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Introducing the topic

• The task of Image Analysis is to extract relevant

information from images.

• Numerical descriptors, such as area, perimeter, moments
of the objects are often of interest, for the tasks of shape
analysis, classification, etc.

The standard image analysis task (and its solution)
1 Sample preparation and Imaging

2 Pre-processing (optional)
3 Segmentation

• Usually crisp

4 Feature extraction
• Discrete representation problematic

5 Classification, statistical evaluation, . . .
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Introducing Fuzzy
• Do not throw away information by making crisp decisions.
• A fuzzy approach takes a more nuanced view, allowing

preservation of more information.
• A representation based on fuzzy sets may may provide

numerical descriptors with higher precision than what can
be achieved from a crisp representation.

The image analysis task and its fuzzy solution
1 Sample preparation and Imaging

2 Pre-processing (optional)
3 Segmentation

• Fuzzy segmentation (a lot of freedom)

4 Feature extraction
• Fuzzy representation provides robustness and precision
• Not always easy to interpret the results; different meanings of

memberships

5 Classification, statistical evaluation, . . .
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Introducing The Coverage Model

• Keep good sides of fuzzy; stay close to the digital image,
high information content, soft boundaries, robustness.

• Restrict to one single meaning of memberships; clear unique
interpretation, enabling theoretical results on error bounds.

The image analysis task and its pixel coverage solution
1 Sample preparation and Imaging

2 Pre-processing (optional)
3 Segmentation

• Pixel coverage segmentation (restricted freedom)

4 Feature extraction
• Features of the coverage representation
• Easy to interpret the results, robustness and precision

5 Classification, statistical evaluation, . . .
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The Pixel Coverage Model

• The fuzzy framework is very powerful.

• Images contain discrete representations of real continuous
objects.

• Our aim is usually to obtain information about continuous real
objects, having available their discrete representations.

Pixel coverage digitization
Let the value of a pixel be equal to the part of it being covered by
the image object.

• A useful representation that stays close to the original image
data.

• Is based on very weak assumptions about the imaged
objects.

• Utilizing the coverage information, significant improvement in
precision of extracted feature values can be reached.
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Some background
⇒

We are not first ones to work with mixed/partially covered image
elements.

• Features directly from grey-level images
• “Grey levels can improve the performance of binary image

digitizers” - N. Kiryati and A. Bruckstein, 1991.
• Work of Eberly and Lancaster, 1991, and Verbeek and van

Vliet, 1993, on grey-level information for length estimation
• Surprisingly few followers. A problematic dependence

between imaging method and feature extraction.
• “Mixed pixels” - satellite imaging (soft classification)
• “Partial volume effects” - tomographic imaging

• Fuzzy segmentation techniques – The Coverage model is a
special case of the more general Fuzzy model

• The presented pixel coverage model assumes crisp objects.
• The membership of a pixel has a precisely defined meaning.
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Pixel coverage digitization
Let a square grid in 2D be given. The Voronoi region associated
to a grid point (i, j) ∈ Z

2 is called pixel p(i,j).

Definition (non-quantized case)

For a given continuous object S ⊂ R
2, inscribed into an integer

grid with pixels p(i,j), the pixel coverage digitization of S is

D(S) =

{(

(i, j),
A(p(i,j) ∩ S)

A(p(i,j))

) ∣

∣

∣

∣

(i, j) ∈ Z
2

}

,

where A(X) denotes the area of a set X.

