Fuzzy Techniques for Image Segmentation

László G. Nyúl

Department of Image Processing and Computer Graphics
University of Szeged

2008-07-12

Dealing with imperfections

According to a researcher at Cambridge University, it doesn’t matter in what order the letters in a word are, the only important thing is that the first and last letter be at the right place. The rest can be a total mess and you can still read it without problem. This is because the human mind does not read every letter by itself but the word as a whole.

Fuzzy systems

Fuzzy systems and models are capable of representing diverse, inexact, and inaccurate information

Fuzzy logic provides a method to formalize reasoning when dealing with vague terms. Not every decision is either true or false. Fuzzy logic allows for membership functions, or degrees of truthfulness and falsehoods.
Fuzzy Techniques for Image Segmentation

László G. Nýul

Outline

- Fuzzy systems
- Fuzzy sets
- Fuzzy image processing
- Fuzzy connectedness

Membership function examples

- "young person"
- "cold beer"

Application area for fuzzy systems

- Quality control
- Error diagnostics
- Control theory
- Pattern recognition

Object characteristics in images

Graded composition

heterogeneity of intensity in the object region due to heterogeneity of object material and blurring caused by the imaging device

Hanging-togetherness

natural grouping of voxels constituting an object a human viewer readily sees in a display of the scene as a Gestalt in spite of intensity heterogeneity

Fuzzy set

Let X be the **universal set**.

For **(sub)set** A of X

$$
\mu_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
$$

For crisp sets μ_A is called the **characteristic function** of A.

A **fuzzy subset** A of X is

$$
A = \{(x, \mu_A(x)) \mid x \in X\}
$$

where μ_A is the **membership function** of A in X

$$
\mu_A : X \to [0, 1]
$$
Probability vs. grade of membership

Probability
- is concerned with occurrence of events
- represent uncertainty
- probability density functions

Compute the probability that an *ill-known variable* \(x \) of the universal set \(U \) falls in the *well-known set* \(A \).

Fuzzy sets
- deal with graduality of concepts
- represent vagueness
- fuzzy membership functions

Compute for a *well-known variable* \(x \) of the universal set \(U \) to what degree it is member of the *ill-known set* \(A \).

Fuzzy membership functions

- **triangle**: \(\mu(x) \) is always decreasing from 1 to 0.
- **trapezoid**: \(\mu(x) \) is decreasing from 1 to 0, then increasing from 0 to 1.
- **gaussian**: \(\mu(x) \) is decreasing from 1 to 0, then increasing from 0 to 1.
- **singleton**: \(\mu(x) \) is 1 for a specific value of \(x \).

Fuzzy set properties

- **Height**
 \[\text{height}(A) = \sup \{ \mu_A(x) \mid x \in X \} \]

- **Normal fuzzy set**
 \[\text{height}(A) = 1 \]

- **Sub-normal fuzzy set**
 \[\text{height}(A) \neq 1 \]

- **Support**
 \[\text{supp}(A) = \{ x \in X \mid \mu_A(x) > 0 \} \]

- **Core**
 \[\text{core}(A) = \{ x \in X \mid \mu_A(x) = 1 \} \]

- **Cardinality**
 \[\|A\| = \sum_{x \in X} \mu_A(x) \]
Operations on fuzzy sets

Intersection
\[\mathcal{A} \cap \mathcal{B} = \{(x, \mu_{\mathcal{A} \cap \mathcal{B}}(x)) \mid x \in X\} \quad \mu_{\mathcal{A} \cap \mathcal{B}} = \min(\mu_{\mathcal{A}}, \mu_{\mathcal{B}}) \]

Union
\[\mathcal{A} \cup \mathcal{B} = \{(x, \mu_{\mathcal{A} \cup \mathcal{B}}(x)) \mid x \in X\} \quad \mu_{\mathcal{A} \cup \mathcal{B}} = \max(\mu_{\mathcal{A}}, \mu_{\mathcal{B}}) \]

Complement
\[\bar{\mathcal{A}} = \{(x, \mu_{\bar{\mathcal{A}}}(x)) \mid x \in X\} \quad \mu_{\bar{\mathcal{A}}} = 1 - \mu_{\mathcal{A}} \]

Note: For crisp sets \(\mathcal{A} \cap \bar{\mathcal{A}} = \emptyset \). The same is often NOT true for fuzzy sets.

