Registration and Its Medical Applications

Attila Tanács, Kálmán Palágyi, Attila Kuba

University of Szeged Dept. of Image Processing and Computer Graphics Árpád tér 2., 6720 Szeged, HUNGARY {tanacs, palagyi, kuba}@inf.u-szeged.hu

Syllabus

- Registration problem – Definitions, examples
 - Main components
- Medical image registration
- Modalities (X-ray, US, MR, CT, PET, SPECT)
- Applications
- Registration methods
 - Point-based methods
 - Surface fitting methods
 - Automatic methods
 - Non-linear registration

Image Registration

Task:

To find geometrical correspondence between images.

Terms:

- image registration
- image matching
- image fusion

Registration (General)

Task:

Combine (spatial) *information contents* coming from the same or different *sources*.

- Images,
- 2-D or 3-D models of objects,
- Spatial positions.

Image Mosaicking

Major Research Areas

- Computer vision and pattern recognition – segmentation, motion tracking, character recognition
- Medical image analysis

 tumor detection, disease localization, classification of microscopic images
- Remotely sensed data processing
 - geology, agriculture, oceanography, oil and mineral exploration, forestry

• ...

Variations Between Images

- Corrected distortions (easier)

 Distortion which can be modeled (e.g. geometric differences due to viewpoint changes).
- Uncorrected distortions (medium)
 Distortions which are difficult to model (e.g. lighting and atmospheric conditions, shadows).
- Variations of interest (harder)

 Differences we would like to detect (e.g. Object movements or growth).

Main Components

- Search space - Type of geometric transformation.
- Feature space - What features to use to find the optimal transformation.
- Similarity measure
 - Defines how similar two images are.
- Search strategy
 - How to find the global optimum of the similarity measure.

Search Space

Original image

Rigid-body transformation 2D: 3 parameters 3D: 6 parameters

Feature Space • Goal: Reduce amount of data, by extracting relevant • Features: Geometric (e.g. points, edges Image intensities (e.g. the whole image).

Similarity Measure

- Geometric features Distance measures (e.g. minimization of Euclidean distance).
- Image intensity-based
 - Based on intensity differences (e.g. absolute/squared sum of intensity differences, sign changes of the difference image).
 - Correlation-based (cross-correlation, correlation coefficient).
 - Based on the co-occurrence matrix of the image intensities (e.g. joint entropy, mutual information).

Search Strategy

- Direct methods
- 'Coarse to fine' search
- Multiresolution pyramid
- Dinamic programming methods
- Relaxation methods
- Heuristic search, genetic algorithms
- •

Optimization is a bigger research field than registration itself!

Registration Process

Feature extraction

Determining the optimal transformation Applying the transformation

Image fusion

Medical Image Registration

Matching all the data available for a patient

- provides better diagnostic capability,
- better understanding of data,
- improves surgical and therapy planning and evaluation.

Medical Image Registration

Potential medical applications

- Combining information from multiple imaging modalities (e.g., functional information to anatomy). Monitoring changes in size, shape, or image intensity over time intervals (few seconds to years).
- Relating preoperative images and surgical plans to the physical reality of the patient (image-guided surgery, treatment suite during radiotherapy). Relating an individual's anatomy to a standardized
- atlas

Interactivity

Manual

Decent visualization software is necessary. Labour intensive. Semi-automatic (interactive)

- Reliable, fast, but trained user might be required.
 User initializes (e.g. point selection, segmentation).
 User decides (accept/reject).
 Combined together.

Automatic

- Easy to use.
- Usually accurate, but visual inspection is necessary. Can take a lot of time (especially in nonlinear cases)

Registration Algorithms

- Point-based methods,
 - Reliable, fast, but trained user might be required.
- Contour/surface fitting methods,
- Automatic volume fitting based on voxel similarity measures.

