Unusual Event Detection without Object Tracking

László *Czúni* / Ákos Utasi University of Pannonia, Veszprém Faculty of Informatics

Outline

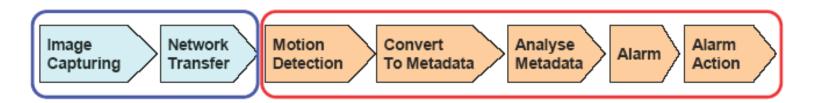
- State of visual surveillance
- Tasks, problems, previous models
- Hidden Markov Model approach:
 - About HMMs
 - Preprocessing steps
 - Generating observations
 - Model training (and problems)
 - Detection, analysis
- Hierarchical HMM approach
- Results, demonstration

Application Areas of Visual Surveillance

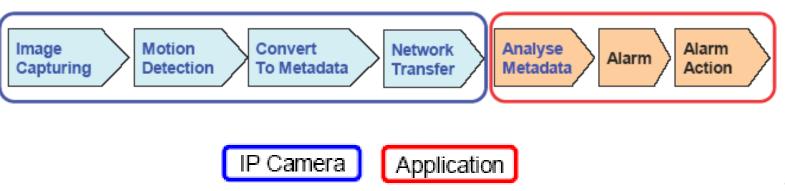
- **Transportation**: traffic counting by lanes, speed estimation, numberplate recognition, forbidden motion detection, forbidden areas
- Trade (shops, banks) and public organizations (schools, hospitals, offices): running human detection, lost/stolen object detection, path discovering, queue detection, crowd detection
- **Industry:** process analysis, unusual event detetion, quality monitoring
- and a lot more...

Distributed Data Processing

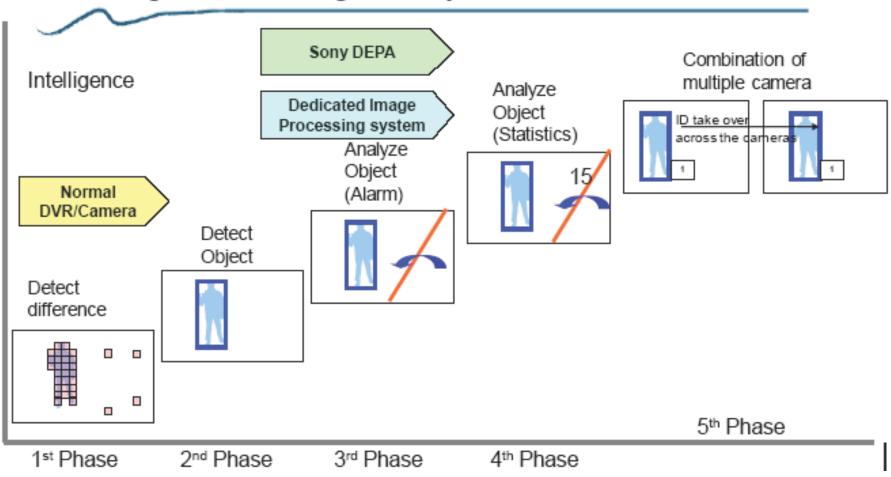
• Old digital (IP) approach:



• Distributed processing:



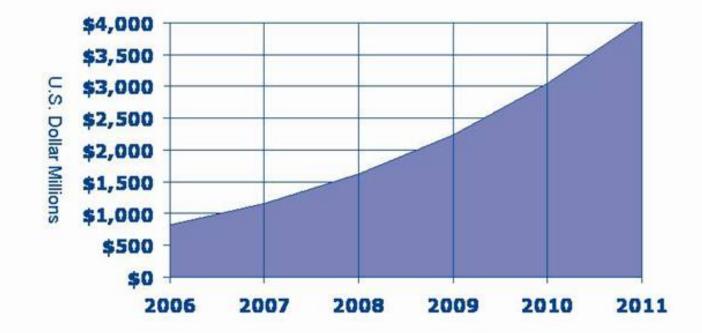
Sony's Distributed Enhanced Processing Architecture



Example for distributed processing: Intellio product line for traffic monitoring

- M0 ring around Budapest is equipped with Intellio's Intelligent cameras
- Distributed system can estimate:
 - Speed of vehicles
 - Motion at forbidden areas
 - Speed Dome control for high resolution images
 - Emergency alarms and accident prevention
 - Integration with loop detectors