Digital images → Quantized grey values

Definition (n-level quantized case)

Dn(S) =

{(

(i, j),
1

n

⌊

n
A(p(i,j) ∩ S)

A(p(i,j))
+

1

2

⌋) ∣

∣

∣

∣

(i, j) ∈ Z
2

}

,

where ⌊x⌋ denotes the largest integer not greater than x.
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Pixel coverage digitization

The membership value of a pixel is
equal to its relative coverage by the digitized object:

Example: Pixel coverage approximated by super sampling;

α1 = 5
16

, α2 = 11
16

.
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Pixel coverage segmentation
We have proposed five segmentation methods which provide (approximate)
pixel coverage images:

1 Direct assignment of area coverage values from a continuous
segmentation model.

• A. Tanács, C. Domokos, N. Sladoje, J. Lindblad, and Z. Kato. Recovering affine

deformations of fuzzy shapes. SCIA 2009. LNCS-5575, pp. 735–744, 2009.

2 A method based on mathematical morphology and a double thresholding
scheme.

• N. Sladoje and J. Lindblad. High Precision Boundary Length Estimation by Utilizing

Gray-Level Information. IEEE Trans. on PAMI, Vol. 31, No. 2, pp. 357–363, 2009.

3 A method providing local sub-pixel classification extending any existing
crisp segmentation.

• N. Sladoje and J. Lindblad. Pixel coverage segmentation for improved feature estimation.

ICIAP 2009. LNCS-5716, pp. 929-938, 2009.

4 A framework (and methods) for coverage segmentations of graphs.
• F. Malmberg, J. Lindblad, I. Nyström. Sub-pixel segmentation with the image foresting

transform. IWCIA 2009. LNCS-5852, pp. 201–211, 2009.

• F. Malmberg, J. Lindblad, N. Sladoje, I. Nyström. A Graph-based Framework for Sub-pixel

Image Segmentation. Theoretical Comput. Sci. Vol 412, No 15, pp. 1338–1349, 2011.

5 Method based on energy minimization of a Mumford-Shah style functional.
• J. Lindblad and N. Sladoje. Coverage Segmentation based on Linear Unmixing and

Minimization of Perimeter and Boundary Thickness. Submitted.
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Pixel coverage segmentation

Definition (pixel coverage segmentation)
A pixel coverage segmentation of an image I into m components
ck, k ∈ {1, 2, . . . ,m} is

S(I) =
{(

(i, j), α(i,j)

) ∣

∣ (i, j) ∈ ID

}

,

where

α(i,j) = (α1, . . . , αm) ,

m
∑

k=1

αk = 1 , αk =
A(p(i,j) ∩ Sk)

A(p(i,j))
,

and where Sk ∈ R
2 is the extent of the component ck and ID ⊆ Z

2

is the image domain.

The sets Sk are, in general, not known, and the values αk have to
be estimated from the image.
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Method 3: Un-mixing based on
local classification

Assumption
Partial pixel coverage exist only at the object boundaries of an
existing crisp segmentation.

Approach
Re-assign class belongingness to the boundary pixels based on a
local classification using the surrounding non-boundary pixels.

To obtain a pixel coverage segmentation, we propose a method
composed of the following four steps:

1 Application of a crisp segmentation method, appropriately
chosen for the particular task

2 Selection of pixels to be assigned partial coverage

3 Application of a liner mixture model for “de-mixing” of partially
covered pixels and assignment of pixel coverage values

4 Ordered thinning of the set of partly covered pixel to provide
one pixel thin 4-connected regions of mixed pixels
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Steps 1 and 2.

1. Any crisp segmentation model.

• For the example to come, we used Linear Discriminant
Analysis in combination with Iterated Relative Fuzzy
Connectedness1

2. Selection of pixels to re-evaluate

• All pixel which are 4-connected to a pixel with a different
label.

1J. Lindblad, N. Sladoje, V. Ćurić, H. Sarve, C.B. Johansson, and G. Borgefors.
Improved quantification of bone remodelling by utilizing fuzzy based segmentation.
SCIA 2009
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3. Computation of partial pixel coverage values
3.1 Estimate the spectral properties ck of the pure classes locally.

• The mean values of the respective classes present in the
assumed completely covered pixels in a local Gaussian
neighbourhood.

