An order-independent sequential thinning algorithm

Péter Kardos University of Szeged

Summer School on Image Processing 2009

#### Content

- Skeletonization by thinning
- Order-independent thinning
- Proposed algorithm
- Results

#### Skeleton

- Region-based shape descriptor
- Definitions:
  - Result of the Medial Axis Transform
  - Praire-fire analogy
  - Centers of maximal inscribed hyperspheres.



Requirements of skeletonization

- Topology preserving
- 1-pixel thin
- Medialness
- Invariant under the most important geometrical transformations

## Thinning

- Simulation of the fire-front propagation
- Iterative object reduction
- Parallel and sequential alternatives
  - In sequential case the skeleton depends on the visiting order of border points



# Sequential thinning algorithms

repeatPhase 1:label border points in the imagePhase 2:remove deletable border pointsuntil no points are deleted



#### forward scan



#### forward scan



#### backward scan


#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### backward scan



#### forward scan

#### backward scan





#### **Basic notions**

- C(p): number of black components in the 3x3 environment of p
- *C(p,q)*: number of black components in the 3x4 or 4x3 environment of the set {*p,q*}











C(p)=3 C(q)=1 C(p,q)=3

C(p)=1 C(q)=1 C(p,q)=1



critical pair

#### Expected properties

- Order-independency
- Topology preserving
- 1-pixel thin
- Shape preserving

# Order-independent algorithms

#### **2**D

- Algorithm of Ranwez and Soille (RS)
  - Basically a *shrinking* algorithm!
  - End-point detection needed (anchor points)
- Our proposed algorithm
  - End-point definition included
- 3D
  - Unsolved problem












































#### Behavior of algorithm RS



Expected properties - algorithm RS

- Order-independency
- Topology preserving
- 1-pixel thin
- Shape preserving



What is an end-point?

- Different possible definitions
- We use the following supports and their k·90° rotations:

















































# A more complicated case



# A more complicated case



How is order-independency guaranteed?

- Detect end-points in the first phase
- Precedency on different types of points in critical pairs:
  - ο α-, β-, and γ-points
  - higher or lower index

### Labeling the points of critical pairs



#### Labeling the points of critical pairs



## Labeling the points of critical pairs



### Proposed algorithm

**Input:** array *P* containing the picture **Output:** array *P* containing the skeleton

repeat

Phase 1:detect end-pointslabel  $\alpha$ -,  $\beta$ -,  $\gamma$ - and corner points in PPhase 2:for each labeled point pif C(p)=1 and p is not an end-point andp is a preferred pointthendelete p

until no points are deleted

Expected properties proposed algorithm

- Order-independency
- Topology preserving
- 1-pixel thin
- Shape preserving







Proposed algorithm (1085)

Algorithm RS (1781)
## Results





Proposed algorithm

Algorithm RS

## Results



Proposed algorithm



Algorithm RS