Market Trends: IP Video Surveillance

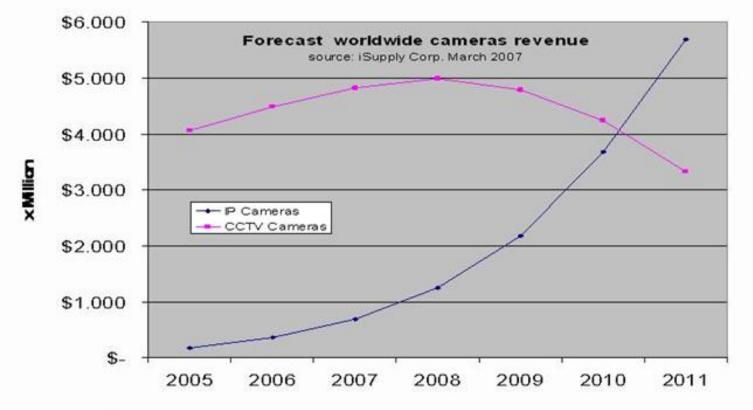


IP video surveillance market shows very high growth

Forecast annual growth rate of 38% (IMS Study)

Optelecom-nkf

Market Trends: IP Cameras Overtake Video over Fiber



IP video will become the dominant technology

Worldwide Research Activity

- B. T. Moeslund and E. Granum. A survey of advances in vision-based human motion capture. *Computer Vision and Image Understanding*, 81(3):231-268, 2001. 155 papers
- T. B. Moeslund, A. Hilton, and V. KrÄuger. A survey of advances in vision-based human motion capture and analysis. *Computer Vision and Image Understanding*, 104(2-3):90-126, 2006. **424 papers 2000-2006**
- Niels Haering, Péter L. Venetianer, Alan Lipton. The evolution of video surveillance: an overview, Machine Vision and Applications (2008) 19:279-290

Recent works at the University of Pannonia

- Camera calibration for omnivision systems: generating undistorted perspective image from annular image
- Improved motion detection: reducing the foreground aperture problem
- Unusual event detection
- Surveillance video segmentation

Improved Motion Detection

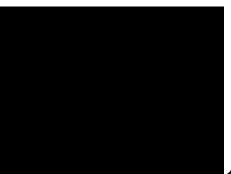
Problem: foreground aperture problem (some moving areas are not detected in homogenous regions).

Solution: improved Mixture of Gaussians method.

Input Test Video

Original MOG Improved MOG

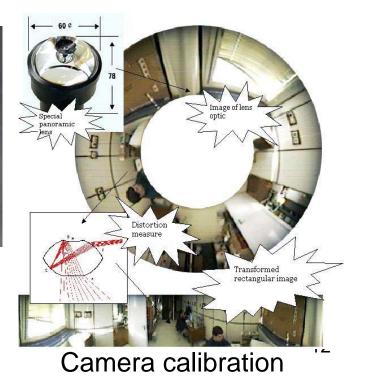




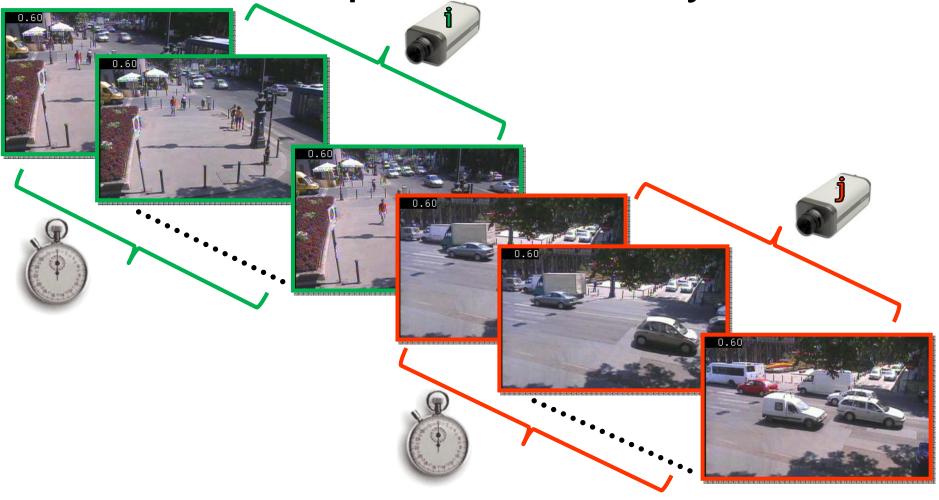
Omnivision for Security

360 degree squared image

Virtual prespective images



Hidden Semi Markov Models for Temporal Video Segmentation of Time-multiplexed Security Videos



Our Motivation

- Built up surveillance systems in cities:
 - Low-cost camera networks (hybrid)
 - Monitoring outdoor traffic
- Process camera images to detect anomaly:
 - Modeling aspects:
 - Learn the fluctuation of traffic
 - Unsupervised learning
 - No apriori knowledge
 - Robust (noise)
 - Anomaly detection: real-time processing

14

Our Motivation

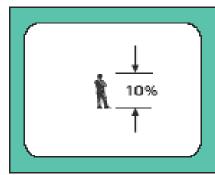
"After 12 minutes of continuous video monitoring, an operator will often miss up to 45% of onsite activity. After 22 minutes of viewing, up to 95% is overlooked."