3.2 Compute the mixture proportions ak of the pixels selected in
step 2.

• The intensity values of a mixed pixel p = (p1, p2, . . . , pn) (n
being the number of channels of the image) are assumed, in
a noise-free environment, to be a convex combination of the
pure classes ck:

p =

m
∑

k=1

αkck ,

m
∑

i=k

αk = 1 , αk ≥ 0 . (1)

where each coefficient αk corresponds to the coverage of the
pixel p by an object of a class ck.
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3. Computation of partial pixel coverage values

In the presence of noise, it is not certain that there exists a
(convex) solution to the linear system (1). Therefore we
reformulate the problem as follows:

Find a point p∗ of the form p∗ =

m
∑

k=1

α∗
k ck, such that p∗ is a convex

combination of ck and the distance d(p, p∗) is minimal. We solve
the constrained optimization problem by using Lagrange
multipliers, and minimize the function

F(α1, . . . , αm, λ) = ‖p −
m
∑

k=1

αkck‖
2
2
+ λ(

m
∑

k=1

αk − 1)

over all αk ≥ 0. This leads to a least squares type of computation.

The obtained solution provides estimated partial coverage of the
pixel p by each of the observed classes ck.
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4. Ordered thinning

To ensure one pixel thick boundaries, the “least” mixed pixels are
one at a time assigned to their most prominent class, until only
one pixel thick mixed boundaries remain.

(a) Test object (b) Part of pixel cov-
erage segm.

(c) Part of re-
evaluated set
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Some features that benefit from a pixel
coverage representation.

Area and other geometric moments

• N. Sladoje and J. Lindblad. Estimation of Moments of Digitized Objects with
Fuzzy Borders. ICIAP’05, LNCS-3617, pp. 188-195, Cagliari, Italy, Sept.
2005.

mp,q(S) =
1

rp+q+2
m̃(rS) +O

(

1

r
√

n

)

Perimeter and boundary length

• N. Sladoje and J. Lindblad. High Precision Boundary Length Estimation by
Utilizing Gray-Level Information. IEEE Trans. on PAMI, Vol. 31, No. 2, pp.
357-363, 2009.

γ
(0,q)
n =

2q

q +

√

(
√

n2 + q2 − n)2 + q2

, |εn| = O(n−2)

Signature

• J. Chanussot, I. Nyström and N. Sladoje, Shape
signatures of fuzzy star-shaped sets based on
distance from the centroid, Pattern Recognition
Letters, vol. 26(6), pp. 735-746, 2005.
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Perimeter estimation

Formulation of the problem:

Having a discrete representation of a real object, digitized in an integer grid,
estimate its perimeter (length of its border) with as small error as possible.

We wish to obtain as correct feature values as possible - accuracy,
and that repeated measurements provide similar results - precision.

One approach

Local polygonalization
Approximate the object perimeter
with the perimeter of a locally
defined polygon.

Direct use of the perimeter of the
polygon gives, on average, an
overestimate.
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How to assign local step lengths
Using 4 edge directions.

Digital edge
√

2 times longer
than true edge.

Using 8 edge directions.

Edge 1.08 times longer than true edge.

Freeman 1970:

a = 1, b =
√

2

Using a = 1, b =
√

2 lead
to an overestimate.
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Error minimization
Verwer 1991

• Decide what error to minimize
• The mean square error (MSE) minimization leads to estimators

that, in average, perform well for lines of all directions.
• The maximal error minimization leads to estimator with a better

“controllable” error.

• Compute optimal step lengths to minimize the chosen error
measure when estimating the length of straight segments of
arbitrary direction.

• To minimize MSE: a = 0.9481 and b = 1.3408.
Root Mean Square (RMS) Error is 2.33%.

• To minimize MaxErr: a = 0.9604 and b = 1.3583.
Maximal Error is 3.95%.

