registration:
- Rigid registration: distance between any two object points is preserved (rotation, translation)
- Affine transformation: A line is mapped into a line, parallelism between lines is preserved
- Projection transformation (e.g. perspective projection) is like affine, but it does not preserve parallelism of lines
- Elastic transformation: line is mapped into a curve

Overview of Transformations

- In the next several slides we present an overview of the basic geometric transformations:
- Rigid transformations
- Scaling transformations
- Affine transformations
- Projective transformations
- Perspective transformations
- Elastic transformations

Scaling Transformations

- The simplest affine transformations are those that only include scaling, while the rest of the transformation is rigid:

$$
x^{\prime}=\operatorname{RS} x+t
$$

where $\mathbf{S}=\operatorname{diag}\left(s_{x}, s_{y}, s_{z}\right)$ is scaling matrix in x, y, and z directions, \mathbf{R} is rotation matrix, and \mathbf{t} is translation vector

Rigid Transformations

- A rigid transformation of vector $\mathbf{x}=[x y z]^{\top}$ consists translation and rotation:

$$
\mathbf{x}^{\prime}=\mathbf{R x}+\mathbf{t}
$$

where $\mathbf{t}=\left[t_{x} t_{y} t_{z}\right]^{\top}$ is translation vector, \mathbf{R} is a 3×3 orthogonal rotation matrix (α, β, and γ are rigid body rotation angles around z, y, and x axes)
$R=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma\end{array}\right]$

Affine Transformations

- Affine transformations preserve lines and parallel lines and are defined by expression

$$
x^{\prime}=A x+t
$$

where \mathbf{A} is affine transformation matrix that can have any value, and t is translation vector

Affine Transformations

- For easier manipulation of matrix expressions, a representation using homogeneous coordinates is often used:
- Homogenous coordinate vector of a 3-D point is 4-D

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{1} \\
a_{21} & a_{22} & a_{23} & t_{2} \\
a_{31} & a_{32} & a_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Projective Transformations

- Projective transformations are similar to affine (lines are preserved), only there is no preservation of parallel relation
- The analytical form is given by:

$$
\mathbf{x}^{\prime}=(\mathbf{A} \mathbf{x}+\mathbf{t}) /(\mathbf{p} \cdot \mathbf{x}+\alpha)
$$

Projective Transformations

- In homogeneous coordinates we have:

$$
\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime} \\
u_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & t_{1} \\
a_{21} & a_{22} & a_{23} & t_{2} \\
a_{31} & a_{32} & a_{33} & t_{3} \\
p_{1} & p_{2} & p_{3} & \alpha
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

where $\quad x^{\prime}=u_{1}{ }^{\prime} / u_{4}{ }^{\prime}$,
$y^{\prime}=u_{2}^{\prime} / u_{4}^{\prime}$,
$z^{\prime}=u_{3}^{\prime} / u_{4}^{\prime}$

Perspective Transformations

- Perspective transformations map 3-D space into a 2-D image plane
- Examples: camera imaging, X-ray imaging, microscopy
- Perspective transformations are a subset of projective transformations

Perspective Transformations

(4)

- For perspective transformations the affine part is often taken to be identity $(\mathbf{A}=\mathbf{I})$ and translation part to be zero ($\mathbf{t}=0$)
- Let \mathbf{p} be the projection vector

$$
\mathbf{p}=|\mathbf{p}| \hat{\mathbf{p}}
$$

- From the general expression for perspective transformation we obtain:

$$
\mathbf{x}^{\prime}=f \mathbf{x} /(\hat{\mathbf{p}} \cdot \mathbf{x}+\alpha f)
$$

where $f=1 /|\mathbf{p}|$

Perspective Transformations

- This expression is valid for a pinhole camera, where a small opening replaces a lens
- This is a good approximation of real world cameras

Perspective Transformations

- If the center of coordinate system is located at the pinhole, then $\alpha=0$
- If the center of coordinate system is at intersection of the projection axis and image plane then $\alpha=1$
- Parameter f is called focal distance

Elastic Transformations

- Elastic transformations do not preserve lines (i.e. a line can be mapped into a curve)
- An elastic transformation can be defined by any non-linear mapping of spatial coordinates
- Polynomial are often used in practice for simplicity
- For 3-D case:

$$
\mathbf{x}^{\prime}=\sum_{i=0}^{I} \sum_{j=0}^{J} \sum_{k=0}^{K} \mathbf{c}_{i j k} x^{i} y^{j} z^{k}
$$