IMS Research

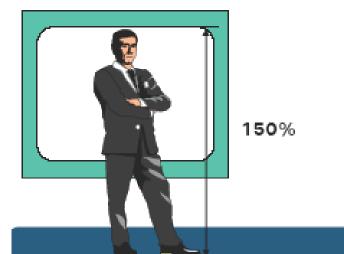
Typical video quality

What do we want to see?

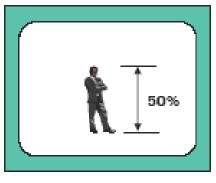
People detection



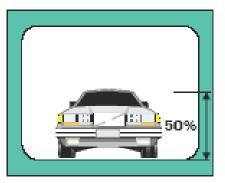
People identification



People recognition



ANPR



17

Problems

- From the device:
 - Electronic noise
 - Optical distortion
 - Flicker
 - Auto whitebalance
 - Aliasing errors
 - Framedrop
 - -etc.

- From the scene:
 - Weather conditions (rain, wind etc.)
 - Light conditions (flare, head lights, etc.)
 - Occlusion
 - Shadows

– etc.

Conventional object tracking unreliable! ¹⁸

Problems

Device noise

Occlusion, shadow

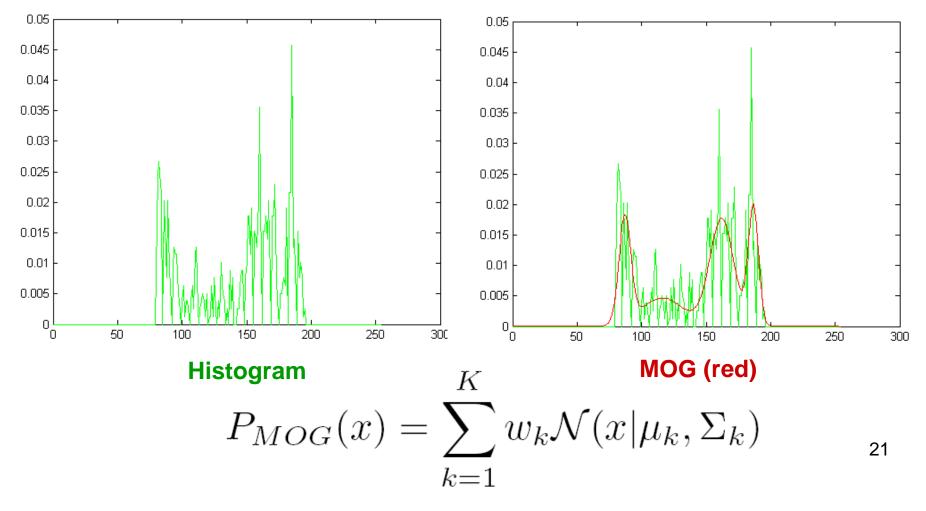
Framedrop

Object tracking?

Occlusion/disocclusion... Noise... Ragged object masks... Shadows...