Properties of fuzzy relations

\(\rho \) is reflexive if
\[\forall x \in X \quad \mu_{\rho}(x, x) = 1 \]

\(\rho \) is symmetric if
\[\forall x, y \in X \quad \mu_{\rho}(x, y) = \mu_{\rho}(y, x) \]

\(\rho \) is transitive if
\[\forall x, z \in X \quad \mu_{\rho}(x, z) = \bigcup_{y \in X} \mu_{\rho}(x, y) \cap \mu_{\rho}(y, z) \]

\(\rho \) is similitude if it is reflexive, symmetric, and transitive

Note: this corresponds to the equivalence relation in hard sets.

Fuzzy relation

A fuzzy relation \(\rho \) in \(X \) is
\[\rho = \{((x, y), \mu_{\rho}(x, y)) \mid x, y \in X\} \]

with a membership function
\[\mu_{\rho} : X \times X \rightarrow [0, 1] \]

Fuzzy image processing

“Fuzzy image processing is the collection of all approaches that understand, represent and process the images, their segments and features as fuzzy sets. The representation and processing depend on the selected fuzzy technique and on the problem to be solved.”

(From: Tizhoosh, Fuzzy Image Processing, Springer, 1997)

“... a pictorial object is a fuzzy set which is specified by some membership function defined on all picture points. From this point of view, each image point participates in many memberships. Some of this uncertainty is due to degradation, but some of it is inherent... In fuzzy set terminology, making figure/ground distinctions is equivalent to transforming from membership functions to characteristic functions.”

(1970, J.M.B. Prewitt)

"Fuzzy image processing is the collection of all approaches that understand, represent and process the images, their segments and features as fuzzy sets. The representation and processing depend on the selected fuzzy technique and on the problem to be solved.”

(From: Tizhoosh, Fuzzy Image Processing, Springer, 1997)
Fuzzy image processing

Fuzzy thresholding

\[g(x) = \begin{cases}
0 & \text{if } f(x) < T_1 \\
\mu_g(x) & \text{if } T_1 \leq f(x) < T_2 \\
1 & \text{if } T_2 \leq f(x) < T_3 \\
\mu_g(x) & \text{if } T_3 \leq f(x) < T_4 \\
0 & \text{if } T_4 \leq f(x)
\end{cases} \]

Fuzziness and threshold selection

Example

original CT slice

volume rendered image

original image

Otsu

fuzziness
k-nearest neighbors (kNN)

- **Training**: Identify (label) two sets of voxels \(X_O \) in object region and \(X_{NO} \) in background
- **Labeling**: For each voxel \(v \) in input scenes . . .
 - Find its location \(P \) in feature space
 - Find \(k \) voxels closest to \(P \) from sets \(X_O \) and \(X_{NO} \)
 - If a majority of those are from \(X_O \), then label \(v \) as object, otherwise as background
- **Fuzzification**: If \(m \) of the \(k \) nearest neighbor of \(v \) belongs to object, then assign \(\mu(v) = \frac{m}{k} \) to \(v \) as membership

k-means clustering

The k-means algorithm iteratively optimizes an objective function in order to detect its minima by starting from a reasonable initialization.

