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Overview

Segmentation as pixel labeling
Probabilistic approach

Markov Random Field (MRF)
Gibbs distribution & Energy function

Energy minimization
Simulated Annealing
Markov Chain Monte Carlo (MCMC) sampling

Example MRF model & Demo
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1. Extract features from the input image
Each pixel s in the image has a feature vector     
For the whole image, we have

2. Define the set of labels Λ
Each pixel s is assigned a label 
For the whole image, we have

For an N×M image, there are |Λ|NM possible labelings.
Which one is the right segmentation?Which one is the right segmentation?

Segmentation as a Pixel Labelling Task
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Probabilistic Approach, MAP

Define a probability measure on the set of all 
possible labelings and select the most likely one.

measures the probability of a labelling, 
given the observed feature 
Our goal is to find an optimal labeling      which 
maximizes
This is called the Maximum a Posteriori (MAP) 
estimate:
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Bayesian Framework

By Bayes Theorem, we have

is constant 
We need to define         and               in our 
model
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Why MRF Modelization?

In real images, regions are often homogenous; 
neighboring pixels usually have similar 
properties  (intensity, color, texture, …)
Markov Random Field (MRF) is a probabilistic 
model which captures such contextual 
constraints
Well studied, strong theoretical background
Allows MCMC sampling of the (hidden) 
underlying structure Simulated Annealing
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What is MRF?

To give a formal definition for Markov Random 
Fields, we need some basic building blocks

Observation Field and (hidden) Labeling Field 
Pixels and their Neighbors
Cliques and Clique Potentials
Energy function
Gibbs Distribution
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Definition – Neighbors

For each pixel, we can define some surrounding 
pixels as its neighbors.
Example : 1st order neighbors and 2nd order 
neighbors
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Definition – MRF

The labeling field X can be modeled as a 
Markov Random Field (MRF) if 

1. For all 
2. For every         and          :

denotes the neighbors of pixel s
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Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a random 
field is a MRF if and only if         follows a Gibbs 
distribution.

where                               is a normalization constant

This theorem provides us an 
easy way of defining MRF models via 
clique potentials.
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Definition – Clique 

A subset            is called a clique if every pair of 
pixels in this subset are neighbors.
A clique containing i pixels is called ith order
clique, denoted by .
The set of cliques in an image is denoted by 
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Definition – Clique Potential

For each clique c in the image, we can assign  a 
value         which is called clique potential of c, 
where      is the configuration of the labeling field
The sum of potentials of all cliques gives us the 
energy         of the configuration
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MRF segmentation model
+

find MAP estimate     

Segmentation of grayscale images:
A simple MRF model
Construct a segmentation model where regions are 
formed by spatial clusters of pixels with similar 
intensity:

Input image

segmentation

ω̂

Model 
parameters

ω̂
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MRF segmentation model
Pixel labels (or classes) are represented by 
Gaussian distributions:

Clique potentials:
Singleton: proportional to the likelihood of 
features given ω: log(P(f | ω)).
Doubleton: favours similar labels at neighbouring 
pixels – smoothness prior

As β increases, regions become more homogenous
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Model parameters

Doubleton potential β
less dependent on the input 

can be fixed a priori

Number of labels (|Λ|)
Problem dependent

usually given by the user or 
inferred from some higher level knowledge

Each label λ∈Λ is represented by a Gaussian 
distribution N(µλ,σλ):

estimated from the input image
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Model parameters

The class statistics (mean and variance) 
can be estimated via the empirical mean 
and variance:

where Sλ denotes the set of pixels in the 
training set of class λ
a training set consists in a representative 
region selected by the user
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Energy function

Now we can define the energy function of 
our MRF model:

Recall: 

Hence
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Optimization

Problem reduced to the 
minimization of a non-convex
energy function

Many local minima
Gradient descent?

Works only if we have a good
initial segmentation

Simulated Annealing
Always works (at least in theory)
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ICM (~Gradient descent) [Besag86]
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Simulated Annealing
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Temperature Schedule
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Temperature Schedule

Initial temperature: set it to a relatively low value (~4)
faster execution

must be high enough to allow random jumps at the beginning!

Schedule:
Stopping criteria:

Fixed number of iterations
Energy change is less than a threshols
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Demo
Download from:
http://www.inf.u-szeged.hu/~kato/software/
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Conclusion

Design your model carefully
Optimization is just a tool, do not expect a 
good segmentation from a wrong model

Can we segment more complex images?
Yes, but then you need a more complex MRF 
model
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Color Textured Segmentation

segmentation

segmentation
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Color & Motion Segmentation
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Conclusion

Design your model carefully
Optimization is just a tool, do not expect a good 
segmentation from a wrong model

Can we segment more complex images?
Yes but you need a more complex MRF model

Can we segment images without any user 
interaction?

Yes, but you need to estimate model parameters 
automatically which requires 

Modeling of the parameters AND
a more sophisticated sampling algorithm (Reversible jump 
MCMC)
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MRF+RJMCMC vs. JSEG
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JSEG (Y. Deng, B.S.Manjunath: PAMI’01):
1. color quantization: colors are 

quantized to several representing 
classes that can be used to 
differentiate regions in the image. 

2. spatial segmentation: A region 
growing method is then used to 
segment the image.
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Benchmark results using the 
Berkeley Segmentation Dataset

RJMCMCJSEG
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