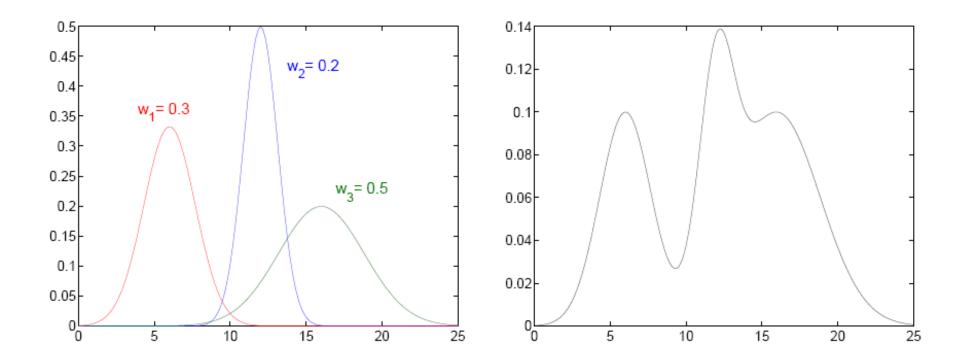
Basic concepts

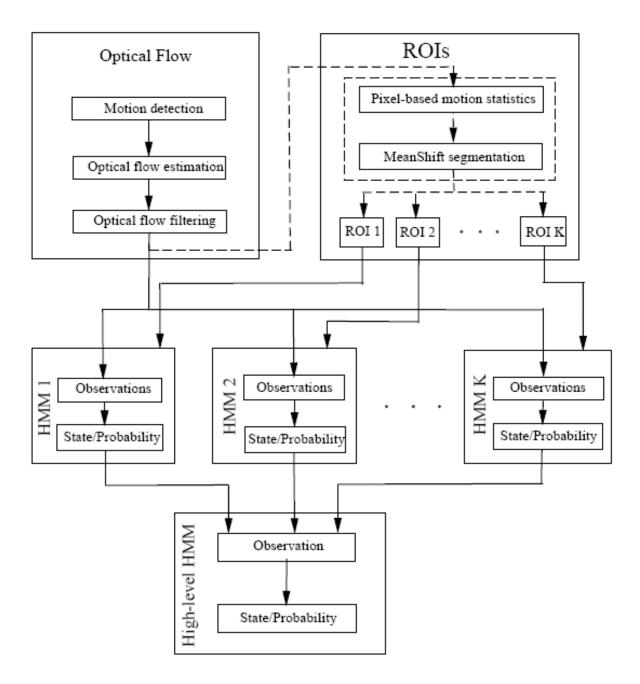
Mixture of Gaussians (MOG, GMM)



Basic concepts

- Fitting Mixture of Gaussians
 - Expectation-Maximization algorithm (iterative)
 - Accurate but slow





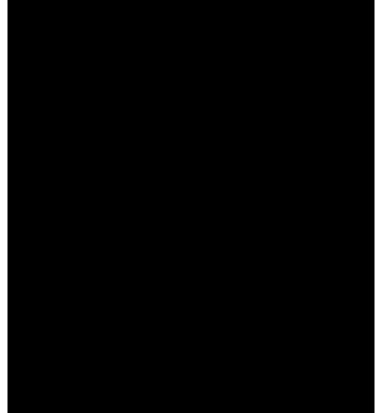
Preprocessing

- Background-foreground separation:
 - Robust method of Stauffer and Grimson (MOG)
- Optical flow (e.g. Bergen, Lucas-Kanade):
 - Preferrably only over motion detected areas
 - Some filtering advised: drop very small and very large vectors
 - Noisy output
 - Real-time operation

Example for motion detection

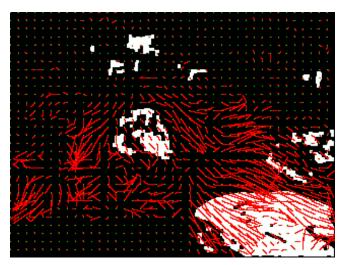
 Foreground-Background Segmentation based on



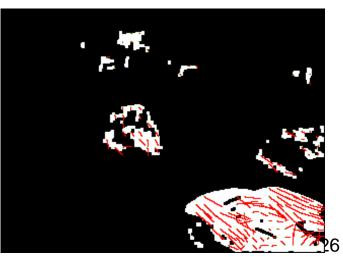


Optical flow

Original



Unfiltered



Filtered

Models without object level analysis

• We define a motion vector observation unusual if its probability is low according to prior observations. $P = \|Q\|/\Sigma$

$$P_{Dir} = \left\| O_{Dir} \right\| / \sum_{Dir} \left\| O_{Dir} \right\|$$

• Unsupervised learning.

$$P^{(U)}_{Dir} = 1 - P_{Dir}$$

 To get temporal support we can apply some Markovian assumptions:

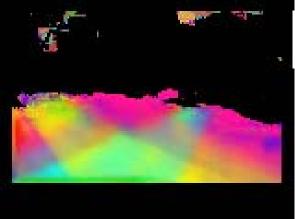
$$P^{(U,M)}_{x,y,t} = P^{(U)}_{Dir,x,y,t} \cdot \max_{x',y' \in R} \{P^{(U)}_{Dir,x',y',t-1}\}$$

Preprocessing

- Collect motion direction statistics in pixels:
 - For a motion vector classify it's direction:

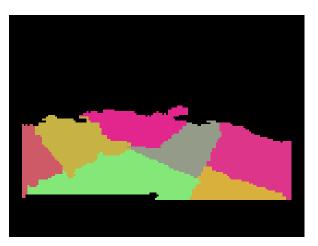
 $Dir \in \{N, E, S, W, NE, SE, SW, NW\}$

