Automatic Image Registration

Attila Tanács

University of Szeged Dept. of Image Processing and Computer Graphics Árpád tér 2., 6720 Szeged, HUNGARY tanacs@inf.u-szeged.hu

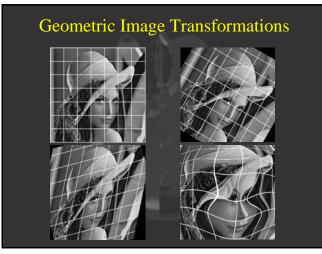
Syllabus

- Registration problem
 - Definitions, examples - Main components
- Automatic registration approaches
 - Extracted geometric feature-based
 - Voxel similarity-based
- Some applications
 - Medical
 - Neutron tomography

Image Registration

Task:

To find geometrical correspondence between images.

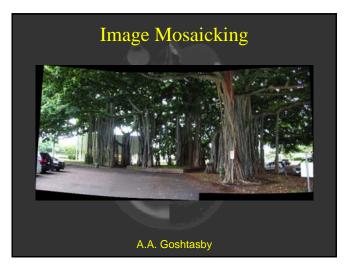

Why:

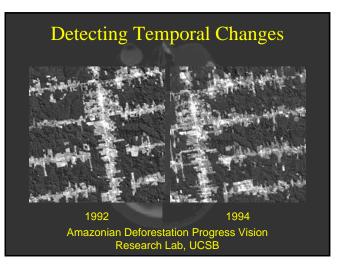
The images were taken

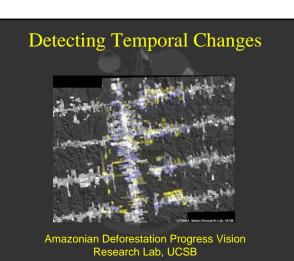
- from different viewpoints and/or
 by different imaging devices and/or

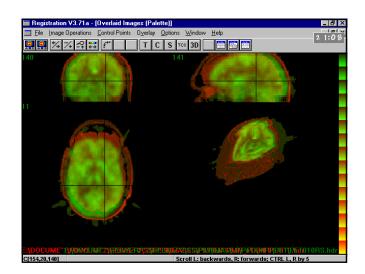
• at different times

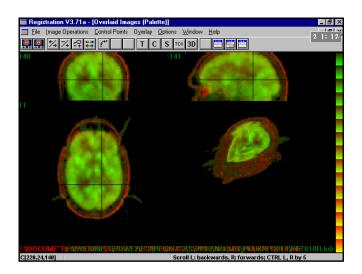
Terms:











Major Research Areas

- Computer vision and pattern recognition
- segmentation, motion tracking, character recognition, stereo vision, template matching

Medical image analysis

- combining information from multiple imaging modalities
- monitoring changes in size, shape, or image intensity over time intervals
- relating preoperative images and surgical plans to the physical reality of the patient
- relating an individual's anatomy to a standardized atlas
- Remotely sensed data processing
- geology, agriculture, oceanography, oil and mineral exploration, forestry, military

Variations Between Images

• Corrected distortions (easier)

Distortion which can be modeled (e.g. geometric differences due to viewpoint changes).

• Uncorrected distortions (medium)

Distortions which are difficult to model (e.g. lighting and atmospheric conditions, shadows, occlusion, multimodality).

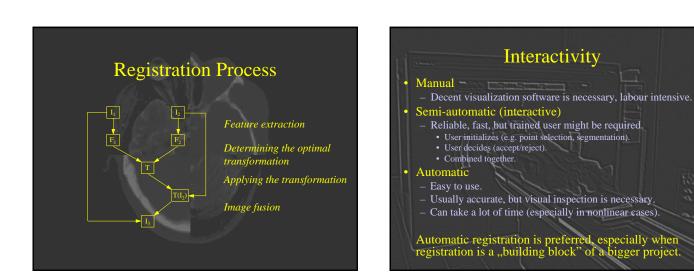
Variations of interest (harder)

Differences we would like to detect (e.g. object movements or growth).

Main Components

Search space

· Direct meth

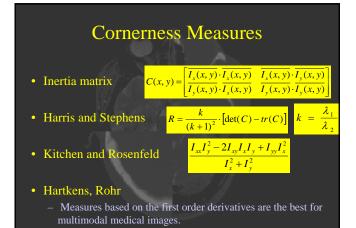

Type of geometric transformation.
Linear: rigid-body, similarity, affine, projective.
Non-linear: polinomial, spline-based, based on physical model, etc

- Feature space What features to use to find the optimal transformation.
 Detected geometic features: points, edges, curves, contours, surfaces
 Image intensity values.