Outline of Presentation

- Introduction
- Classification of image registration methods
- Overview of geometric transformations
- Overview of registration algorithms

Image Registration Algorithms

- In the following material we present three groups of algorithms for 3-D medical image registration:
- Algorithms using corresponding points identified in images
- Algorithms using corresponding surfaces
- Algorithms using voxel intensity values
- Conclusion

Elastic Transformations

- In practice, polynomial order is limited because of oscillations present in high-order polynomials
- For this reason, polynomial order is usually chosen so that $I, J, K \leq 2$
- For the same reason it is often taken that $\mathrm{I}+\mathrm{J}+\mathrm{K} \leq 5$

Point-based Registration

- In medical image registration, 3-D points used for registration are often called fiducial markers or fiducial points
- 3-D points can be either external markers attached to human body or anatomical landmarks identified in the images

Point-based Registration

- The usual approach to point-based registration problem is to find the least-square rigid-body or affine transformation that aligns the points
- The obtained transformation can then be used to transform any point from one image to another
- This problem is often referred to as the orthogonal Procrustes problem

Orthogonal Procrustes Problem

- Problem definition: Given two configurations of N points in D dimensions $\mathbf{P}=\left\{\boldsymbol{p}_{i}\right\} i \mathbf{Q}=\left\{\boldsymbol{q}_{\mathbf{i}}\right\}$, it is necessary to find transformation T that minimizes error:

$$
G(T)=|T(P)-\mathbf{Q}|^{2}
$$

- \mathbf{P} i \mathbf{Q} are $N \times D$ matrices whose rows are coordinates of points $p_{i} i q_{i}$, and $T(P)$ is the corresponding matrix of transformed points \mathbf{p}_{i}
- The standard case is when T is a rigid-body transformation

Orthogonal Procrustes Problem

- If T is affine transformation, we obtain the standard least-squares problem
- In the following material we show the solution for case when T is a rigid-body transformation defined

Solution

- First replace vectors in \mathbf{P} and \mathbf{Q} by their demeaned versions (mean value equal to zero):

$$
\begin{array}{ll}
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}-\overline{\mathbf{p}}, \quad \overline{\mathbf{p}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_{i} \\
\mathbf{q}_{i} \leftarrow \mathbf{q}_{i}-\overline{\mathbf{q}}, \quad \overline{\mathbf{q}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{q}_{i}
\end{array}
$$

- This reduces the problem to the orthogonal Procrustes problem in which we need to determine orthogonal rotation matrix \mathbf{R}

Procrustes

- Procrustes was a robber in Greek mythology, who offered visitors accommodation in his roadside house and a bed that would perfectly fit each visitor
- But Procrustes would put each visitor in the same bed and would either stretch the visitors, or cut off their bodies so they would fit the bed
- Luckily, the hero Theseus who traveled to Athens (and killed Minotaur on his way) stopped this practice by subjecting Procrustes to his own method
by rotation matrix \mathbf{R} and translation vector \mathbf{t}

Solution

- Orthogonal matrix \mathbf{R} is determined by expression:

$$
\mathbf{R}=\mathbf{V} \Delta \mathbf{U}^{\top}
$$

where $\Delta=\operatorname{diag}\left(1,1, \operatorname{det}\left(\mathbf{V U}^{\top}\right)\right)$

- Translation vector \mathbf{t} may be determined by expression:

$$
\mathbf{t}=\overline{\mathbf{q}}-\mathbf{R} \overline{\mathbf{p}}
$$

Registration Errors

- Errors in rigid-body point registration are a result of:
- Fiducial localization error (FLE), and
- Fiducial registration error (FRE)
- The resulting error is called target registration error (TRE) is a result of both FLE and FRE
- If the FLE is ε the rotation and translation which solve the Procrustes problem will depend on ε : $\mathrm{T}_{\varepsilon}=f\left(\mathrm{R}_{\varepsilon}, \mathrm{t}_{\varepsilon}\right)$
- TRE at the target \mathbf{x} is then $\left|\mathrm{T}_{\varepsilon}(\mathbf{x})-\mathrm{T}(\mathbf{x})\right|$ and it decreases with $1 / N^{1 / 2}$

Surface Registration

- The second approach to 3-D registration is by using surfaces in medical images, which are often more distinct than point landmarks
- Segmentation algorithms are used to locate surfaces:
- For example tissue to air boundaries often have high contrast, which makes surface detection easier
- If two correspondent surfaces can be detected in images to be matched, then rigid-body registration can be achieved by fitting the surfaces

