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Tomography

* Reconstruction tomography




Tomography

* Discrete tomography

— Discrete pixel intensities from a finite
set of few possible values

— Several applications exist




Discrete Tomography

* Problems:
— only a few available projections
— "switching components”

At

— reconstruction is NP-hard if certain
geometrical conditions are not met

* Binary tomography
— represented by a binary matrix
— each pixel is a member of {0,1}



Preliminaries 1.
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Preliminaries 2.

e 4-adjacency

e 8-adjacency

* 4/8-connectedness

* h-convexity, v-convexity



Preliminaries 3.

3t

* F,is an hv-convex polyomino

* F,is a v-convex,
8-, but not 4-connected discrete set



Reconstruction in binary
tomography

e Given beforehand:
— a class G of discrete sets

— two projections vectors, Hand V

e Task:
— construct a discrete set F € G, where

H(F)=Hés V(F)=V
— prior information about the geometry of
the image is needed
= obtain from the projections
themselves!



Artifical neural networks

Feedforward network as

Multilayer architecture

1 hidden layer

Activation function:
sigmoid (1/(1+e™))

Back propagation plus

momentum technique
for learning




Implementation és initialization

e C++, based on Bobby Anguelov’s implementation
— not object-oriented; usage of multi-dimensional arrays
* Initialization:
— weights: randomly in the interval [-0.5, 0.5]

* Parameters to set:

— num. of hidden neurons: strongly depends on the given task
— o learning rate: a value between 0 and 1, closer to zero
— 103> o > 107

— 3 momentum: a value between 0 and 1, closer to one
—(3=0.9



Partitioning the data set

Initial Data Set

—

Training Set

Generalization Set

* Training Set Accuracy — TSA

* Generalization Set Accuracy — GSA
* Validation Set Accuracy — VSA

60%—20%—20%
classic split



Input of the network

* m+n dimensional vector: (hy, h,, ..., h, vy, v,, ...,
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Classification of hv-convex
polyominoes and random matrices

* TS: 2880 samples, GS: 960 samples, VS: 960 samples
* 100 epochs, o« =0.001,3=0.9

e Few number of hidden units is sufficient

Size Hidden units TSA(%) GSA(%) VSA(%) | Error(%)
10 4 93.819 94.167 94.271 5.729
20 6 99.931 99.688 99.583 0.417
40 8 100.0 99.896 100.0 0.0
60 8 100.0 99.792 99.792 0.108
80 8 100.0 100.0 100.0 0.0
100 8 100.0 100.0 100.0 0.0




Classification of hv-convex
polyominoes and random matrices
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Separating hv-convex polyominoes
and discrete sets of HV),

* TS: 2880 samples, GS: 960 samples, VS: 960 samples

e Resetting parameters during the learning phase

Size Epochs Hidden units Q VSA(%) Error(%)
10 30000 30 103 51.5625 48.4375
10 40000 40 103 — .. — 1.25- 10* 51.1458 48.8542
20 30000 40 103 59.2708 40.7202
40 3000 120 104 67.0833 32.9167
60 2500 100 10*—5- 107 73.7152 | 26.2848
80 2500 120 104 —5- 107 80.0347 19.9653
80 2500 160 104 —5- 107 79.9306 20.0694
100 2000 175 5-10° — 107 88.3333 11.6667




Separating hv-convex polyominoes
and discrete sets of HV),
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Classification of 8-, but not 4-
connected hwv-convex discrete sets

and hv-convex polyominoes

 TS: 1800 samples, GS: 600 samples, VS: 600 samples

 Growing dataset method

— growing subset of training patterns, initially 360 samples

 Even more interactive; careful settings needed

Size Epochs Hidden units xQ VSA(%) Error(%)
10 50000 30 104 78.6667 21.3333
50 50000 120 103 — ... —» 10° 85.5556 14.4444
100 10000 200 103 — ... —» 107 88.8889 11.1111
150 7500 250 103 — ... —» 107 92.6667 7.3333

200 3000 300 103 — ... — 107 94.9444 5.0556




Classification of 8-, but not 4-
connected hwv-convex discrete sets

and hv-convex polyominoes
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