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Outline

Segmentation, feature detection, NRR

Exarmolos of R What is segmentation?
xamples of temporal series

Reductions of dimensionality
— PCA based methods

— ICA based methods

Change detection (Kalman filtering)

Conclusions and the future

A road map

Engineers v. Scientists (Pure and Applied)
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Segmentation

Classic ‘edge detection’ methods
— Gradient (Sobel etc), zero crossings of Laplacian

— Canny
— Marr Hildreth
Phase congruency
Model based

— Medial axis

— Active shape
Clustering

— Split merge

— K-Means

— Affinity

etc

2nd strand

» Shape and appearance models

— segmentation
— normal variation and pathology

Object and Canny edged
template image

Correspondence

A Unified View

Models <> Registration
— NRR to build models

Registration
— models to constrain NRR
« Registration <> Features
— features to improve NRR
— NRR defines corresponding
features
Models ﬁ
« Features <> Models
— features to enrich models

— models to locate features

Underlying unity not currently exploited
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Three research strands

* Non-rigid registration

— change detection

— voxel-based morphometry

— segmentation

Pre-contrast Post-contrast Subtract Subtract NRR

3t strand

* Feature detection
— ‘interesting’ structure

— abnormal structure

Mammogram Linear features

Models in Image Analy

» Lack of image quality and/or features often limit the
of quantitative information from images.

()

recove
Boundary

image Feature map

* Models can help constrain solutions in plausible ways:

—+ D — Desired
boundary fit
Feature map model
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The Deformable contour model

¢ Deformable contour model (or “snake”) can be
represented by a set of controls points developed
through the solution of energy minimization using
variational calculus
This model requires initial control points which
roughly delineate the volume of interest on several
slices
New Control points on each slice are generated
from cubic spline interpolation to obtain continuity
and smoothness

Snakes

Balloons

Shrink wrapping
Gsnakes
Tsnakes

2-D to 3-D

Volume of LV (cubic cm)

Comn
« Partial volume effect causes fusion of intra chamber structures with
myocardium

+ RMS projected errors to manual tracings are below 2.5mm (2 datasets).

A, Todd-Pokropek cUCL

Contd. Deformable contour model

The total energy of snake can be represented by

Eoa = [ Euue V(DA = @B V() ]+ BE gy V(D]

The internal energy is

2

@B V(D] = a v, = v |  +a, v -2y +v

i+l

The external energy is

BE e = BBy o [V(D] + BLE o [V(I)]

In this process, modified greedy optimisation technique
has been used

Deformable mode

* GVF (Gradient Vector Flow) [5] image forces
s+ Eove
| VE [P(u-v'F)

Diffusion of edge map Local edges
in absence of local edges

* Creation of GVF field
— Gaussian intensity distribution within blood pool yields
initial classification of boundary.
— GVF field created from anisotropic diffusion of edge
boundaries.

[5] Prince and Xu, 1997

Level Sets

July 2005
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sification and Fuzzy Connectedness

gmentation and sification
Relatlonshlp to deforn‘lable contours ification can lead to segmentation and vice-

sification refers to the labelling of pixels in an image that m:
ult in the segmentation of objec

* Ignores the tension component B . .
The grey level intensity value is the most common feature. Texture

is an alternative.

Pixels with similar feature vectors form clusters in the feature
that can be separated by lines or curves.

* (X(s,t),t) =0 the level set at zero
In reality, partitioned regions do ove at the border and the
Diff (et c are not separable which brings fuzzy Clustering
HHerentiate: Fuzzy membership functions has been assigned a pixel to classes
. 8(p/6t + grad 0. dX/dt=0 with any value between 0 and 1.

Any pixel can be assigned to more than one class simultaneously
where the membership f a pixel i to each class k is

Fuzzy Clustering works as follows: Contd. Fuzzy clustering and fuzzy connectedness

The overall objective function by this class
Initiali

s can be determined by the
similarity of image elements and of intensity d feature: ciated with
image elements as well as by their spatial conne

Fuzzy connected object is that object in an image where every pixel is
spatially adjacent, homogenous in pixel inte: and their fuzzy
membership values are high.