Surface Registration Algorithms

- Some of the best known surface registration algorithms are:
- The head and hat algorithm
- Distance transform-based algorithms
- Iterative closest point (ICP) algorithm

Head and Hat Algorithm

- Developed by Pelizzari i ostali, 1989, for 3-D registration of CT, MR and PET head images
- The first surface (head) is obtained from higher resolution modality and is represented as a stack of image slices
- The second surface (hat) is represented as a list of unconnected 3-D points
- Registration is performed by iterative transformation of the hat surface to find the best fit onto the head surface

Head and Hat Algorithm

- Registration accuracy is measured by the square of the distance between the point on the hat and the nearest point on the head in the direction of the head centroid
- Iterative optimization using Powell steepest descent algorithm, which performs a series of 1-D optimizations in each of the six dimensions:
- For 3-D rigid-body registration we have six degrees of freedom (three rotations and three translations)
- This method is useful only for spherical surfaces

Distance Transforms

- Head and hat algorithm can be improved using a distance transform to preprocess head images
- A distance transform maps a binary image into a distance image
- In the distance image each pixel has the value of the distance of that pixel to the nearest surface in the binary image
- Distance transform is computed for one of the images, which makes it easy to calculate distance from one surface to another

SSD Similarity Measure

- Let A and B be two images
- Sum of square intensity differences between images A and B is defined by:

$$
\frac{1}{N} \sum_{x \in S}|A(x)-B(x)|^{2}
$$

where $N=\operatorname{card}(S)$, and $S \subseteq Z^{n}$ is an overlap domain of image domains A and B

SSD Similarity Measure

- Disadvantage: SSD measure is very sensitive to a small number of pixels having large intensity differences in images A and B
- SSD measure assumes that the images to be registered differ only by Gaussian noise

Correlation Coefficient

A less strict assumption is that there is a linear relationship between the intensity values in two images

- In this case the optimum measure is the correlation coefficient (CC)

Correlation Coefficient

- CC is defined by expression:

$$
\frac{\sum_{x \in S}(A(x)-\bar{A})(B(x)-\bar{B})}{\left\{\sum_{x \in S}(A(x)-\bar{A})^{2} \sum_{x \in S}(B(x)-\bar{B})^{2}\right\}^{1 / 2}}
$$

where \bar{A} and \bar{B} are the mean voxel values in images A and B, respectively, and S is an overlap of image domains A and B

Correlation Coefficient

- If $A(x)=B(x)$ then $C C=1$
- else CC < 1

Ratio Image Uniformity (RIU)

- Introduced by Woods for registration of serial PET images, but has also been used for serial MR registration
- The similarity measure uses a ratio image calculated from images A and B
- An iterative technique is used to find the geometric transformation that maximizes uniformity of the ratio image
- Uniformity is measured by the normalized standard deviation of the voxels in the ratio image

Ratio Image Uniformity (RIU)

- When images A and B are registered the ratio image will be more uniform than when images are not registered
- The ratio image $R(x)$ is calculated for voxels in the overlap S of images A and B

$$
\begin{aligned}
& R(x)=\frac{A(x)}{B(x)}, \quad x \in S \quad \bar{R}=\frac{1}{N} \sum_{x \in S} R(x) \\
& \mathrm{RIU}=\frac{1}{\bar{R}} \sqrt{\frac{1}{N} \sum_{x \in S}(R(x)-\bar{R})^{2}}
\end{aligned}
$$

Information Theoretic Measures

- Image registration can be viewed as a problem of maximizing the amount of shared information in two images
- When images are registered we just have two ears, two eyes, one nose, etc.
- When images are out of alignment we have duplicate versions of these structures from images A and B (there is more information in images)
- This gives motivation to a different approach to registration, which is done by reducing the amount of information in two images

Information Theoretic Measures

- The idea: use a measure of information as a registration metric
- Information theoretic image similarity measures are based on the Shannon-Wiener entropy measure developed as a part of communication theory in 1940s
- This research area is called information theory