- Create 8-bin motion direction histograms in each pixel
- − Histogram → empirical probability (left, mixing 8 colours)
- Construct regions from statistics:
 - MeanShift: Spatial distance + Histogram distance (right)



$$\overline{RGB}_{x,y} = \sum_{Dir} P_{E,x,y}(Dir)\overline{C}_{Dir}$$

Segmentation

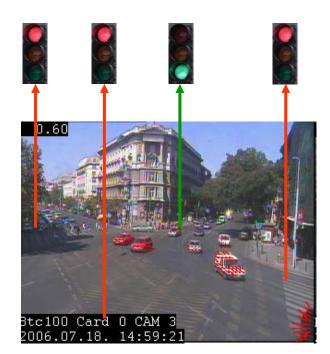


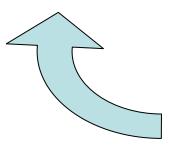
Hidden Markov Model

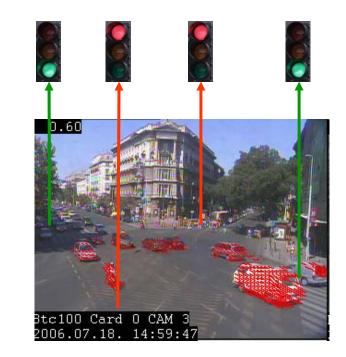
- What is a HMM?
 - A system which has finite number of states and certain rules (transitions with Markov property).
 - Process: the states are hidden, but the system generates an observable process.
- In our case:
 - System = traffic lamp system in the crossroad
 - States = traffic rules controlled by traffic lamp configurations (green, yellow, red)
 - Transitions = changes in the traffic lamp configurations
 - Observation = localized motion directions (x,y,d)

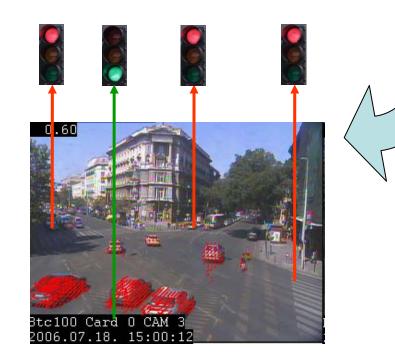
Model parameters

- Hidden Markov Model: $\lambda = (\pi, A, B)$
- Initial state probabilities (π): the probability that a process starts with a state
- Transition probabilities (*A*): the probability of changing to a state from the previous state
- Emission probabilities (*B*): the probability that a state generated a given observation

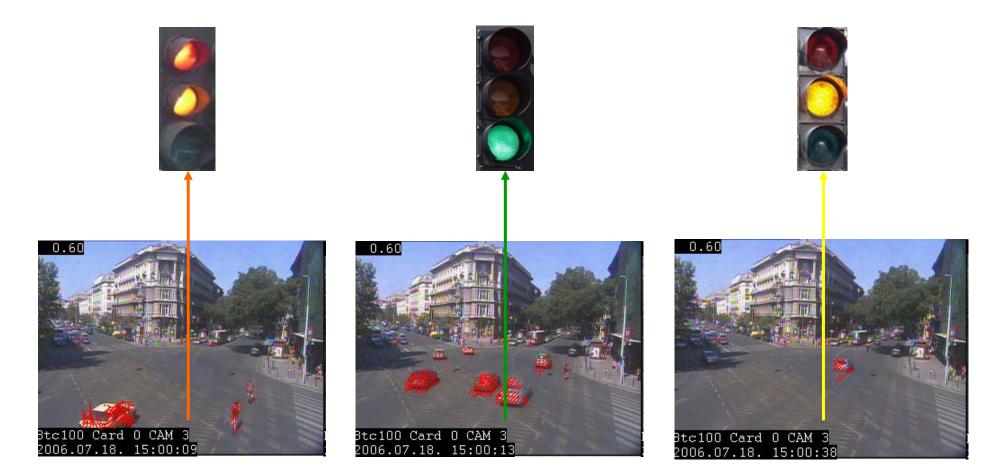






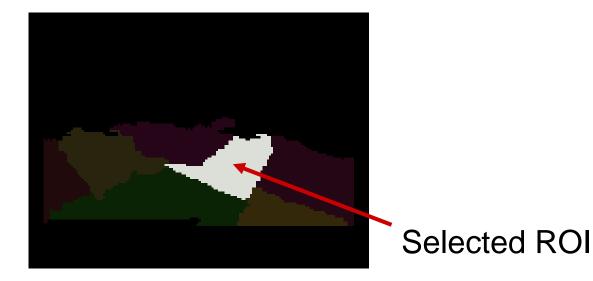


How many states?



