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IMAGE FORMATION PROCESS

During image transmission and recording, images can be deteorate by some
effects:

deterministic effects: blur

random effects: noise
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PROBABILITY DISTRIBUTION OF THE NOISE

p(t) =
1√

2πσ2
e−t2/2σ2

small σ2 =⇒ light noise large σ2 =⇒ heavy noise
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NOISY IMAGES

Ideal image
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NOISY IMAGES

σ2 = 100
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NOISY IMAGES

σ2 = 400
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NOISY IMAGES

σ2 = 900
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NOISY IMAGES

σ2 = 1600
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BLUR EFFECTS

M =

 1 5 1
5 10 5
1 5 1



Noisy image

IVAN GERACE (PERUGIA UNIVERSITY) IMAGE RESTORATION JULY 12, 2007 SZEGED 6 / 53



BLUR EFFECTS

M =

 1 5 1
5 10 5
1 5 1



Blurred and noisy image
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BLUR EFFECTS
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x(3, 3) = 74×1+69×5+71×1+68×5+74×10+69×5+70×1+69×5+65×1
1+5+1+5+10+5+1+5+1
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x(1, 2) = 67×5+69×10+75×5+69×1+74×5+69×1
5+10+5+1+5+1
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LEXICOGRAPHICAL NOTATION

Using the lexicographical notation it is possible to consider an image as a
vector
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MATHEMATICAL MODEL

Ax + n = y

x ∈ Rn×m original image
y ∈ Rn·m observed image
n ∈ Rn·m Gaussian noise with zero mean and variance σ2

A ∈ R(n·m)×(n·m) linear blur operator

Original image x Observed image Ax
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THE IMAGE RESTORATION PROBLEM

INVERSE PROBLEM

The image restoration problem consists of finding an estimation of the
original image x, given the blur matrix A, the observed image y and the
variance σ2 of the noise.

Obversed image
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ILL–POSEDNESS OF THE PROBLEM

BAD NEWS

The image restoration problem is ill–posed in the sense of Hadamard.

That is one of the following conditions on the solution does not hold:

existence

uniqueness

stabiliy

Solution: regularization of the problem
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CONSTRAINTS ON THE SOLUTION

By a regularization technique we can impose the following constraints on the
solution:

data consistancy

regularity

presenving of discontinuities

adjacent parallel lines inhibition
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DATA CONSISTANCY CONSTRAINT
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REGULARITY CONSTRAINT
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EDGE–PRESENVING CONSTRAINT

pixel
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EDGE–PRESENVING CONSTRAINT

pixel

horizontal line
variables
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EDGE–PRESENVING CONSTRAINT

pixel

horizontal line
variables

vertical line variables
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ADJACENT PARALLEL LINES INHIBITION

Restored image Restored Image

IVAN GERACE (PERUGIA UNIVERSITY) IMAGE RESTORATION JULY 12, 2007 SZEGED 30 / 53



ADJACENT PARALLEL LINES INHIBITION

Image edges Image edges
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FIRST ORDER CLIQUES

(1)
s •
t • (2) s • t •

Associated finite order operator:

D1
cx = xs − xt, ∀ c of kind (1) and (2),

C1 = {c|c is a first order clique}.
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SECOND ORDER CLIQUES

(1)
s •
t •
r •

(2) s • t • r •

Associated finite order operator:

D2
cx = xs − 2xt + xr, ∀ c of kind (1) and (2),

C2 = {c|c is a second order clique}.
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EXPERIMENTAL RESULTS

Observed image

1o order: MSE=11.439 2o order: MSE=10.2368
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EDGE–PRESERVING REGULARIZATION TECHNIQUE

DEFINITION

The solution of the problem can be defined as the argument of the minimum
of the following primal energy function:

E(x, b) = ‖y− Ax‖2 +
∑
c∈C

[λ2(Dk
cx)2bc + β(bc)].

where
Dk

cx is the finite difference operator of order k
bc is the line variable in correspondence of the clique c,
b is the set of all the line variables,
β(bc) : C → R is a decreasing function
λ2 is the regularization parameter
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DUAL ENERGY

DEFINITION

The dual energy function is defined as

Ed(x ) = inf
b∈B|C|

E(x, b)

E(x, b) = ‖y− Ax‖2 +
∑
c∈C

[λ2(Dk
cx)2bc + β(bc)].

Ed(x) = ‖y− Ax‖2 +
∑
c∈C

g(D1
cx)

g(t) = inf
b∈B
{λ2bt2 + β(b)}

interation function
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g(t) = inf
b∈B
{λ2bt2 + β(b)}

EXAMPLE

b ∈ B = (0, 1] β(b) = α(1− 2
√

b + b)

=⇒ g(t) =
λ2t2

λ2

α t2 + 1

0-10-20

y

300

250

200

150

100

x

50

0
2010

β(b)
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g(t) = inf
b∈B
{λ2bt2 + β(b)}

EXAMPLE

b ∈ B = {0, 1} β(b) = α(1− b)

=⇒ g(t) = min{λ2t2, α}

10

5

0

x
1050-5-10

y

30

25

20

15
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DUALITY THEOREMS

B, β ⇐⇒ g

B is the set of line variable values
β is the function in the primal energy
g is the function in the dual energy
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MINIMIZATION OF THE DUAL ENERGY

Dual energy:
Ed(x) = ‖y− Ax‖2 +

∑
c∈C

g(Dk
cx)

BAD NEWS

The dual energy function is not convex
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STOCHASTIC ALGORITM

The classical Simutaled Annealing algorithm:

put x as initial image;

put T = T0 as initial temperature;

while T 6= 0 do
generate a new image
cumpute the difference of energy ∆Ed;
if ∆Ed ≤ 0, accept the new image as x;
if ∆Ed > 0 accept the new image as x with

probability equal to e
∆Ed

T ;
decrease the temperature T
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DETERMINISTIC ALGORITHM

The GNC (Graduated Non–Convexity) technique requires to find a finite
family of approximating functions {E(pκ)

d }κ∈{1,...,κ̄}, such that the first E(p1)
d is

convex and the last E(pκ̄)
d = Ed is the original dual energy function.

Hence the following algorithm is applied from an initial point x0:

κ = 1;
while κ 6= κ̄ do

xκ is equal to the stationary point among the
speediest descent direction of E(pκ)

d , starting from
xκ−1;
κ = κ + 1;
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THE BLIND IMAGE SEPARATION PROBLEM

The blind image separation problem consist of findind the source images from
some mixtures of them

First mixture Second mixture
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THE BLIND IMAGE SEPARATION PROBLEM

The blind image separation problem consist of findind the source images from
some mixtures of them

Restored first source Restored second source
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DOCUMENT RESTORATION
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THE BLIND IMAGE SEPARATION PROBLEM
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