• The error does not decrease with increasing resolution
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The straight edge of a halfplane

Discrete, grey-scale, non-quantized
Observe a halfplane H = {(x, y) | y(x) ≤ kx + m, k,m ∈ [0, 1]},
over an interval x ∈ [0,N], N ∈ Z

+.
Let I be the non-quantized pixel coverage digitization I = D(H)
(∆x = ∆y = h = 1 by definition.)

Then it holds that
y(i) =

∑

j≥0

I(i, j)− 0.5

k(i) = y(i + 1)− y(i) = k

l =
√

N2 + (kN)2 =

N−1
∑

i=0

√

1 + k(i)2

The length of the edge segment l is “estimated” with no error.
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Non-quantized example
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0.00
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0.98

0.10
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0.45 0.45 0.45 0.45
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0

1
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3

l = 4.39

sc:
dc:
lc:

Figure: Example illustrating edge length estimation based on the difference dc of column
sums sc for a segment (N = 4) of a halfplane edge given by y ≤ 0.45x + 0.78.

sc =
∑

j≥0

I(c, j) , dc = sc+1 − sc , lc =
√

1 + d2
c
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The straight edge of a halfplane

Discrete, grey-scale, quantized
Observe a halfplane H = {(x, y) | y(x) ≤ kx + m, k,m ∈ [0, 1]},
over an interval x ∈ [0,N], N ∈ Z

+.
Let I be the quantized pixel coverage digitization I = Dn(H)

Then

l̃ =

N−1
∑

c=0

√

1 + d2
c

provides an estimate of the edge length l.

However, this is in general an overestimate (zig-zag steps).
Scaling the estimate with an optimally chosen factor γn < 1, gives
an estimate with a minimal error.

l̂ =

N−1
∑

c=0

γn

√

1 + d2
c



Pixel coverage
models,

segmentation,
and feature
extraction

Joakim Lindblad

Introduction

Pixel coverage
model

Pixel coverage
segmentation

Feature
estimation

Evaluation
examples

Three application
examples

Conclusion

Quantized example
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Figure: Example illustrating edge length estimation based on the difference dc of column
sums sc for a segment (N = 4) of a halfplane edge given by y ≤ 0.45x + 0.78.

sc =
∑

j≥0

I(c, j) , dc = sc+1 − sc , lc =
√

1 + d2
c
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Minimization of the maximal
relative error

Result [Sladoje and Lindblad, PAMI 2009]

The maximal error is minimized for

γq
n =

2q

q +
√

(
√

n2 + q2 − n)2 + q2

, where q = j − i .

The maximal error is |ε| = 1 − γq
n .

Quantization leads to q > 1. In 2D it holds that q ≤ 3.
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Asymptotic behaviour
Observing the estimation error as a function of the number of
grey-levels n, we conclude that

|εn| = O

(

1

n2

)

.
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Figure: Asymptotic behaviour of the maximal error for straight edge
length estimation using γn = γ

1
n ; theoretical (line) and empirical (points)

results.
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Assignment of a length to a
segment

For lines of a slope k ∈ [0, 1], each value dc depends on at most six pixels, located
in a 3 × 2 rectangle:

c

r−1

r

r+1

c+1

(a) k = 0.6

c

r−1

r

r+1

c+1

(b) k = 1

Figure: Regions where lines y = kx + m with k,m such that
r − 1

2
≤ u = k(c + 1

2
) + m ≤ r + 1

2
, intersect a 3 × 2 configuration.
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Assignment of a length to a
segment - local conditions

Analytically defined half-plane
A condition to be checked for a 3 × 2 neighbourhood of a pixel p(c,r) in continuous
case is

r −
1

2
≤ u = k(c +

1

2
) + m ≤ r +

1

2
,

for a line y = kx + m

Locally observed discretized half-plane
In a discrete case, u = k(c + 1

2
) + m is estimated by

ũ = r −
3

2
+

1

2

6
∑

i=1

p̃i

and the same condition

r −
1

2
≤ ũ ≤ r +

1

2

is used.
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Local contributions calculations

Local contributions to the length of a segment
A local length assigned to a 3 × 2 neighbourhood of a pixel p(c,r) is

l̃D(c,r) =















√

1 + d2
(c,r) , ũ ∈

(

r − 1
2
, r + 1

2

)

1
2

√

1 + d2
(c,r) , ũ = r ± 1

2

0 , otherwise .