Similarity measure Defines how similar two images are. Distance between geometric features (Euclidean, Hausdorff, etc.). Similarity between image intensities: differences, correlation, inform

ic algorithms, heuristic search, etc

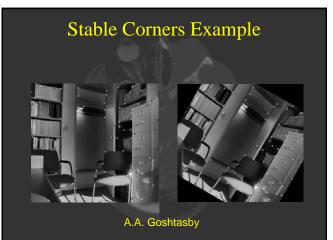
• Search strategy - How to find the global optimum of the similarity measure. ls, multiresolution techniques, gene



Automatic Registration Algorithms

- Extracted geometric features
 - Point-based methods,
 - Contour/surface fitting methods,
 - Unique templates.
- Voxel similarity measures
 - Intensity differences,
 - Correlation techniques,
 - Measures based on information theory.

Point Pair Selection

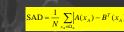

- Feature extraction
 - E.g. corner points.
 - Should be invariant against geometric deformations.
- Determining point correspondences
 - Outlier detection!
- Determining transformation
 - E.g., least squares fit of corresponding points.

Detecting Corner Points

- Selecting stable corners
 - By examining different sizes of circular local neighbourhoods.
- Decrease the number of points
 - Only one corner point in a local neighbourhood.
- Speed up the search

 Calculate the edges of the images.

Determining Correspondence


• Matching using scene coherence

- Three non-colinear point pairs are selected, others are used for verification.
- Checking all combinations (for small point sets), using points on the convex hull, minimum-spanning trees, RANSAC (randomly selected subsets of the point sets).
- Matching using clustering
 - The most probable transformation parameters are determined using accumulator arrays.
- Matching using invariance
 - Comparing the affine invariant property of three point pairs.

Voxel Similarity Measures

- Preprocessing
 - No feature detection is necessary.
 - Intensity range may be transformed.
 - E.g., scaling from [-1000,4000] to [0,255].
 - Applying Window/Level technique.
 - Selection of regions of interests (masking).
- Search
 - Using a multi-resolution approach is popular.

Intensity Differences

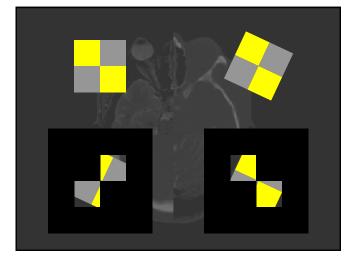
- Optimal when the noise is Gaussian.
 - For unimodality registration.
 - Unimodality problems

 $SSD = \frac{1}{N} \sum_{A} \left| A(x_A) - B^T(x_A) \right|^2,$

- Noise is not Gaussian in MR.
- Contrast agents can cause big intesity differences.

Correlation Techniques

 $=\frac{\sum_{x_A \in \Omega_A} \left(A(x_A) - \overline{A}\right) \cdot \left(B^T(x_A) - \overline{B}\right)}{\sqrt{\sum \left(A(x_A) - \overline{A}\right)^2 \cdot \sum \left(B^T(x_A) - \overline{B}\right)^2}}$

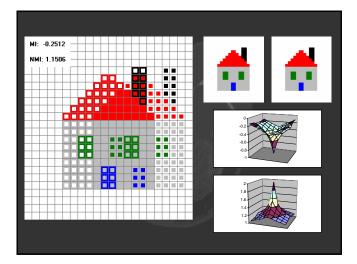

- Optimal when the relationship is linear between intensities of the images.
 - For unimodality registration.