Point Pair Selection

- Interactive
 - Selection of point pairs

 - Might require trained user,
 Can be hard (e.g. in 3D), or even impossible (MR SPECT

 - TRODAT),
 Might take lot of time (few minutes 10-30 minutes).
- Automatic
 - Feature extraction (e.g. corner points).
 - Number of points can be different.
 - Pairing is to be solved!

Interactive Point Pair Selection - 🗆 🗵 Registration V3.82a (May 22 2000) Ele Image Operations Control Points Overlay Options Window Help T[191,2,4] CTRL L, R by 5

Automatic Point Selection

A.A. Goshtasby

Point-Based Methods

- Rigid-body, similarity transformation SVD, unit quaternions, iterative search.
- Affine transformation Least squares, SVD.
- Projective Least squares
- Polinomial transformations 2nd, 3rd, n-th order.
- Nonlinear transformations Thin-plate spline, B-Spline, multiquadrics, RBF, etc.

Registration Algorithms

- Point-based methods,
- Contour/surface fitting methods,
- Automatic volume fitting based on voxel similarity measures.

Contour/Surface Fitting

- Extraction of same contours/surfaces
- Contour/surface distance definition
- Optimization (iterative method)
- Outliers problem

Distance Definition • Point-based $D_P(T) = \sum_{i=1}^{K} ||x_i - T(y_i)||^2$ • Contour/surface $D_S(T) = \sqrt{\sum_{i=1}^{K} ||x_i - P(T(Y), x_i)||^2}$ - Closest point in the transformed Y point set. - Closest point in the transformed Y point set. - Etc.

Contour/Surface Methods

- Head-hat (Pelizzari, 1989)
- Hierarchical Chamfer Matching (Borgefors, Jiang, 1992)
- Iterative Closest Point (Besl, McKay, 1992)

Head-Hat Method (Pelizzari)

- MR-PET registration
- Skin surface, semi-automatic segmentation
- 20 minutes segmentation, 5 sec registration
- For non-symmetric spherical objects (e.g., head, heart)
 - Surface of the finer resolution image: stack of disks.
 - Surface of the coarser resolution image: set of points.
 - Matching of the centroids (translation).
 - Distance: squared sum of the distance of the points and the intersection of the disks and the line defined by the centroid and the given point.
 - Optimization: Powell's method.

Contour/Surface Methods

- Head-hat (Pelizzari, 1989)
- Hierarchical Chamfer Matching (Borgefors, Jiang, 1992)
- Iterative Closest Point (Besl, McKay, 1992)

Chamfer Matching

- Determination of the contours/surfaces.
- Distance map calculation in the base image.
 For each voxel, the distance to the closest contour/surface point is pre-calculated.
- Distance: sum or squared sum of the distance values at the transformed floating contour/surface points.