An image element will be considered to belong to that object whose
strength of connectedness is highest.

iv. At each iteration, recalculate the membership value

3. Stop iteration when appropriate stopping criterion is satisfied.

Comparison between segmented matter with

Examples of WM, GM and CSF which are segmented by simulated segmented matter

applying relative fuzzy connectedness are shown below:

To create a colour overlay model to make an objective comparison
by merging segmented WM with simulated WM, segmented GM with
simulated GM and segmented CSF with simulated CSF

(a) Segmented volume (b) Segmented volume (c) segmented volume
wM GM CSF

(a) Matched WM (b) Matched GM (c ) matched CSF

A, Todd-Pokropek cUCL 4
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Model based fitting

Shape Priors: Cootes and Taylor (IPMI93) ; Grenander/ Miller
mplates- 1991) ; Vemuri, et al. (MedIA97); Leventon,
et al. (CVPRO0)
Integrated Methods: Region grow w/ edges- Pavlidis and
Liow (PAMI91); Zhu and Yuille (ICCV95) ; Ahuja (PAMI96) ;
level sets - Tek and Kimia (ICCV95)
Segmenting Cortical Gray Matter: Macdonald and Evans
(SPIE9S) ; Davatzikos and Prince (TMI95); Davatizikos and Bryan
(TM196); Teo and Sapiro (TMI97) ; Xu and Prince (MICCAI9S) ;
Multiple Objects/Level Sets and Priors: Tsai, Wells,
Grimson, Willsky (IPMI03); Leventon, Grimson,Faugeras
(CVPRO0);

Corpus Callosum Result

ttal MR (1mm?3 Expert-traced

) - N " =p
N/ ( | (boundary parameters)
\ / p?

gradient echo)

Black = initial
contour

White = gradient-
based boundary
finding

Ack. Duncan
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contour

Black = initial
contour

‘White = game-
theory result

Integrated Segmentation via Game Theory

borty & Duncan, PAMI 99)

pI*
(

Image
P2

F': constant

level curves

F2: constant

Equilibrium

Watersheds
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CT Lung lesions

Colon segmentation

—
/ ~— = 4
e = = -
i
e Ack Sorantin

Key question: how much
does the tumour invade
The colonic wall.

fn
we
?

st

Aims and objectives Handling of temporal data

Automating analysis of multiple slices Special class of 3-D data

Isolating lung field processin

Identifyi * Looking for change
entifying structures + Looking for (derived)

Eliminating blood vessels and airways function
Classification of nodules on 3-D

Consider set of time curves
for every pixel

Determination of extent in 3-D

Tracking in time and finding correspondences 3
acking in time and finding correspondence ¢ Dual curve/image data set

Problem is false positives

Looking for change

Before

Subtraction

A, Todd-Pokropek cUCL 6
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Data compression/ projection

Removing redundancy

Reducing

dimensionality

Projection against

— time (summation)

— y (vertical axis)

— oblique
Constraints are
required (a priori Smom e
information)

Function fitting Functional Images

* For cyclical function  Image of a derived function
- Afij] = % C[ijk] cos( k) — Rate of increase/ decrease
- B[ij] = % Clijk] sin(ok) — Time to max
AMP[i]  CALLE + BLP ) — Variance image
- i,j] = s i,j]? i,j]? .
_PH ASEJ[Lj] :qtan,l ( BJ[i,j] / A[i,ji ) » Example Kalman filtering
— Estimating current values

« First Fourier component > And statistical model

. Active Shape Model
Fourier Contours .
A simple example

* A set of triangles

* Characterised by 6 parameters
— {x1,y1,x2,y2.x3,y3}

 Simpler description possible

A, Todd-Pokropek cUCL
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Triangle space

* Fix the origin
Fix the x axis

3 parameters

Also lengths of 3 sides

Where to place the nodes

Regular

Maximum radius of
curvature

Minimal description
length

What is MDL?

» Transmission of the (quantized) dataset

» Must have exact reconstruction of dataset.

» Optimal model = shortest total message length.
Etotal — ['model parameters

+  Lgata encoded using model
+  Lyegidual/unmodelled bits

A, Todd-Pokropek cUCL

Normalise scale

* Take ratios of lengths of 1 side v. other two
» Two dimensional space

Minimum description length

Energy of the model (PCA)
Energy of the description (points)
Minimise total

The two energies have to be in comparable
units

Add a ‘lamda’
Minimise that also

SSM Built from Annotation

July 2005
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Example from Cootes and Taylor

TN

15t Mode of active appearance model ASM model fitting

Model based approach
- Y=X+€

— Y is data matrix (m,n)
— X is model
— € is error

* Decompose
- X=FG&

* F (m)k)

* G (k,n)

Oblique rotation

» PCA solution is orthogonal
* Make linear combinations
— Oblique rotation
— To satisfy constraint (positivity)
— For example is higher dimensional space

A, Todd-Pokropek cUCL
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3D deformations

Ack. Thompson

Principal Component Analysis

* F are Principal Axes
» G are Weights (variance)

* C (covariance matrix)
=C= (Y _Ym)’ (Y - Ym)

Factor analysis: an example

Decomposition into
principal component

Oblique rotation

(based on constraints)

Display of images
(eigenfuctions) and
curves (eigenvalues)

Segmentation, model
fitting and quantitation
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Independent Component Analysis

Cocktail party problem
Assume signals strictly independent

Prewhitening

Components not ordered.

