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Outline

• State of visual surveillance
• Tasks, problems, previous models
• Hidden Markov Model approach:

– About HMMs
– Preprocessing steps
– Generating observations
– Model training (and problems)
– Detection, analysis

• Hierarchical HMM approach
• Results, demonstration



3

Application Areas of Visual Surveillance

• Transportation: traffic counting by lanes, speed 
estimation, numberplate recognition, forbidden 
motion detection, forbidden areas

• Trade (shops, banks) and public 
organizations (schools, hospitals, offices):
running human detection, lost/stolen object 
detection, path discovering, queue detection, 
crowd detection

• Industry: process analysis, unusual event 
detetion, quality monitoring

• and a lot more...
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Distributed Data Processing

• Old digital (IP) approach:

• Distributed processing:
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Sony’s Distributed Enhanced 
Processing Architecture
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Example for distributed processing: Intellio 
product line for traffic monitoring

• M0 ring around Budapest
is equipped with Intellio’s 
Intelligent cameras

• Distributed system can estimate:
– Speed of vehicles
– Motion at forbidden areas
– Speed Dome control for

high resolution images
– Emergency alarms and

accident prevention
– Integration with loop

detectors
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Worldwide Research Activity
• B. T. Moeslund and E. Granum. A survey of advances in 

vision-based human motion capture. Computer Vision 
and Image Understanding, 81(3):231-268, 2001. 155 
papers

• T. B. Moeslund, A. Hilton, and V. KrÄuger. A survey of 
advances in vision-based human motion capture and 
analysis. Computer Vision and Image Understanding, 
104(2-3):90-126, 2006. 424 papers 2000-2006

• Niels Haering, Péter L. Venetianer, Alan Lipton. The 
evolution of video surveillance: an overview, Machine 
Vision and Applications (2008) 19:279-290
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Recent works at the
University of Pannonia

• Camera calibration for omnivision
systems: generating undistorted 
perspective image from annular image

• Improved motion detection: reducing the 
foreground aperture problem

• Unusual event detection
• Surveillance video segmentation
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Improved Motion Detection
Problem: foreground aperture problem (some moving areas are not

detected in homogenous regions).
Solution: improved Mixture of Gaussians method.

Input Test Video Original MOG Improved MOG
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Omnivision for Security

Camera Image
360 degree squared image

Virtual prespective images Camera calibration
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Hidden Semi Markov Models for 
Temporal Video Segmentation of 
Time-multiplexed Security Videos
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Our Motivation

• Built up surveillance systems in cities:
– Low-cost camera networks (hybrid)
– Monitoring outdoor traffic

• Process camera images to detect anomaly:
– Modeling aspects:

• Learn the fluctuation of traffic
• Unsupervised learning
• No apriori knowledge
• Robust (noise)

– Anomaly detection: real-time processing
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Our Motivation

“After 12 minutes of continuous video 
monitoring, an operator will often miss up 
to 45% of onsite activity. After 22 minutes 
of viewing, up to 95% is overlooked.”

IMS Research
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Typical video quality
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What do we want to see?
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Problems
• From the device:

– Electronic noise
– Optical distortion
– Flicker
– Auto whitebalance
– Aliasing errors
– Framedrop
– etc.

• From the scene:
– Weather conditions

(rain, wind etc.)
– Light conditions (flare, 

head lights, etc.)
– Occlusion
– Shadows
– etc.

Conventional object tracking unreliable!
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Problems

Device noise

Occlusion, shadow

Framedrop
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Object tracking?

Occlusion/disocclusion… Noise… Ragged object 
masks… Shadows…
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Basic concepts

• Mixture of Gaussians (MOG, GMM)

Histogram MOG (red)
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Basic concepts
• Fitting Mixture of Gaussians

– Expectation-Maximization algorithm (iterative)
– Accurate but slow
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Preprocessing

• Background-foreground separation:
– Robust method of Stauffer and Grimson (MOG)

• Optical flow (e.g. Bergen, Lucas-Kanade):
– Preferrably only over motion detected areas
– Some filtering advised: drop very small and very 

large vectors
– Noisy output
– Real-time operation
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Example for motion detection
• Foreground-Background Segmentation 

based on 
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Optical flow

Unfiltered Filtered

Original
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Models without object level 
analysis

• We define a motion vector observation 
unusual if its probability is low according 
to prior observations.

