DIGITAL TERRAIN MODELLING

Endre Katona

University of Szeged
Department of Informatics katona@inf.u-szeged.hu

- data sources

The problem: - data structures - algorithms

DTM = Digital Terrain Model

Terrain function: $\boldsymbol{h}(\boldsymbol{x}, \boldsymbol{y})$ with continuous partial derivatives, excepting some special cases:

- the function is not continuous (bench).
- partial derivatives are not continuous (breakline).
2.5 dimensional modeling: not suitable for caves, for instance.

Model requirements:

- good approximation of the real world
- to determine h for any (x, y)

DEM = Digital Elevation Model

Raster model: matrix of height values

- resolution (e.g. 20 m)
- accuracy (e.g. 1 m)

Note: DEM origin: USGS (United States Geological Survey)

TIN = Triangulated Irregular Network

Vector model

Data structures:
a) NODE (id, x, y, z)

TRIANGLE (id, node $_{1}$, node $_{2}$, node $_{3}, \mathrm{tr}_{1}, \mathrm{tr}_{2}, \mathrm{tr}_{3}$).
b) NODE (id, x, y, z, node $_{1}, \ldots$, node $_{n}$)

Contour line (level line) representation

Vector approach:

- LINE $x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z(2 D$ line string with height value z)
- LINE $x_{1}, y_{1}, z_{1}, \ldots, x_{n}, y_{n}, z_{n}\left(3 D\right.$ line sting with $\left.z_{1}=\ldots=z_{n}\right)$

DEM versus TIN

DEM:

- simple data structure
- easier analysis
- high accuracy at high resolution
- high memory demand
- time-consuming processing

TIN:

- restricted accuracy
- complex algorithms
- less memory required
- time-efficient processing

Data sources for DTM

1. Stereo aerial photos (photogrammetry)
2. Measured height values
3. Existing contour line maps

Generating TIN from height values

a) Direct triangulation.
b) Spatial interpolation and triangulation.

Delaunay-triangulation-1

- Given: a set of 3D nodes (x, y, z)
- Reduction to 2D: instead (x, y, z) we take (x, y).
- Prefer "fat" triangles.

Delaunay-triangulation-2

Delaunay triangle: the circumscribing circle does not contain further node.

Delaunay-triangulation: each triangle is a Delaunay-triangle.
Voronoi diagram: a set of disjoint territories. Each node has a territory. Each point in the plane is classified into the territory of the closest node. Nodes with neighboring territories can be
 connected by an edge.

Generating TIN from contour line maps

Part of a scanned contour line map (before processing)

Generating TIN from contour lines - 2

Processing steps:

1. Scanning the contour line map sheet.
2. Manual correction (eliminating gaps and junctions, handle special notations).
3. Vectorization (manual or automatic), we get a set of nodes and edges as a result.
4. Assigning a height value to each contour line (manual or half-automatic).
5. Assigning triangles between contour lines (Delaunayalgorithm).

Generating TIN from contour lines - 3

Problem: flat areas

- at mountain peaks,
- at ridges.

Solution:

spatial interpolation.

Spatial interpolation

Consider a terrain function $f(x, y)$.
Given: $f\left(x_{1}, y_{1}\right)=h_{1}, \ldots, f\left(x_{m}, y_{m}\right)=h_{m}$
Problem: estimating $f(x, y)$ in other points.

Solutions:

- Inverse distance weighted moving average
- Polynomial interpolation

Inverse distance weighted moving average

Given: height values h_{1}, \ldots, h_{m} at points P_{1}, \ldots, P_{m}
Unknown: height value h of a given point P.
Estimation: $h=\left(h_{1} / d_{1}+\ldots+h_{m} / d_{m}\right) /\left(1 / d_{1}+\ldots+1 / d_{m}\right)$ where d_{i} is the distance between P_{i} and P.

Properties:

- Good for ridges.
- Flat areas at peaks.
- Local maxima and minima may occur only at given points.

Polynomial interpolation

Given: $f\left(x_{1}, y_{1}\right)=h_{1}, \ldots, f\left(x_{m}, y_{m}\right)=h_{m}$
Task: approximate $f(x, y)$ with a polynomial $p(x, y)$ of degree r. For example, if $r=2$:
$p(x, y)=a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2}$
Solution: Coefficients $a_{i, j}$ are determined by least squares method: $E=\Sigma_{i}\left(p\left(x_{i}, y_{i}\right)-h_{i}\right)^{2} \rightarrow \min$.

Properties:

- Local maxima or minima may occur not only at given points.
- Expensive procedure for contour lines (too many given points)
- Physical terrain features are not considered.

Generating DEM from contour line maps

Solutions:

- The Intercon method
- Variational spline interpolation

The Intercon method (IDRISI)

- Place a regular grid on contours.
- Create cross-sections along horizontal, vertical and diagonal lines of the grid.
Calculate height and slope values for each grid point (by linear interpolation).
Heuristics: choose the height value belonging
 to the maximum slope.