- The objective function is
 \[
 J = \sum_{j=1}^{k} \sum_{i=1}^{n} \| x_i^{(j)} - c_j \|^2
 \]

k-means clustering Algorithm

1. Consider a set of \(n \) data points (feature vectors) to be clustered.
2. Assume the number of clusters, or classes, \(k \), is known. \(2 \leq k < n \).
3. Randomly select \(k \) initial cluster center locations.
4. All data points are assigned to a partition, defined by the nearest cluster center.
5. The cluster centers are moved to the geometric centroid (center of mass) of the data points in their respective partitions.
6. Repeat from (4) until the objective function is smaller than a given tolerance, or the centers do not move to a new point.

k-means clustering Issues

- How to initialize?
- What objective function to use?
- What distance to use?
- Robustness?
- What if \(k \) is not known?
Fuzzy c-means clustering

- A partition of the observed set is represented by a \(c \times n \) matrix \(U = [u_{ik}] \), where \(u_{ik} \) corresponds to the membership value of the \(k^{th} \) element (of \(n \)) to the \(i^{th} \) cluster (of \(c \) clusters).
- Each element may belong to more than one cluster but its “overall” membership equals one.
- The objective function includes a parameter \(m \) controlling the degree of fuzziness.
- The objective function is

\[
J = \sum_{j=1}^{c} \sum_{i=1}^{n} (u_{ij})^m \| \mathbf{x}_i^{(j)} - \mathbf{c}_j \|^2
\]

Fuzzy c-means clustering

Issues

- Computationally expensive
- Highly dependent on the initial choice of \(U \)
- If data-specific experimental values are not available, \(m = 2 \) is the usual choice
- Extensions exist that simultaneously estimate the intensity inhomogeneity bias field while producing the fuzzy partitioning
Fuzzy digital space

Fuzzy digital space is a reflexive and symmetric fuzzy relation α in \mathbb{Z}^n and assigns a value to a pair of spels (c, d) based on how close they are spatially.

Example

$$\mu_{\alpha}(c, d) = \begin{cases} \frac{1}{\|c - d\|} & \text{if } \|c - d\| < \text{a small distance} \\ 0 & \text{otherwise} \end{cases}$$

Fuzzy digital space

(\mathbb{Z}^n, α)

Scene (over a fuzzy digital space)

$$C = (C, f) \text{ where } C \subset \mathbb{Z}^n \text{ and } f : C \to [L, H]$$

Paths between spels

A path p_{cd} in C from spel $c \in C$ to spel $d \in C$ is any sequence (c_1, c_2, \ldots, c_m) of $m \geq 2$ spels in C, where $c_1 = c$ and $c_m = d$.

Let P_{cd} denote the set of all possible paths p_{cd} from c to d.

Then the set of all possible paths in C is

$$P_C = \bigcup_{c, d \in C} P_{cd}$$

Fuzzy spel affinity

Fuzzy spel affinity is a reflexive and symmetric fuzzy relation κ in \mathbb{Z}^n and assigns a value to a pair of spels (c, d) based on how close they are spatially and intensity-based-property-wise (local hanging-togetherness).

$$\mu_{\kappa}(c, d) = h(\mu_{\alpha}(c, d), f(c), f(d), c, d)$$

Example

$$\mu_{\kappa}(c, d) = \mu_{\alpha}(c, d) (w_1 G_1(f(c) + f(d)) + w_2 G_2(f(c) - f(d)))$$

where $G_j(x) = \exp \left(-\frac{1}{2} \frac{(x - m_j)^2}{\sigma_j^2} \right)$

Strength of connectedness

The fuzzy κ-net \mathcal{N}_κ of C is a fuzzy subset of P_C, where the membership (strength of connectedness) assigned to any path $p_{cd} \in P_{cd}$ is the smallest spel affinity along p_{cd}

$$\mu_{\mathcal{N}_\kappa}(p_{cd}) = \min_{j=1,\ldots,m-1} \mu_{\kappa}(c_j, c_{j+1})$$

The fuzzy κ-connectedness in C (K) is a fuzzy relation in C and assigns a value to a pair of spels (c, d) that is the maximum of the strengths of connectedness assigned to all possible paths from c to d (global hanging-togetherness).