Observation data

- Select a region (ROI)
- Observe moving blobs in the ROI
- Fit a MOG on motion directions in each blob
 - Only a few iterations (real-time!)
- **Observations** at time *t* = Mean directions of MOGs



Emission probability

- We have K_t motion directions in time t, thus our observation in time t is $O_t = o_{t,1}, \dots, o_{t,K_t}$
- We use Mixture of *M* Gaussians, i.e.

$$b_i(O_t) = \prod_{k=1}^{K_t} b_i(o_{t,k})$$
$$b_i(o_{t,k}) = \sum_{l=1}^{M} w_{i,l} b_{i,l}(o_{t,k})$$
$$b_{i,l}(o_{t,k}) = \mathcal{N}(o_{t,k} | \mu_{i,l}, \Sigma_{i,l})$$

Training HMM (learning problem)

- Given an observation sequence $O=O_1, \ldots, O_T$
- Problem: How to adjust the model parameters π , A, B to maximize $P(O|\lambda)$?
- Expectation Maximization: using the iterative Baum-Welch re-estimation formula.

Precision Problem

- In the Baum-Welch algorithm the emission probabilities (b_j) of the observations are calculated to re-estimate the model parameters.
- The observations are heavily loaded with *noise*, resulting in large covariances in the MOGs, resulting in *very small probability values*.
- And b_i was defined as a product:

$$b_i(O_t) = \prod_{k=1}^{K_t} b_i(o_{t,k})$$

 Precision problem: the probabilities are small values and the product will head exponentally to zero!

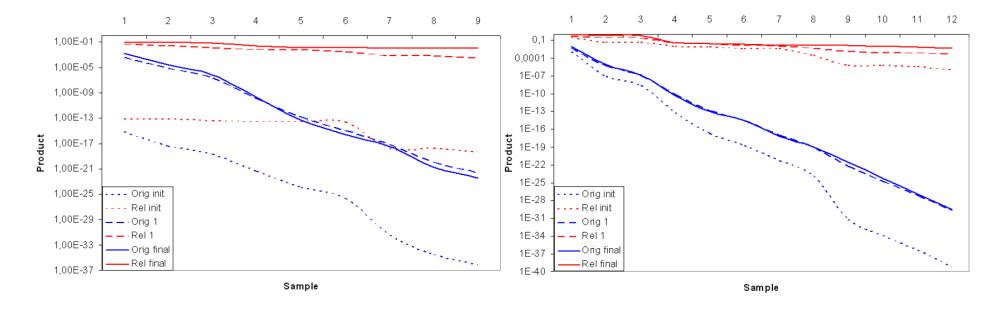
Solution

- Scaling by relative emission:
 - Original emission: what is the probability that the state generated the observation?
 - Relative emission: what is the probability that the state generated the observation compared to the other states?

$$\begin{aligned} & \text{Original} & \text{Relative} \\ & b_i(O_t) = \prod_{k=1}^{K_t} b_i(o_{t,k}) & \tilde{b}_i(O_t) = \prod_{k=1}^{K_t} \frac{b_i(o_{t,k})}{\left[\sum_{j=1}^N b_j(o_{t,k})\right]} \end{aligned}$$

 The original Baum Welch re-estimation formula can be used with relative emissions!

Effectiveness in training

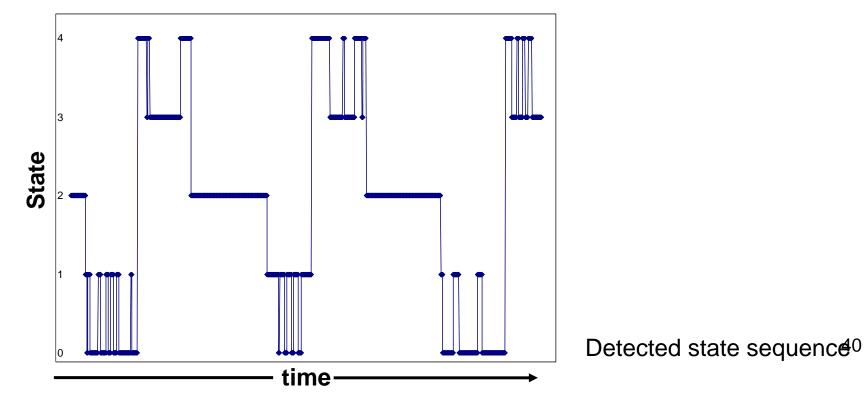


•Horizontal: number of samples (in the product)

