

Image restoration
model:

restoration from the degraded image
degradation:
-non-linear mapping: e.g., non-linear sensitivity,
image of the straight line is not straight etc.;
-blurring: image of a point is blob;
-moving during the image acquisition;
-probabilistic noise

Mathematical description

let us suppose that H is linear (additive, homogeneous), that is, $H\left[a_{1} \cdot f_{1}+a_{2} \cdot f_{2}\right]=a_{1} \cdot H\left[f_{1}\right]+a_{2} \cdot H\left[f_{2}\right]$
then $[H f](x, y)=H \iint f(\xi, \eta) \cdot \delta(x-\xi, y-\eta) d \xi d \eta=$ $=\iint H[f(\xi, \eta) \cdot \delta(x-\xi, y-\eta)] d \xi d \eta=$ $=\iint f(\xi, \eta) \cdot \underbrace{H[\delta(x-\xi, y-\eta)]}_{h(x, y, \xi, \eta)} d \xi d \eta$
h is the impulse-spread function or point-spread function (PSF) of H

Jean-Baptiste Joseph Fourier

 1768-1830taught mathematics in Paris
eventually traveled to Egypt with
Napoleon to become the secretary of the Institute of Egypt
after fall of Napoleon worked at Bureau of Statistics
elected to National Academy of Sciences in 1817

La Theorie Analytique de la Chaleur (The Analytic Theory of Heat), 1822
revolutionary ideas about how to solve a class of linear differential equations
Fourier transformation (FT)

$$
f \xrightarrow{\boldsymbol{F}} F \quad[\boldsymbol{F} f](X)=F(X)=\int_{-\infty}^{\infty} f(x) \cdot e^{-2 \pi x x} d x
$$

inverse Fourier transformation (IFT)

Sums of sinusoids

inverse Fourier transformation (IFT)

$f(x)=\int_{-\infty}^{\infty} F(X) \cdot e^{2 \pi i x X} d X$
an interpretation:
Any periodic function can be decomposed into a series of sinusoidal waveforms of various frequencies and amplitudes.
$f(x)=\int^{\infty} F(X) \cdot \cos (2 \pi x X) d X+i \cdot \int^{\infty} F(X) \cdot \sin (2 \pi x X) d X$

Sums of sinusoids

Waves, points, and frequencies
points in the image $F(X, Y)$ represent the contribution of frequency (X, Y) to the original image $f(x, y)$

The Fourier transformation determines the magnitude (amplitude $-|F(X, Y)|)$ of each possible frequency (X, Y).

Image and frequency spaces

$[f * g](x)=\int_{-\infty}^{\infty} f(\xi) \cdot g(x-\xi) d \xi$
$[f * g](x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \eta) \cdot g(x-\xi, y-\eta) d \xi \eta$
example: smoothing

$[f * g](x)=\int_{x-1 / 2}^{x+1 / 2} f(\xi) d \xi$

Convolution theorem

Filtering
(in the Fourier space) multiplication of F with a filter function H :

Convolution theorem:

Mathematical description

$$
\begin{aligned}
& \text { Inverse filtering } \\
& \hat{F}=\frac{G}{H}=\frac{F \cdot H+N}{H}=F+\frac{N}{H}
\end{aligned}
$$

experience:
H : quickly decreasing function,
N : not (so quickly) decreasing
let us cut the high frequencies
remark: if the noise is known (generally it is not) then

$$
F=\frac{G}{H}-\frac{N}{H}
$$

Model of a point-source

Least square methods
What is f such that
$\varepsilon(f)=\|g-H f\|^{2}=\sum_{i=0}^{M-1}\left(g_{i}-(H f)_{i}\right)^{2}=$
$=(g-H f)^{T} \cdot(g-H f) \quad$ minimal ?
$\frac{\partial \varepsilon}{\partial f}=\underbrace{0=-2 H^{T}(g-H f)}$
$\hat{f}=\underbrace{\left(H^{T} H\right)^{-1} H^{T}}_{R} g$
$\hat{f}=H^{-1} \mathrm{~g}, \quad$ if H square matrix and invertable

Least square methods

Let Q be a linear oprator (matrix),
look for an f such that

$$
\varepsilon(f)=\|Q f\|^{2}=(Q f)^{T} \cdot(Q f) \quad \text { minimal }
$$

let us suppose that $\|g-H f\|^{2}=\|n\|^{2} \quad$ (constrain)

$$
J(f)=(Q f)^{T}(Q f)+\alpha \cdot\left((g-H f)^{T}(g-H f)-n^{T} n\right)
$$

$$
\underbrace{\frac{\partial J}{\partial f}=0=2 Q^{T} Q f-2 \alpha H^{T}(g-H f)}
$$

$$
\hat{f}=\underbrace{\left(H^{T} H+\frac{1}{\alpha} Q^{T} Q\right)^{-1} \cdot H^{T}} \varepsilon
$$

Covariance matrix

additive noise: $g=f+n \quad G(X, Y)=F(X, Y)+N(X, Y)$
e.g. $n(x, y)=A \cdot \sin \left(x_{0} x+y_{0} y\right)$,
then

restoration of $f(x, y)$ by subtraction if n or N is known, if not then let us try to find the places of the impulses in image G and let us use a proper band-pass filter for restoration