Isometries of the plane - cases when |k| 6∈ [0, 1]

• If |k| 6∈ [0, 1], we need 2 × 3 configuration to estimate the slope; when we
exchange roles of the axes, we can apply the same algorithms as for the
former case.

• Instead of changing size of configuration depending on k, we use 3 × 3

configurations in all cases.

• Apply isometric transformations to the 3 × 3 to make |k| ∈ [0, 1].
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Algorithm
Input: Pixel coverage values p̃i, i = 1, . . . , 9, from a 3 × 3 neighbourhood T(c,r).

Output: Local edge length l̂T
(c,r)

for the given 3 × 3 configuration.

if p̃7 + p̃8 + p̃9 < p̃1 + p̃2 + p̃3 /* y ≥ kx + m */
swap(p̃1, p̃7)
swap(p̃2, p̃8)
swap(p̃3, p̃9)

endif

if p̃3 + p̃6 + p̃9 < p̃1 + p̃4 + p̃7 /* k < 0 */
swap(p̃1, p̃3)
swap(p̃4, p̃6)
swap(p̃7, p̃9)

endif

if p̃4 + p̃7 + p̃8 < p̃2 + p̃3 + p̃6 /* k > 1 */
swap(p̃2, p̃4)
swap(p̃3, p̃7)
swap(p̃6, p̃8)

endif

s̃1 = p̃1 + p̃4 + p̃7

s̃2 = p̃2 + p̃5 + p̃8

s̃3 = p̃3 + p̃6 + p̃9

ũl = (̃s1 + s̃2)/2

ũr = (̃s2 + s̃3)/2

if 1 ≤ ũl < 2

d̃l = s̃2 − s̃1

l̂l =
γn

2

√

1 + d̃2
l

else
l̂l = 0

endif

if 1 < ũr ≤ 2

d̃r = s̃3 − s̃2

l̂r = γn

2

√

1 + d̃2
r

else
l̂r = 0

endif

l̂T(c,r) = l̂l + l̂r

Only integer arithmetics used locally (fast, exact).
Only local information is used (fast, stable, parallelizable).
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Perimeter estimation errors
Trade-off between spatial and grey-level resolution
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Figure: Relative errors in percent for test shapes digitized at increasing
resolution for 5 different quantization levels and non-quantized (n = ∞).
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Segm. (method 2) + perimeter estimation
Digital photos of the straight edge of a white paper on a black
background at a number of angles using a Panasonic DMC-FX01
digital camera in grey-scale mode.
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Figure: (a) Close up of the straight edge of a white paper imaged with a
digital camera. (b) Segmentation output from Algorithm 2 using 130

positive grey-levels. Approximating edge segments are superimposed.
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Results – Segm. method 2 + perimeter est.

The observed noise range in the images is between 20 and 50
grey-levels, out of 255, and the found value of n in the
segmentation varies from 90 to 140 for the different photos.

The observed maximal errors for
the methods are as follows:

• Proposed method 0.14%;

• Binary 3.95%;

• Corner count 1.61%;

• Eberly & Lancaster 8.78%;

• Gauss σ = 2 + E & L 0.57%;

• Gauss σ = 4 + E & L 0.58%.