- •Vertical: value of the product (logarithmic scale)
 - •Blue: original emission probability
 - •Red: relative emission

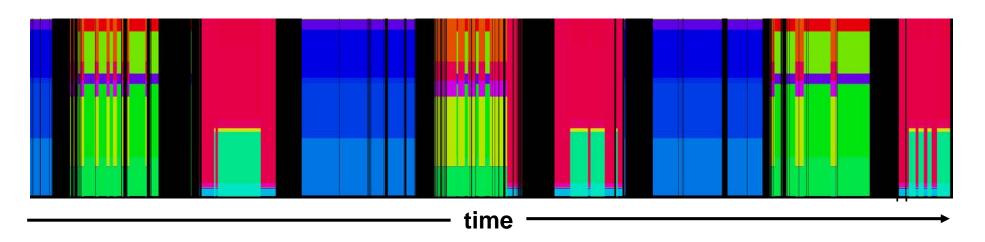
Detecting state sequence (decoding problem)

- Given the observation sequence $O=O_1, \dots, O_T$
- What is the state sequence Q generated O?
- The Viterbi algorithm gives the answer



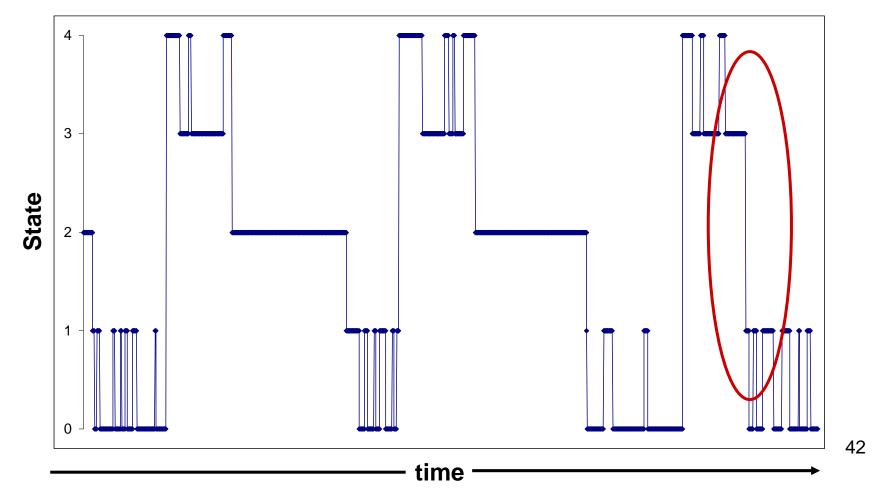
Visualization

- Take the generated state sequence
- Plot mean directions of the states on timeline using the HSV space (hue = direction angle)
- Height = weight of the component in MOG
- Black = no motion



Anomaly detection I

• Cut one phase from the video

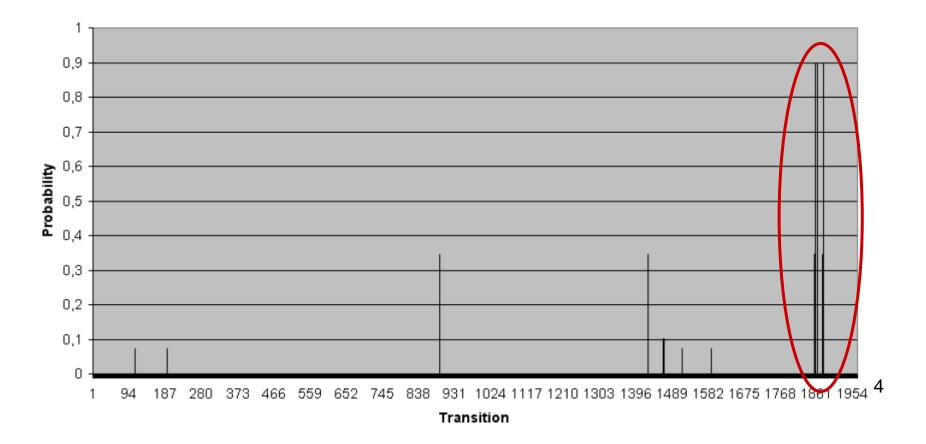


Anomaly detection II

• Car crossing the traffic

Anomaly detection II

- Generate state sequence for 3 non-empty frames
- Analyze the state transtions, plot on graph