• Unsupervised learning.

• To get temporal support we can apply 
some Markovian assumptions:
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28Cyclist in the wrong direction detected.
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Preprocessing
• Collect motion direction statistics in pixels:

– For a motion vector classify it’s direction:

– Create 8-bin motion direction histograms in each pixel
– Histogram       empirical probability (left, mixing 8 colours)

• Construct regions from statistics:
– MeanShift: Spatial distance + Histogram distance (right)

Segmentation
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Hidden Markov Model

• What is a HMM?
– A system which has finite number of states and certain

rules (transitions with Markov property).
– Process: the states are hidden, but the system

generates an observable process.
• In our case:

– System = traffic lamp system in the crossroad
– States = traffic rules controlled by traffic lamp 

configurations (green, yellow, red)
– Transitions = changes in the traffic lamp configurations 
– Observation = localized motion directions (x,y,d)
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Model parameters

• Hidden Markov Model: λ=(π, A, B)
• Initial state probabilities (π): the probability 

that a process starts with a state
• Transition probabilities (A): the probability of 

changing to a state from the previous state
• Emission probabilities (B): the probability that 

a state generated a given observation
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How many states?
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Observation data

• Select a region (ROI)
• Observe moving blobs in the ROI
• Fit a MOG on motion directions in each blob

– Only a few iterations (real-time!)
• Observations at time t = Mean directions of MOGs

Selected ROI
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Emission probability

• We have Kt motion directions in time t, thus
our observation in time t is Ot=ot,1,…,ot,Kt

• We use Mixture of M Gaussians, i.e.
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Training HMM
(learning problem)

• Given an observation sequence
O=O1,…,OT

• Problem: How to adjust the model
parameters π, A, B to maximize P(O|λ) ?

• Expectation Maximization: using the
iterative Baum-Welch re-estimation 
formula.
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Precision Problem

• In the Baum-Welch algorithm the emission 
probabilities (bj) of the observations are calculated 
to re-estimate the model parameters.

• The observations are heavily loaded with noise, 
resulting in large covariances in the MOGs, resulting 
in very small probability values.

• And bj was defined as a product:

• Precision problem: the probabilities are small values
and the product will head exponentally to zero!
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Solution
• Scaling by relative emission:

– Original emission: what is the probability that the state 
generated the observation?

– Relative emission: what is the probability that the state 
generated the observation compared to the other states?

• The original Baum Welch re-estimation formula 
can be used with relative emissions!

Original Relative
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Effectiveness in training

•Horizontal: number of samples (in the product)

•Vertical: value of the product (logarithmic scale)

•Blue: original emission probability

•Red: relative emission
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Detecting state sequence
(decoding problem)

• Given the observation sequence O=O1,...,OT

• What is the state sequence Q generated O?
• The Viterbi algorithm gives the answer
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Visualization

• Take the generated state sequence
• Plot mean directions of the states on timeline 

using the HSV space (hue = direction angle)
• Height = weight of the component in MOG
• Black = no motion

time
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Anomaly detection I

• Cut one phase from the video
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Anomaly detection II

• Car crossing the traffic
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Anomaly detection II

• Generate state sequence for 3 non-empty frames
• Analyze the state transtions, plot on graph
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Performance

• 3 main phases:
– Preprocessing: background-foreground separation + 

optical flow calculation and filtering, connected 
components

– Observation construction: Fit MOG on components’
motion directions inside ROI

– Anomaly detection II

• Performance: 14 FPS on 160x120 video

69.930.7917.2451.9Time (msec)
TotalDetectionObservationsPreprocessing
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Hierarchical HMM

• Higher-level HMM, built on top of several ROI 
models

• Includes explicit modeling of „no motion”
• States after HMM training:
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Anomaly detection III.

• Generate state sequence for 3 frames
• Analyze the state transtions, plot on graph



48

Anomaly detection III.

Detected frames
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Conclusion

• Hidden Markov Model approach
– Modeling motion directions in urban traffic
– No tracking is necessary for anomaly detection
– Solved a probability representation problem -> now it is 

possible to model the blobs with MOGs
• Hierarchical HMM approach

– Explicit modelling of „no motion”
• Visualization of the traffic
• Anomaly detection
• Performance test
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