The Intercon method - 2

Disadvantages:

- Local maxima and minima may occur only at given points.
- Interrupted contour lines may cause significant distortions.
- Single elevation points cannot be handled.

Variational spline interpolation

Source data:

- contour line map, and/or
- a set of elevation points.

Target data: DEM matrix

Preprocessing of contour lines:

- Scanning of contour line map sheets.
- Manual editing of the scanned raster image.
- Contour line thinning.
- Assigning height values to contour lines.

Variational spline interpolation-2

Initial DEM matrix (X denotes unknown point):

x	X	200	X	X	240	X	X	X	X
x	200	X	x	X	240	x	x	x	X
x	200	x	x	x	240	x	x	x	280
200	x	x	x	240	x	x	X	280	x
x	X	X	240	x	X	X	280	X	X
x	240	240	x	x	x	280	X	X	X
240	x	x	x	x	x	280	x	x	x
x	x	x	253	x	x	x	280	X	X
x	x	x	x	x	x	x	x	280	280

Variational spline interpolation - 3

Continuous case
Given: $f\left(x_{1}, y_{1}\right)=d_{1}, \ldots, f\left(x_{m}, y_{m}\right)=d_{m}$
Task: approximate $f(x, y)$ with a minimum energy function.

General energy functional of degree r :

$$
E_{r}(f)=\iint\left[\sum_{i=0}^{r}\binom{r}{i}\left(\frac{\partial^{r} f}{\partial x^{i} \partial y^{r-i}}\right)^{2}\right] d x d y
$$

Variational spline interpolation-4

Membrane model: $\quad E_{f}^{1}=\iint\left(f_{x}^{2}+f_{y}^{2}\right) d x d y$

It tends to minimize the surface area.
(Partial derivatives are not continuous)

Variational spline interpolation-5

Thin plate model:

$$
E_{f}^{2}=\iint\left(f_{x x}^{2}+2 f_{x y}^{2}+f_{y y}^{2}\right) d x d y
$$

It tends to minimize the surface curvature.
(Continuous partial derivatives)

Variational spline interpolation - 6

Membrane model
Continuous case: $E_{f}^{1}=\iint\left(f_{x}^{2}+f_{y}^{2}\right) d x d y \rightarrow \min$
Discrete case (matrix Z instead of function $f(x, y)$):
$E_{Z}^{1}=\Sigma_{i} \Sigma_{j}\left[\left(z_{i, j+1}-z_{i, j}\right)^{2}+\left(z_{i+1, j}-z_{i, j}\right)^{2}\right]$
To find the minimum of $E_{z}{ }^{1}$, take the partial derivatives for any i, j :
$\partial E_{z} 1 / \partial z_{i, j}=8 z_{i, j}-2 z_{i+1, j}-2 z_{i-1, j}-2 z_{i, j+1}-2 z_{i, j-1}=0$

Variational spline interpolation - 7

After dividing by 2 :
$4 z_{i, j}-z_{i+1, j}-z_{i-1, j}-z_{i, j+1}-z_{i, j-1}=0 \quad$ for any i, j.
\rightarrow Linear equation system.

Solution with Jacobi-iteration \rightarrow repeated convolution with mask

$1 / 4$				
$1 / 4$	0	$1 / 4$		
	$1 / 4$			

Note: Given points are kept fixed during convolution.

Variational spline interpolation - 8

Thin plate model
Continuous case: $E_{f}^{2}=\iint\left(f_{x x}^{2}+2 f_{x y}^{2}+f_{y y}^{2}\right) d x d y \rightarrow \min$

Discrete case (matrix Z instead of function $f(x, y)$):

$$
\begin{aligned}
& E_{Z}^{2}=\Sigma_{i} \Sigma_{j}\left[\left(z_{i+1, \mathrm{j}}-2 \mathrm{z}_{\mathrm{i}, \mathrm{j}}+\mathrm{z}_{\mathrm{i}-1, \mathrm{j}}\right)^{2}+\right. \\
& \left.\quad+2\left(\mathrm{z}_{\mathrm{i}+1, \mathrm{j}+1}-\mathrm{z}_{\mathrm{i}, \mathrm{j}+1}-\mathrm{z}_{\mathrm{i}+1, \mathrm{j}}+\mathrm{z}_{\mathrm{i}, \mathrm{j}}\right)^{2}+\left(\mathrm{z}_{\mathrm{i}, \mathrm{j}+1}-2 \mathrm{z}_{\mathrm{i}, \mathrm{j}}+\mathrm{z}_{\mathrm{i}, \mathrm{j}-1}\right)^{2}\right]
\end{aligned}
$$