							$\overline{}$							٦	Γ.		L	1.	. :		_	_							
						(ار	1	1	n	П	e	r	IV	1	11	IC.	'n	11	n	g	5							
									1		P		1	D.				Ŀ											
							х	х	х	х	х	х	х	Х	Х	х	х	х	х	Х		8	7	6	6	6	7	8	
							х	х	х	х	х	х	х	Х	Х	х	х	х	х	Х		7	4	3	3	3	4	7	
							х	х	0	0	0	х	х	Х	Х	0	0	0	3	6		6	3	0	0	0	3	6	
							х	х	0	х	0	х	х	Х	4	0	3	0	3	6		6	3	0	3	0	3	6	
							Х	х	0	х	0	х	х	8	4	0	3	0	3	6		6	3	0	3	0	3	6	
							Х	Х	0	0	0	х	х	8	4	0	0	0	3	6		6	3	0	0	0	3	6	
							Х	Х	х	х	х	х	Х	8	4	3	3	3	4	7		7	4	3	3	3	4	7	
							Х	Х	х	х	х	х	Х	8	7	6	6	6	7	8		8	7	6	6	6	7	8	
Original contour						Chamfer initialization							Forward scan								Backward scan								
				1	Ś	1	h.							eĆ.	1	8	5	ģ	ŗ	j	ľ	i h							
8	7	6	6	6	7	8	8	7	6	6	6	7	8	8	7	6	6	6	7	8		8	7	6	6	6	7	8	
7	4	3	3	3	4	7	7	4	3	3	3	4	7	7	4	3	3	3	4	7		7	4	3	3	3	4	7	
6	3	0	0	0	3	6	6	3	0	0	0	3	6	6	3	0	0	0	3	6		6	3	0	0	0	3	6	
6	3	0	3	0	3	6	6	3	0	3	0	3	6	6	3	0	3	0	3	6		6	3	0	3	0	3	6	
6	3	0	3	0	3	6	6	3	0	3	0	3	6	6	3	0	3	0	3	6		6	3	0	3	0	3	6	
6	3	0	0	0	3	6	6	3	0	0	0	3	6	6	3	0	0	0	3	6		6	3	0	0	0	3	6	
7	4	3	3	3	4	7	7	4	3	3	3	4	7	7	4	3	3	3	4	7		7	4	3	3	3	4	7	
8	7	6	6	6	7	8	8	7	6	6	6	7	8	8	7	6	6	6	7	8		8	7	6	6	6	7	8	
	Distance map with the target contour							Distance: 46							Distance: 35							Distance: 18							

Contour/Surface Methods

- Head-hat (Pelizzari, 1989)
- Hierarchical Chamfer Matching (Borgefors, Jiang, 1992)
- Iterative Closest Point (Besl, McKay, 1992)

Iterative Closest Point

- Originally: Sensed Model data matching
 - Sensed data representation: point set
 - Model data representation: point set, line segment set, triangulated surface, parametric surface, etc.
- Iterations consist of two steps
 - Determination of point pairs
 - Point-based registration
- Avoid local minima
 - Start the algorithm multiple times with a different estimate of the rotation alignment.

Registration Algorithms

- Point-based methods,
- · Contour/surface fitting methods,
- Automatic volume fitting based on voxel similarity measures.
 - Easy to use.
 - Usually accurate, but visual inspection is necessary.
 - Can take a lot of time (especially in nonlinear cases).

Intensity Differences

- Optimal when the noise is Gaussian.
 - For unimodality registration.
 - Unimodality problems
 - Noise is not Gaussian in MR.
 - Contrast agents can cause big intesity differences.

Correlation Techniques

 $\mathbf{C} = \frac{1}{N} \sum_{x_A \in \Omega^T_{A}} A(x_A) \cdot \boldsymbol{B}^T(x_A)$

$\frac{\sum_{x_{A} \in \Omega_{A}} \left(A(x_{A}) - \overline{A}\right) \cdot \left(B^{T}(x_{A}) - \overline{B}\right)}{\sum \left(A(x_{A}) - \overline{A}\right)^{2} \cdot \sum \left(B^{T}(x_{A}) - \overline{B}\right)^{2}}$

 Optimal when the relationship is linear between intensities of the images.
 – For unimodality registration.

Partitioned Image Uniformity

PIU = $\sum_{\alpha} \frac{\mathbf{n}_{\alpha} \cdot \sigma(a)}{\mathbf{N} \cdot \mu(a)}$ $n_{\alpha} = \sum_{\Omega_{\alpha}} \mathbf{1}$ $\mu(a) = \frac{1}{n_{\alpha}} \cdot \sum_{x_{\alpha} \in \Omega_{\alpha}} B^{r}(x_{\alpha})$ $\sigma(a) = \sum_{x_{\alpha} \in \Omega_{\alpha}} (B^{T}(x_{\alpha}) - \mu(a))^{2}$ • Assumed: an intensity value describes a tissue type well in both images.

- For MR-PET registration (Woods, 1992) – Remove parts outside of brain from PET.
 - Transform MR intensity scale to 256 values.
 - Maximizes the uniformity of the intensities from PET paired with intensities of MR.