SIGNALS JOINT DENSITY

Pﬁﬂwﬁh-u*‘*‘ z){
e *‘*"ML* Ay

Whitened signals and density

SIGNALS JOINT DENSITY

)'WWHNW{

o

Separated signals after 2 steps of FastiCA

A, Todd-Pokropek cUCL
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Example

SIGNALS JOINT DENSITY

e

-

Input signals and density

SIGNALS JOFNT DENSITY

M‘Jﬂ“‘)fﬂ‘*“‘ A

AR AR

AT
R

Separated signals after 1 step of FastiCA

SIGNALS _JOINT DENSITY
[ L‘

A
ANNAARAAANA

Separated signals after 3 steps of FastiCA

10
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_SIGNALS JOINT DENSITY

_SIGNALS JOINT DENSITY

el

Separated signals after 4 steps of FastiCA Separated signals after 5 steps of FastiCA

How ICA works

* Originally from signal processing
» Three algorithms:
. FastICA
. InfoMax
JADE
* To obtain ‘vectors’

Ordering ICA Bayesian Analysis
Bayes’ theorem Pr(P| E) = Pr(E | p)Pr(P)
Pr(E)

e Using the prior

knowledge of Pr(E | PYPI(P)
shape to bias the Pr(P,,, | E) = max T

boundary finding

T .‘I.—l ' | N TP

Colour represents component E is image object, P variables in template P,,,, is desired result

A, Todd-Pokropek cUCL
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Duncan, ]PMIHw

After serial inference

*Maximum A Posterior (MAP) framework:

! s image I has M objects of interest:
N 1 (pi=m)® a :

;
Pr(P)=[]—=¢ **

i=1 O} \/ﬂ Relative positior

among neighbor

i :
E=P+ noise i {»rmh;:uun from a training
1 _(E)-P(y)*
2 2
Pr(E|p)=][—— 7
AV 27Z'Gn Caudate
: -m)’ Putamen
mPy= - Py, ). Y(p.) ; '
i—a 20, Ventricles
m is mean, o is SD, for N points (x,y) over A for whole image Detection of 8 sub-cortical structures using neighbor priors

Spectral Analysis

Confocal microscopy

Fact ysis of confocal image sequences of human papillomavirus DNA revealed with Fast Red in
cervical tissue sections stained with TOTO-iodide. ANALYT QUANT CYTOL HISTOL, 2000, 22(2): 168~
174, 0.; 01-05, KAHN E et al : Confocal image characterization of human papillomavirus DNA sequences

revealed with Europium in HeLa cell nuclei stained with Hoechst 33342. ANALYT QUANT CYTOL
HISTOL, 2001, 23(2):101-108 O.

Seri f A
S:erlce;a? Xi(e) - 2 ak(l)fk(e) * Si(e) . -
images

Temporal sequnce
pixel i D D D D (double marking thiazole orange - Fast Red
a =i
/| +py(i 4D sequence :
é‘\“ [0) | 51(0 SZ(I) |) b s Hoescht - Europium)

Kalman Filtering
Labelled leucemic cells

¢ Problem
~ To estimate the state of X € Rn
— where
Xe = AXc -1+ BUc- 1+ Wi -
— With a measurement 7 Rn
that is

Ze = HX + Vi

Random variables w, and v, are process and measurement
noise

Q is noise covariance and R is measurement noise
covariance

A relates previous step to current step, B is optional, H
relats to changes in measurements

A, Todd-Pokropek cUCL 12
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Time Update Measurement Update

(Predict) (Correct)

Standing on the shoulg

General Conclusions

Ensure it is a good problem

Acquire high quality data (as far as possible)
Validate

Evaluate

Adapt

A, Todd-Pokropek cUCL
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Update equations
« Filter time update
Xe = AX, +BU ., project the state ahcad
Ro=AP_A"+Q  project the crror covariance

« Filter measurement update

- T - T -1
Kk = Pk H (HF’k H + R) Compute the Kalman gaine
%o =X+ Kz =HX) - e
P, =(1-KH)P,

Update error covariance

‘Working in multidisciplinary teams
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