$$\mu_{K}(c, d) = \max_{p_{cd} \in P_{cd}} \mu_{\mathcal{N}_\kappa}(p_{cd})$$
Fuzzy K_θ component

Let $\theta \in [0, 1]$ be a given threshold

Let K_θ be the following binary (equivalence) relation in C

$$
\mu_{K_\theta}(c, d) = \begin{cases}
1 & \text{if } \mu_K(c, d) \geq \theta \\
0 & \text{otherwise}
\end{cases}
$$

Let $O_\theta(o)$ be the equivalence class of K_θ that contains $o \in C$

Let $\Omega_\theta(o)$ be defined over the fuzzy K-connectedness K

$$
\Omega_\theta(o) = \{c \in C | \mu_K(o, c) \geq \theta\}
$$

Practical computation of FC relies on the following equivalence

$$
O_\theta(o) = \Omega_\theta(o)
$$

Fuzzy connectedness as a graph search problem

- Spels \rightarrow graph nodes
- Spel faces \rightarrow graph edges
- Fuzzy spel-affinity relation \rightarrow edge costs
- Fuzzy connectedness \rightarrow all-pairs shortest-path problem
- Fuzzy connected objects \rightarrow connected components

Fuzzy connected object

The fuzzy K_θ object $O_\theta(o)$ of C containing o is

$$
\mu_{O_\theta(o)}(c) = \begin{cases}
\eta(c) & \text{if } c \in O_\theta(o) \\
0 & \text{otherwise}
\end{cases}
$$

that is

$$
\mu_{O_\theta(o)}(c) = \begin{cases}
\eta(c) & \text{if } c \in \Omega_\theta(o) \\
0 & \text{otherwise}
\end{cases}
$$

where η assigns an objectness value to each spel perhaps based on $f(c)$ and $\mu_K(o, c)$.

Fuzzy connected objects are robust to the selection of seeds.

Computing fuzzy connectedness

Dynamic programming

Algorithm

Input: C, $o \in C$, κ
Output: A K-connectivity scene $C_\kappa = (C_\kappa, f_\kappa)$ of C
Auxiliary data: a queue Q of spels

begin
set all elements of C_κ to 0 except o which is set to 1
push all spells $c \in C$ such that $\mu_K(o, c) > 0$ to Q
while $Q \neq \emptyset$ do
 remove a spel c from Q
 $\ell_{\text{val}} = \max_{d \in C}[\min(f_d(d), \mu_K(c, d))]$
 if $\ell_{\text{val}} > f_\kappa(c)$ then
 $f_\kappa(c) \leftarrow \ell_{\text{val}}$
 push all spells e such that $\mu_K(e, c) > 0$, $\ell_{\text{val}} > f_\kappa(e)$, $f_{\text{val}} > f_\kappa(e)$ and $\mu_K(e, c) > f_\kappa(e)$
 end if
end while
end
Computing fuzzy connectedness
Dijkstra’s-like

Algorithm

Input: \(C, o \in C, \kappa \)
Output: A K-connectivity scene \(C_\omega = (C_\omega, f_\omega) \) of \(C \)
Auxiliary data: a priority queue \(Q \) of spels

begin
set all elements of \(C_\omega \) to 0 except \(o \) which is set to 1
push \(o \) to \(Q \)
while \(Q \neq \emptyset \) do
remove a spel \(c \) from \(Q \) for which \(f_\omega(c) \) is maximal
for each spel \(e \) such that \(\mu_\kappa(c, e) > 0 \) do
\(f_\text{val} = \min(f_\omega(c), \mu_\kappa(c, e)) \)
if \(f_\text{val} > f_\omega(e) \) then
\(f_\omega(e) \leftarrow f_\text{val} \)
update \(e \) in \(Q \) (or push if not yet in)
endif
endfor
endwhile
end
Fuzzy connectedness variants

- Multiple seeds per object
- Scale-based fuzzy affinity
- Vectorial fuzzy affinity
- Absolute fuzzy connectedness
- Relative fuzzy connectedness
- Iterative relative fuzzy connectedness

Object scale

Object scale in \(\mathcal{C} \) at any spel \(c \in \mathcal{C} \) is the radius \(r(c) \) of the largest hyperball centered at \(c \) which lies entirely within the same object region.