Mutual Information MI(X,Y) = H(X) + H(Y) - H(X,Y)

MI(X,Y) = H(X) + H(Y) - H(X,Y)NMI(X,Y) = (H(X) + H(Y)) / H(X,Y)

H(X), H(Y): entropy H(X,Y): joint entropy

 $H(A) = -\sum_{a} p_A(a) \cdot \log p_A(a)$

 $\begin{array}{l} \mathsf{H}(\mathsf{B}^{\mathrm{T}}) = -\sum_{a}^{\infty} p_{g^{\mathrm{T}}}(a) \cdot \log p_{g^{\mathrm{T}}}(a) \\ \mathsf{H}(\mathsf{A},\mathsf{B}^{\mathrm{T}}) = -\sum_{a}^{\infty} p_{ag^{\mathrm{T}}}(a,b) \cdot \log p_{ag^{\mathrm{T}}}(a,b) \end{array}$

Need for Non-linearity

- Tissue deformations due to
 - Interventions,
 - Changes over time,
 - Respiration, heart beat,
 - Anatomial variability across individuals.
- Methods
 - Polinomials
 - Splines (TPS, B-Splines, multiquadrics, etc.)
 Elastic, Fluid, Diffusion, Curvature registration
 FEM and mechanical models

 - Optical flow

Displacement Field

- u(x,y,z)
 - For each voxel a vector is assigned.
 - Lagrangian reference frame: where the voxel moves to.
 - · Eulerian reference frame: where the voxel value comes from.
- Need for regularization!
 - Constraints on the displacement field.

Non-linear Methods

- Polinomials
 - Lines mapped to 2nd, 3rd, n-th order polinomials.
 - Problems: Global shape changes, oscillations.
- Splines
 - Control point pairs
 - · Identified landmarks or regular mesh.
 - Interpolating or approximating at control points.
 - Result: Smoothly varying displacement field.
 - Methods
 - Thin-plate splines: Additional constraints can be added (rigid bodies, degree of approximation), but control point change is global.
 - B-Splines: Local change, computationally efficient. Needs regular
 mark

Elastic Registration

- · Stretching the image as it was from an elastic material, e.g., rubber
 - Broit (1981), Bajcsy (1989).
 - Internal force (behaviour of the elastic body)
 - Lamé's elasticity constants: μ , λ
 - Young's modulus (E₁) and Poisson's ratio (E₂)
 - External force (acts on the elastic body)
 - E.g, gradient of a similarity measure, distance between curves and surfaces (f).
 - Optimal deformation: at equilibrium.
 - $\mu \nabla^2 \mathbf{u}(x, y, z) + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}(x, y, z)) + \mathbf{f}(x, y, z) = 0$

- Extensions
 - Spatially varying elasticity parameters (Davatzikos)

Fluid Registration

- Deform the image over time as it was a viscous, thick fluid
 - Christensen (1994)
 - Can deform any image to another (sharing the same intensity range).
 - Characteristic comparison
 - Elastic model: spatial smoothing of the displacement field (u).
 - Fluid model: spatial smoothing of the velocity field (v).

 $\mu \nabla^2 \mathbf{v}(x, y, z) + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{v}(x, y, z)) + \mathbf{f}(x, y, z) = 0$

• Website: http://www.itk.org

Selected Surveys and Books

- General

 - Brown, LG: A survey of image registration techniques. ACM Computing Surveys 24 (1992) 325-376 Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press (2004) Goshtasby, A.A.: 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. Wiley and Sons (2005)
- Medical
 Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2 (1998) 1-36
 Studholme, C.: Measures of 3D Medical Image Alignment. PhD Thesis, University of London (1997)
 Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press (2001)
- Internet
 - http://vision.ece.ucsb.edu/registration/imreg/ http://www.imgfsr.com/