Performance

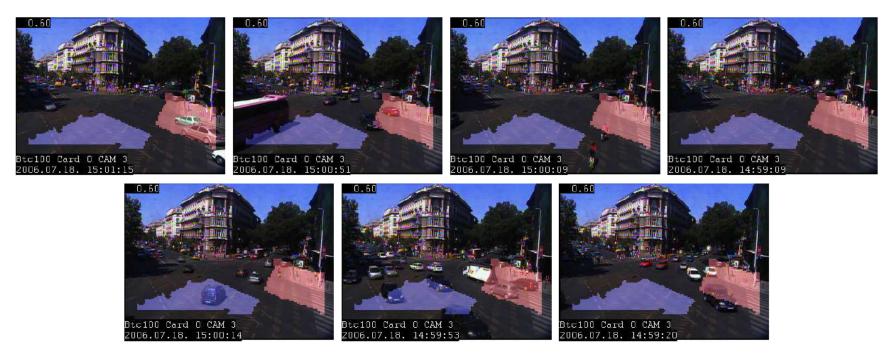
- 3 main phases:
 - Preprocessing: background-foreground separation + optical flow calculation and filtering, connected components
 - Observation construction: Fit MOG on components' motion directions inside ROI
 - Anomaly detection II

	Preprocessing	Observations	Detection	Total
Time (msec)	51.9	17.24	0.79	69.93

• Performance: 14 FPS on 160x120 video

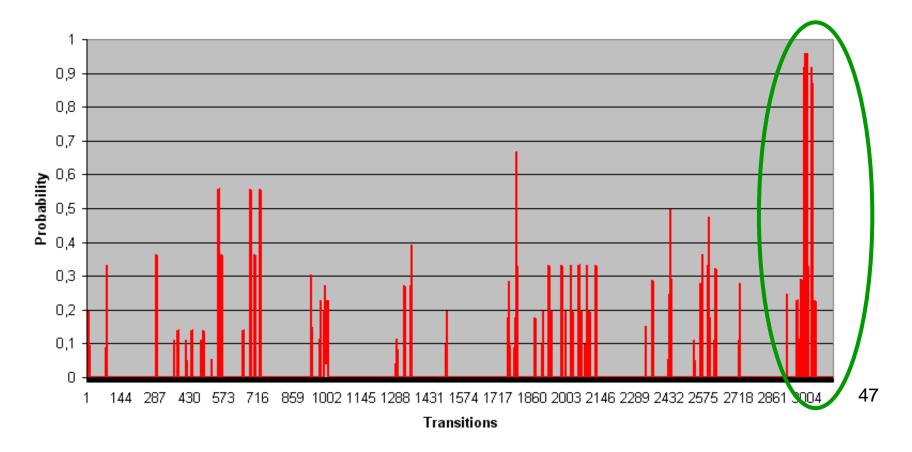
Hierarchical HMM

- Higher-level HMM, built on top of several ROI models
- Includes explicit modeling of "no motion"
- States after HMM training:



Anomaly detection III.

- Generate state sequence for 3 frames
- Analyze the state transtions, plot on graph



Anomaly detection III.

2006.07.18. 15:01:17

Detected frames

Conclusion

- Hidden Markov Model approach
 - Modeling motion directions in urban traffic
 - No tracking is necessary for anomaly detection
 - Solved a probability representation problem -> now it is possible to model the blobs with MOGs
- Hierarchical HMM approach
 - Explicit modelling of "no motion"
- Visualization of the traffic
- Anomaly detection
- Performance test

Publications

- Á. Utasi, L. Czúni, "HMM-based Unusual Motion Detection without Tracking", 19th Int. Conf. on Pattern Recognition, Tampa, USA, 08-11 Dec 2008
- Á. Utasi, L. Czúni, *"Visual Analysis of Urban Road Traffic"*, 15th Int. Conf. on Systems, Signals and Image Processing, Bratislava, Slovakia, 25-28 June 2008
- Z. Szlávik, L. Kovács, L. Havasi, Cs. Benedek, I. Petrás, Á. Utasi, A. Licsár, L. Czúni, T. Szirányi, *"Behavior and Event Detection for Annotation and Surveillance"*, 6th Int. Workshop on Content-Based Multimedia Indexing, London, UK, 18-20 June 2008.
- Á. Utasi, L. Czúni, *"Anomaly Detection with Low-level Processes in Videos"*, 3rd Int. Conf. on Computer Vision Theory and Applications 2008, Madeira, Portugal, 22-25. Jan 2008
- Á. Utasi, L. Czúni, "Unusual Event Detection in Low-Quality Urban Surveillance Videos with Modelling Motion Directions", Asia-Pacific Workshop on Visual Information Processing, Tainan, Taiwan, 15-17. Dec. 2007