The scale value can be simply and effectively estimated without explicit object segmentation.

Scale-based affinity

Considers the following aspects
- spatial adjacency
- homogeneity (local and global)
- object feature (expected intensity properties)
- object scale

Computing object scale

Algorithm

Input: \(\mathcal{C}, c \in \mathcal{C}, W_\psi, \tau \in [0, 1] \)
Output: \(r(c) \)

```
begin
k ← 1
while \( FO_k(c) \geq \tau \) do
    k ← k + 1
endwhile
r(c) ← k
end
```

Fraction of the ball boundary homogeneous with the center spel

\[
FO_k(c) = \frac{\sum_{d \in B_k(c)} W_\psi(|f(c) - f(d)|)}{|B_k(c) - B_{k-1}(c)|}
\]
Relative fuzzy connectedness

- always at least two objects
- automatic/adaptive thresholds on the object boundaries
- objects (object seeds) “compete” for spels and the one with stronger connectedness wins

Algorithm

Let O_1, O_2, \ldots, O_m, a given set of objects ($m \geq 2$), $S = \{o_1, o_2, \ldots, o_m\}$ a set of corresponding seeds, and let $b(o_j) = S \setminus \{o_j\}$ denote the ‘background’ seeds w.r.t. seed o_j.

1. define affinity for each object $\Rightarrow \kappa_1, \kappa_2, \ldots, \kappa_m$
2. combine them into a single affinity $\Rightarrow \kappa = \bigcup_j \kappa_j$
3. compute fuzzy connectedness using $\kappa \Rightarrow \mathcal{K}$
4. determine the fuzzy connected objects $\Rightarrow O_{ob}(o) = \{c \in C \mid \forall o' \in b(o) \quad \mu_{\mathcal{K}}(o, c) > \mu_{\mathcal{K}}(o', c)\}$

$$\mu_{O_{ob}}(c) = \begin{cases} \eta(c) & \text{if } c \in O_{ob}(o) \\ 0 & \text{otherwise} \end{cases}$$

kNN vs. VSRFC

Image segmentation using FC

- MR
 - brain tissue, tumor, MS lesion segmentation
- MRA
 - vessel segmentation and artery-vein separation
- CT bone segmentation
 - kinematics studies
 - measuring bone density
 - stress-and-strain modeling
- CT soft tissue segmentation
 - cancer, cyst, polyp detection and quantification
 - stenosis and aneurism detection and quantification
- Digitized mammography
 - detecting microcalcifications
- Craniofacial 3D imaging
 - visualization and surgical planning
Protocols for brain MRI

FC segmentation of brain tissues

1. Correct for RF field inhomogeneity
2. Standardize MR image intensities
3. Compute fuzzy affinity for GM, WM, CSF
4. Specify seeds and VOI (interaction)
5. Compute relative FC for GM, WM, CSF
6. Create brain intracranial mask
7. Correct brain mask (interaction)
8. Create masks for FC objects
9. Detect potential lesion sites
10. Compute relative FC for GM, WM, CSF, LS
11. Verify the segmented lesions (interaction)

Brain tissue segmentation

SPGR

MS lesion quantification

FSE
Fuzzy Techniques for Image Segmentation

László G. Nyúl

Outline
Fuzzy systems
Fuzzy sets
Fuzzy image processing
Fuzzy connectedness
Theory
Algorithm
Variants
Applications

Brain tumor quantification

MRA slice and MIP rendering

Skull object from CT

MRA vessel segmentation and artery/vein separation