0 5 10 15 20 25 30 35 40 45

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

Angle in degrees

S
ig

n
e

d
 r

e
la

ti
v
e

 e
rr

o
r 

in
 %

 

 
Proposed method

Binary, n=1

Corner count

Eberly & Lancaster

Gauss σ=2 + E & L

Gauss σ=4 + E & L



Pixel coverage
models,

segmentation,
and feature
extraction

Joakim Lindblad

Introduction

Pixel coverage
model

Pixel coverage
segmentation

Feature
estimation

Evaluation
examples

Three application
examples

Conclusion

Segm. 3 + coverage,perimeter,area

Synthetic data with added noise
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Noise free crisp segmentation

Noise + pixel coverage segmentation

(a) Coverage values
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Noise free crisp segmentation

Noise + pixel coverage segmentation

(b) Perimeter estimate
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Noise free crisp segmentation

Noise + pixel coverage segmentation

(c) Area estimate

Figure: Estimation errors for increasing levels of noise. Green is noise
free crisp reference. Bars represent max and min.
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Segm. method 5 Energy minimization

Segmentation formulated as an energy minimization problem:

J(A) = D(A) + µP(A) + νT(A) + ξF(A) ,

where D(A),P(A),T(A),F(A) are data term, overall perimeter,

boundary thickness, and total image fuzziness, and where
µ, ν, ξ ≥ 0 are weighting parameters,

The sought coverage segmentation A∗ is obtained by minimizing J

over the set of coverage segmentations>

A∗ = arg min
A

J(A). (2)

Being able to differentiate the energy functional J, we can utilize
powerful numerical optimization methods. We used the Spectral
Projected Gradient method.
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Segm. method 5 Energy minimization

Figure: Example colour image with three square training regions.
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Segm. method 5 Energy minimization

(a)

(b)

(c)

Figure: (a) Segmentation obtained by linear discriminant analysis. (b)
Segmentation obtained by fuzzy c-means clustering. (c) Segmentation
obtained by energy minimization.
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Application 1
Affine registration of digital X-ray images of hip-prosthesis

implants for follow up examinations

Segmentation method 1, using active contours (snakes), modified
to provide pixel coverage values utilized for improved moments’
estimation in the registration process.
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Registration results of 2000 synthetic images using different
quantization levels of the fuzzy boundaries.
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Application 1

δ = 2.17% δ = 4.81% δ = 1.2%

Figure: Real X-ray registration results. (a) and (b) show full X-ray
observation images and the outlines of the registered template shapes.
(c) shows a close up view of a third study around the top and bottom part
of the implant.
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Application 2

Measure bone implant integration for the purpose of evaluating
new surface coatings which are stimulating bone regrowth around
the implant.

Segmentation method 3, area and boundary estimates.
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Application 2

(a) (b) (c) (d) (e)

Figure: (a): The screw-shaped implant (black), bone (purple) and soft
tissue (light grey). (b) Part of a crisp (manual) segmentation of (a). (c)
The set of re-evaluated pixels. (d) and (e) Pixel coverage segmentations
of the soft tissue and the bone region, respectively.

Result:
Approximately a 30% reduction of errors on average, as
compared to when using estimates from the crisp starting
segmentation.
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Application 3
User assisted segmentation of the spleen, for medical diagnosis
based on accurate feature estimates. Method 4, area est.

Result: 50% reduction of standard deviation of estimates, as
compared to when using estimates from the crisp starting segmentation.
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Application 3

User assisted segmentation of the spleen, for medical diagnosis
based on accurate feature estimates.

Result: Assuming that the mean result is correct, more than 3 times

reduction of the maximal error, as compared to when using estimates
from the crisp starting segmentation.
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Conclusions

• Pixel coverage representations are shown to be superior to
crisp image object representations for many reasons.

• By suitably utilizing information available in images it is
possible to perform a Pixel coverage segmentation.

• It is relatively easy to extend any existing crisp segmentation
to a coverage segmentation.

• We observe that even for moderate amount of noise, the
achieved pixel coverage representation provides a more
accurate representation of image objects than a perfect,
noise free, crisp representation.

• For a number of shape features, significant performance
improvement is shown, both theoretically and empirically.

• More research work remains! :-)
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