

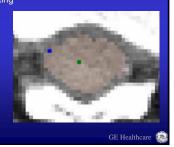





#### Thresholding

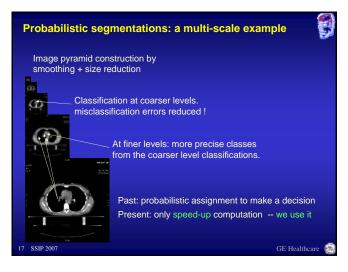
#### Idea: on CT most structure has typical pixel values (HU)

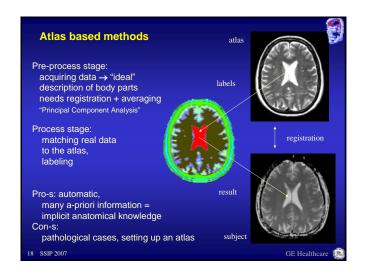



# **Basics: Region growing**

• Start from a seed point candidate voxel: direct neighbor

decision: based on (intensity) difference from seed or border


- + normalization by distance, weighting + probabilistic
- with controlled propagation between slices
- Huge drawback:
- no shape control  $\rightarrow$  leakage Better results when
- interactively used


SSIP 2007





VE.





## Discussion

19 SSIP 2007

Idea:

Method:

Duration:

Team:

21 SSIP 2007

... segmentation is so hard ... Why so many techniques?

- Missing info on images:
- tissue heterogeneity, voxel correlation, partial volume artifacts, additive noise, reconstruction artifacts  $\rightarrow$  no border, bad quality High inter-observer variability:
- where are the acceptable limits ???







Organ specific approaches

anatomical knowledge must be explicitly included

from customer survey ... to full validation: 3 years

Image Processing Group + Radiology Clinic at Szeged University nb 1 in medical image proc in Hungary + GE equipments

inventive combination of many algorithms,

core: further developed deformable surface

on-site R&D helped by clinical evaluation



Validation: Method expectations Automated segmentation Should be as good as man → measure for baseline Should meet clinical require → organ-specific evaluatio Should fulfill the segmentati based on clinical literature i **CTQs** 

| specifity and sensitivity as T   | 12 |
|----------------------------------|----|
| high precision:                  | 18 |
| inter-op. reproducibility, intra |    |

semi-automation, high-sp

20 SSIP 2007

22 SSIP 2007

GE Healthcare 👩

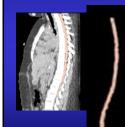
GE Healthcare

# Validation: Comparison

## Measures for baseline — manual

- · Gold standard created for each organ manual segmentation by 3 medical experts, randomized repeated 3 times by one expert differences  $\rightarrow$  establish consensus: calibration
- Assessment on manual segmentation assess shape to measure accuracy: compute TP, FP, FN volume fractions assess variation to measure precision: inter-op. reproducibility, intra-op. repeatability

#### Evaluation process — auto


- Measures taken
- each segmented organ validated by 3 different experts, 1 expert repeats 3 times mean and variance of the measures computed -> statistical table Comparison
- with manual segmentation: accuracy, precision with clinical requirements: replies to specific questions with CTQs: accuracy, precision, automation, memory usage, extensibility

#### 23 SSIP 2007

# normal image quality

automatic stop when cord ends in spine

Spinal cord: segmentation



24 SSIP 2007



GE Healthca £

GE Healthcare 🗔

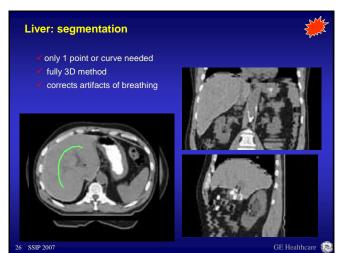
# only one seed point needed

4

# Spinal cord: method

#### Difficulties:

- leakage at open vertebrae
- definition of extent is subjective


## Complex method:

- automatic stopping at head / pelvis head: count bony voxels, detect changes pelvis: detect change in curvature
   active contour +
- controlled propagation between slices



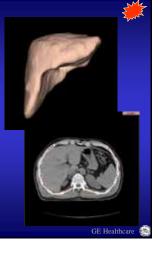
GE Healthcare

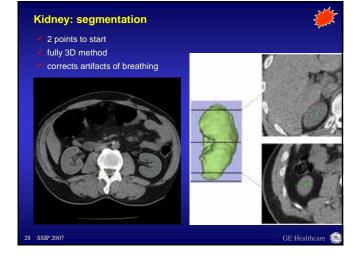
÷.