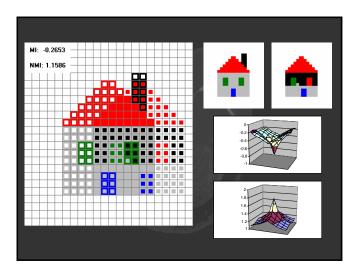
 $\mathbf{C} = \frac{1}{N} \sum_{a, b} A(x_{a}) \cdot B^{T}(x_{a})$

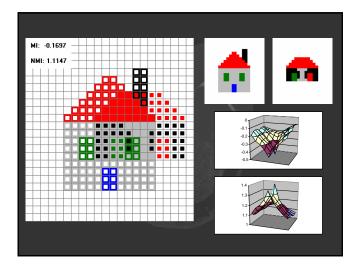
Partitioned Image Uniformity

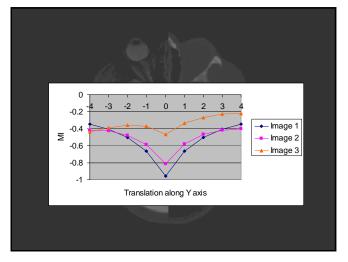
$\operatorname{PIU} = \sum_{a} \frac{\mathbf{n}_{a}}{\mathbf{N}} \cdot \frac{\sigma(a)}{\mu(a)} \qquad n_{a} = \sum_{\Omega_{a}} 1 \qquad \mu(a) = \frac{1}{n_{a}} \cdot \sum_{x_{A} \in \Omega_{a}} B^{T}(x_{A}) \qquad \sigma(a) = \sum_{x_{A} \in \Omega_{a}} \left(B^{T}(x_{A}) - \mu(a) \right)^{2}$

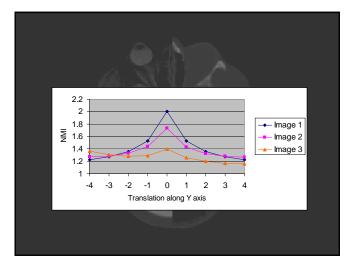
- Assumed: an intensity value describes a tissue type well in both images.
- For MR-PET registration (Woods, 1992)
 - Remove parts outside of brain from PET.
 - Transform MR intensity scale to 256 values.
 - $-\ensuremath{\operatorname{Maximizes}}$ the uniformity of the intensities
 - from PET paired with intensities of MR.

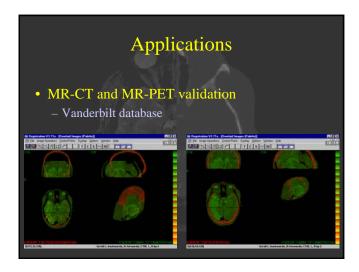


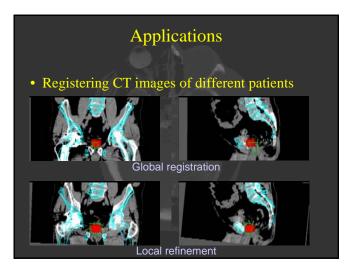

Mutual Information

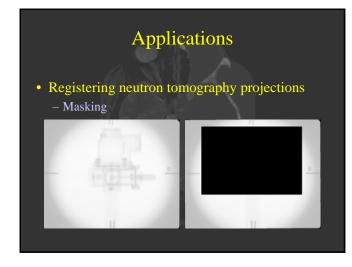

MI(X,Y) = H(X) + H(Y) - H(X,Y)NMI(X,Y) = (H(X) + H(Y)) / H(X,Y)


H(X), H(Y): entropy H(X,Y): joint entropy


 $\begin{aligned} & \mathsf{H}(\mathsf{A}) = -\sum_{a} p_{A}(a) \cdot \log p_{A}(a) \\ & \mathsf{H}(\mathsf{B}^{\mathsf{T}}) = -\sum_{a} p_{B'}(a) \cdot \log p_{B'}(a) \\ & \mathsf{H}(\mathsf{A},\mathsf{B}^{\mathsf{T}}) = -\sum_{a} p_{AB'}(a,b) \cdot \log p_{AB'}(a,b) \end{aligned}$ (Collignon, Viola 1995)







Automatic Registration Algorithms

- Extracted geometric features - Intuitive for unimodal problems.
- Voxel similarity measures
 - Can be used for unimodal and multimodal problems.

Selected Surveys and Books

- General

 - CHORCH LG.: A survey of image registration techniques. ACM Computing Surveys 24 (1992) 325-376 Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press (2004) Goshtasby, A.A.: 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. Wiley and Sons (2005)
- Medical Image Analysis 2 (1998) 1-36
 Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2 (1998) 1-36
 Studholme, C., Measures of 3D Medical Image Alignment. PhD Thesis, University of London (1997)
 Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press (2001)
- Internet
- http://vision.ece.ucsb.edu/registration/imreg/ http://www.imgfsr.com/