Breast Tomosynthesis

< < diploma work presentation > >

László Csernetics

mentor: Dr. Attila Kuba

University of Szeged, Department of Image Processing

Breast tomosynthesis

F A new breast imaging technique
 F Developed at the MGH

 (diploma work is based on Dr. EA Rafferty's work, leader of TOMO Research Team)

 F So far just in experimental applications

 results of latest trials are coming soon

 F Unexploited research area

 "we need Your help!" O

Breast tomosynthesis system

(EA Rafferty: "Advances in Imaging: Breast Tomosynthesis", ASCO Virtual Meeting, 2004.)

Breast cancer

- F The most frequent malignancy among women
 - 1 of every 8 women is diagnosed with breast cancer at some time in her life
 - a lots of new cases every year
 (in developed countries: US, WEU, except JAP)
 - the third leading cause of death (US survey)

F But

- can be prevented (secondary prevention)
- curable (wrong approach)

Stages of breast cancer

Mammography

- F The most efficient breast imaging technique in practice
- F Image creation is based on x-ray attenuation
 - low radiation dose x-rays (0.1-0.2 rad)
 - grayscale images (mammograms)
 - radiological dense tissue will be white (functional tissue, abnormalities), fat will be black, everything else appear as levels of gray on the film
 - views: cranio-caudal (CC), mediolateral-oblique (MLO), lateromedial (LM), mediolateral (ML), etc.

Disadvantages of mammography

- F Difficulties in detecting breast cancers
 - structure overlaps
 - (it can obscure lesions or mimic abnormalities)
 - increased number of false-positiv and false-negativ screening examination recalls
- F Difficulties in localization breast cancers
 - insufficient visual information (CC+MLO images)
 - further examinations are needed (US, MRI)
 - image guided biopsy

Breast tomosynthesis (technical bg)

- F Similar to mammograph...
 - it's an x-ray application
 - grayscale images
 - breast compression
- F ...but there are some differences between them
 - reconstructed slices instead projection images
 - series of views (1 view 1 projection)
 - lower radiation dose (1.5*mammo/exam)
 - fast (7 second examination)

Image acquisition model

F 11 projection
F 50° angular range
F equidistant tube positions

(EA Rafferty: "Advances in Imaging: Breast Tomosynthesis", ASCO Virtual Meeting, 2004. – /reproduction/)

"Ingredients" of image creation

- F Image reconstruction from projections (Simple Backprojection algorithm)
- F Tomosynthesis basics
 - (Haaker-Klotz-Koppe-Linde, Hamburg, GE, 1985.)
 - leave common aproaches
 - back to backprojection
 - modify the BP algorithm, to be suit for tomosynthesis (1985. – coronary angiography)

Reconstruction problem

- F Reconstructing horizontal slices (50-80 slice)
- F Difficulties
 - we have only 11 projection
 - taken from small angular range

Difficult limited-angle tomography problem

 F General solution: discrete tomography (non-linear iterative algorithms, optimalization methods)

Tomosynthesis reconstruction theorem

- F Making an appropriate modification on SB alg.
- F Perceptions
 - bright areas are more important for us (angio with contrast material, mammography)
 - we have to concentrate to higher pixel-values
 - also, we are looking for structure-intersections

Minimum-operator for combining projections (this will lead us to extrem-value reconstruction)

Explanation of using minimum-op.

Further perceptions and modifications

- F Minimum-operator collects noise (average-operator has a noise-minimizing effect)
- F Combining the operators
 - to eliminate noise (averaging)
 - for qualitative reconstruction (minimum)

Minimum-type operator (GOS-filter, L-filter)

$$V_m^{**} = \frac{1}{k - K - L} * \mathop{a}\limits_{n=L+1}^{k-K} P_n$$

$$P_{\min} \in \dots \in P_L \in P_L \notin P_L \notin P_L \notin P_L \notin P_m$$

Consequence of using min-type op.

- F Re-projection consistency constraint won't be satisfied (the K largest and the L smallest values won't be taken into account)
- F Replacing original values of projections with "suitably enhanced" values, and performing a second reconstruction, it will solve the problem
- F "Suitably enhanced" values can be determined in the first, so called order-statistic based reconstruction step

Reconstruction algorithm

- F 1. Step Reconstruction with an appropriate minimum-type operator
- F 2. Step Enhancing contrast of projections to correct operator's error
- F 3. Step Reconstruction with the same operator, but from the enhanced projections

Mammography vs. TOMO

(EA Rafferty: "Advances in Imaging: Breast Tomosynthesis", ASCO Virtual Meeting, 2004.)

Thank You for you attention!