#### 25 SSIP 2007




#### Difficulties:


- hard to see its boundary → leakage
  high variance in shape & size (left caudal lobe)
- → need to handle topology changes
   moving during the respiratory cycle

#### Method:

- pre-proc: smoothing + rib cage
- core: deformable surface
   with statistics around seed
- post-proc: precision enhancement

27 SSIP 2007





# Kidney: method

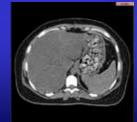
#### Difficulties:

- touched by neighboring organs of similar HU → leakage
   high variance in shape & size
- shape is highly curved with protrusions & indentures  $\rightarrow$  missing "C" ends
- kidney = parenchyma ?moving during the respiratory cycle

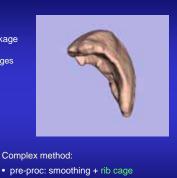
# Method:

- pre-proc: smoothing + model + barrier to separate from spine / rib muscles
- core: deformable surface (diff. parameters) with statistics around seed
- post-proc: cutting weak edges if leakage automatically detected

29 SSIP 2007


GE Healthcare




# Spleen: method

#### Difficulties:

- hard to see its boundary → leakage
  high variance in shape & size
- → need to handle topology changes
  tiled homogeneity



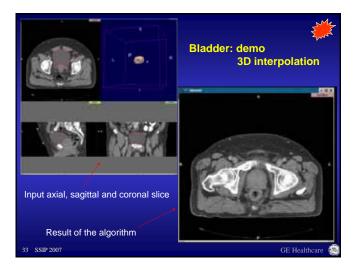
31 SSIP 2007

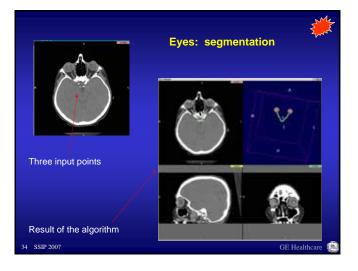


- core: deformable surface (diff parameters) with statistics around seed
  - GE Healthcare 🧔

# Bladder: segmentation

#### Difficulties:


- extremely hard to see its boundary
- very high variance in shape, size & location
- imaging artifacts due to pelvic bones (arms)







#### Previous tried methods:

- probabilistic clustering
- 3D adaptive merge & split
- New method:
- interactive 3D interpolation
  - . GE Healthcare 📻







# Clinical needs:

- eye balls + lenses
- optic nerves

# Difficulties:

- hardly visible organs
- nerve traversing bonemutual positions
- poolitions

#### Method:

- 1-1 point in the eye ball
  + 1 point in optic chiasm segments all the 7 organs
- uses geometrical models
- + localization based on image intensity

#### 35 SSIP 2007

|              | Precision | intra-op | inter-op |
|--------------|-----------|----------|----------|
| spinal cord  | manual    | 93%      | 92%      |
|              |           |          | 95%      |
| liver        | manual    | 96%      | 94%      |
|              |           |          | 94%      |
| left kidney  | manual    | 94%      | 93%      |
|              |           | 93%      | 92%      |
| right kidney | manual    | 92%      | 93%      |
|              |           |          | 91%      |
| spleen       | manual    | -        | -        |
|              |           | 93%      |          |
|              | СТQ       | >95%     | >90%     |

|              | Accuracy | TPVF | FPVF | FNVF |  |  |  |
|--------------|----------|------|------|------|--|--|--|
| spinal cord  | manual   | 98%  | 2%   | 2%   |  |  |  |
|              | auto     |      |      |      |  |  |  |
| liver        | manual   | 96%  | 3%   | 4%   |  |  |  |
|              | auto     |      |      |      |  |  |  |
| left kidney  | manual   | 94%  | 7%   | 6%   |  |  |  |
|              | auto     |      |      |      |  |  |  |
| right kidney | manual   | 93%  | 6%   | 7%   |  |  |  |
|              | auto     |      |      |      |  |  |  |
| spleen       | manual   | -    | -    | -    |  |  |  |
|              |          |      |      |      |  |  |  |
|              | СТQ      | >90% | <10% | <10% |  |  |  |