Variational spline interpolation - 9

To find the minimum of E_{z}^{2}, take the partial derivatives:
$\partial E_{z}^{2} / \partial z_{i, j}=2 z_{i+2, j}+4 z_{i+1, j+1}-16 z_{i+1, j}+4 z_{i+1, j-1}+$
$+2 z_{i, j+2}-16 z_{i, j+1}+40 z_{i, j}-16 z_{i, j-1}+2 z_{i, j-2}+$
$+4 z_{i-1, j-1}-16 z_{i-1, j}+4 z_{i-1, j+1}+2 z_{i-2, j}=0$
\rightarrow Linear equation system.
In a more expressive form
(after dividing by 2):

$$
\left[\begin{array}{rrrrr}
& & 1 & & \\
& 2 & -8 & 2 & \\
1 & -8 & 20 & -8 & 1 \\
& 2 & -8 & 2 & \\
& & 1 & &
\end{array}\right]
$$

Variational spline interpolation - 10

Solution with Jacobi-iteration \rightarrow repeated convolution with mask

$$
\frac{1}{32}\left[\begin{array}{rrrrr}
& & -1 & & \\
& -2 & 8 & -2 & \\
-1 & 8 & 12 & 8 & -1 \\
& -2 & 8 & -2 & \\
& & -1 & &
\end{array}\right]
$$

Notes:

- Given points are kept fixed during convolution.
- Convergence of masks can be studied by Fourier-analysis.

Variational spline interpolation-11

Sample initial matrix for the iteration:
(Each unknown point gets the value of the nearest contour line.)

Algorithm:
modified distance transform

Variational spline interpolation-12

Membrane model after 40 iterations:

\rightarrow Fast convergence

Variational spline interpolation-13

Thin plate model after 500 iterations:

Variational spline interpolation - 14

Thin plate model after 5000 iterations:
\rightarrow Very slow convergence!

The solution:

multigrid method

The multigrid method

Basic idea:

1. Create a reduced matrix R from Z by averaging data points. If a tile does not contain a data point, the corresponding reduced pixel will be undefined.

R

The multigrid method - 2

Basic idea (continued):
2. Give initial values to undefined elements of R.
3. Perform iteration for R. Convergence is faster because of the reduced matrix size. The result is denoted by R^{*}.
4. Give initial values to undefined pixels in Z by enlarging R^{*} to the original size.

The multigrid method - 3

Example: initial terrain gained from an 8-reduced matrix

The multigrid method - 4

Remember:

initial terrain used previously

The multigrid method - 5

The multigrid principle:

Use a hierarchy of reduced matrices:
R_{0} of size 1×1
R_{1} of size 2×2
R_{2} of size 4×4
$R_{n}=Z$ of size $2^{n} \times 2^{n}$

The multigrid method - 6

Multigrid algorithm:
The original contour matrix Z is of size $2^{n} \times 2^{n}$.

1. Create R_{0} of size 1×1 from Z (by averaging all the data points).
2. Create R_{1} of size 2×2 from Z by reduction. Unknown pixels of R_{1} get initial values from R_{0}. Iterate for R_{1}, the result is $R_{1}{ }^{*}$.
3. Create R_{2} of size 4×4 from Z by reduction. Unknown pixels of R_{2} get initial values from $R_{1}{ }^{*}$. Iterate for R_{2}, the result is $R_{2}{ }^{*}$.
4. Continue the procedure until $R_{n}=Z$. Unknown pixels of R_{n} get initial values from $R_{n-1}{ }^{*}$. Iterate for R_{n}, the result is $R_{n}{ }^{*}$.

The multigrid method-7

Conclusion:

- Only 10-40 iterations are needed at each multigrid level, even in the case of thin plate model!
- Time and memory required:

$$
T=t+t / 4+t / 16+\ldots+t / 4 n<4 t / 3
$$

Variational spline interpolation with multigrid

Summary for thin plate:

- Local maxima or minima may occur not only at given points.
- It is efficient if multigrid method is applied.
- Physical terrain features can be considered in some sense.

References - 1

- Brand, K., 1982, Multigrid bibliography. In Multigrid Methods, edited by W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics Vol. 960 (SpringerVerlag), pp. 631-650.
- Carrara, A., Bitelli, G., and Carla, R., 1997, Comparison of techniques for generation digital terrain models from contour lines. Internat. Journal of Geographical Information Science, 11, 451-473.
- Hutchinson, M. F., 1989, A new procedure for gridding elevation and stream-line data with automatic removal of spurious pits. Journal of Hydrology, 106, 211-232.

References - 2

- Lam, S.-N., 1983, Spatial interpolation methods - a review. The American Cartographer, 10, 129-149.
- Terzopoulos, D., 1983, Multilevel Computational Processes for Visual Surface Reconstruction. Computer Vision, Graphics and Image Processing, 24, 52-96.
- E. Katona: Contour line thinning and multigrid generation of raster-based digital elevation models. Internat. Journal of Geographical Information Science (Taylor and Francis, London), 2006.