Entropy

- Let us assume that we have a source of information that sends messages coming from a set of N messages with probabilities $p_{\mathrm{i}}, i=1, \ldots, N$
- The amount of information in a single message with probability p_{i} may be measured by expression $\log p_{i}$
- Entropy of an information source is by definition the average amount of information generated by the source:

$$
H=\sum_{i=1}^{N} p_{i} \log p_{i}
$$

Image Entropy

- Let us view an image as a source of information where each message is represented by a pixel (or voxel) having certain value
- The total number of messages that this information source generates is equal to the number of pixels
- Probability of each individual message (probability of a pixel having intensity a can be estimated using the first order image histogram $p(a)$

$$
H(A)=\sum_{a} p(a) \log p(a)
$$

Joint Entropy of Two Images

- Joint entropy of two images is a measure of the joint information contained in the images:

$$
H(A, B)=\sum_{a} \sum_{b} p(a, b) \log p(a, b)
$$

- If A and B are totally unrelated (i.e. statistically independent), then the joint entropy will be the sum of the entropies of the individual images (show proof for exercise):

$$
H(A, B)=H(A)+H(B)
$$

Joint Entropy of Two Images

- The following inequality holds for any two images:

$$
H(A, B) \leq H(A)+H(B)
$$

- The more similar (i.e. less independent) the images are, the lower the joint entropy will be compared to the sum of individual entropies
- This is the motivation for use of joint entropy as an image similarity measure:
- Registered images have low joint entropy
- Unregistered images have larger joint entropy

Joint Entropy for Registration

- To use joint entropy as an image similarity measure for registration, for each transformation T, we have to calculate joint entropy in the overlap domain of $T(\mathrm{~A})$ and B

$$
H(A, B)=\sum_{a} \sum_{b} p^{T}(a, b) \log p^{T}(a, b)
$$

- The superscript T in the above expression emphasizes that the PDFs $p(a, b)$ change with T

Example of $\mathbf{2}^{\text {nd }}$ Order Histograms

- For CT and MR head images:
- Left: Accurate registration
- Middle: 2 mm translation of one image w.r.t. another
- Right: 5 mm translation of one image w.r.t. another

Joint Entropy Limitations

- A registration algorithm that minimizes the joint entropy may in certain cases converge to a wrong solution
- The second limitation is that interpolation algorithms (which typically blur images) will change joint PDF and therefore will change joint entropy

Mutual Information

- A solution to the overlap problem of joint entropy is to measure the information contributed to the overlapping volume by each image registered and by joint entropy
- This can be done using a measure of mutual information (MI) introduced by Shannon in 1948

Mutual Information

- Mutual information between images A and B (or any two sources of information) is defined by:

$$
I(A, B)=H(A)+H(B)-H(A, B)
$$

- Mutual information is a similarity measure that shows how well one image describes another (in the sense how well can we estimate one image based on another)

Mutual Information

- For two statistically independent images it holds that

$$
H(A, B)=H(A)+H(B)
$$

therefore

$$
I(A, B)=H(A)+H(B)-H(A, B)=0
$$

Normalized Mutual Information

- In certain cases MI does not behave well
- For example, changes in overlap of low intensity region can disproportionately change MI
- For this reason alternative normalizations of joint entropy have been proposed to overcome the problem of MI sensitivity to change in image overlap

Normalized Mutual Information

- Maes at al. have proposed the following measures:

$$
I_{1}(A, B)=\frac{2 I(A, B)}{H(A)+H(B)}
$$

$$
I_{2}(A, B)=H(A, B)-I(A, B)
$$

Normalized Mutual Information

- Studholme has proposed the following image similarity measure:

$$
I_{3}(A, B)=\frac{H(A)+H(B)}{H(A, B)}
$$

- This measure has shown to be much more robust than standard MI

Numerical Optimization

- For most registration techniques, unknown parameters of geometric transformation are determined using an iterative numerical optimization method
- The goal function which is optimized (maximized) is an image similarity measure

Numerical Optimization

- The optimization of an image similarity measure is done with respect to free parameters of geometric transformation:
- For 3-D rigid body transformation we have 6 parameters
- An affine transformation has 12 free parameters
- Elastic transformations may have many more parameters (hundreds or thousands)
- Large (multidimensional) optimization spaces make optimization problem more difficult

Numerical Optimization: Problems

- The goal of optimization is to find the global minimum
- With a large optimization space there is a problem of getting stuck in a local minimum
- Large optimization sizes result in high complexity and long execution time (problem for practical clinical applications)
- Multiresolution approaches may be used to fight this problem

Conclusion

- Image registration has many applications in biomedical imaging and in other areas
- Intensive research during the last decade
- We have covered some basic aspects and problems of image registration
- For further information consult the literature

Thank you for your attention

