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Overview

Why shape and what is shape?

o Running example: segmentation.

o Representation.

Classical approach:

o Distances, templates, comparison.

Nonlocal interactions.

o (Higher-order) active contours (models, stability);
o Phase fields (relation to contours, advantages);

o Binary fields (relation to phase fields, advantages).
Other models:

o Low-curvature networks; directed networks; multilayer model;
complex shapes.

Future.



Why shape? Shape is useful

Many subsets of the world are
differentiated from their

The subset has geometry.

The geometry may be
with other properties of the
subset.

o Thus it can be used to make
inferences about these properties,
and




Example: segmentation
.00

Find the region R In the data

domain that ' a
given

Many applications:

o Oll strata, roads, rivers, trees;
cells; brain fibres;

Data volume Is often huge:
o EO satellite generates 1 TB/day.

o 62% growth in 2009; 35ZB by
2020.

Automated inference Is crucial
for full exploitation of this data.



http://www.google.co.uk/images?rlz=1C1GPCK_enGB400&q=coronal+mass+ejection&qscrl=1&um=1&ie=UTF-8&source=og&sa=N&hl=en&tab=wi&biw=1920&bih=1085

Why shape? Shape Is necessary

Images are complex:

o Generic techniques are often
for automatic
solutions.

Regions of interest are often
distinguished by their
shape:

o A model of
IS crucial.

o Prior information K.




What Is shape?

A subset of a manifold.
o E.g. codimension-0 submanifold of R".

o Complicated space R.

1 K'is not usually
enough to specify one subset:

o Uncertainty. *1 %*
Need probability distribution P(R | K): &t 4#
o “What we know about R € R given prior ERN
information K. % N
E.g. that R corresponds to entity X and... 5 B

o Probability distribution often specified by ?: 3%» X

an

P(R|K) x exp{ —E(R|K)}




Example: segmentation

Probability region R corresponds to X,
given image | and prior information K.

P(R|I,K) x P(I|R, K)P(R|K)
P(l| R, K): image model.

o Probability observed image is 1, given
and prior

Information K.
P(R | K): shape model.

o Probability that
given prior information K.




Which probability distributions?

Invariance (maybe):
oP@R))=PR),geGC.

o G: Euclidean, similarity, isometry, ...
_OW entropy.

<nowledge of one part of a subset
poundary should enable

of other parts:

o H(X, Y) = H(Y | X) + H(X) .

o Long-range dependencies.

such distributions and
on which space?




Which space?

.
Space R Is hard to deal with directly:
o Use'’ ' S.
One-to-one (p: R — S invertible):
o Characteristic function; distance function.
o Seems good, but does space,
Many-to-one (p: R — S not injective):

o Landmark points; shape space; Fourier descriptors; medial
axis; ‘canonical form’.

o Plus: In representation (p(R) = p(g(R)));
o Minus: (R cannot be reconstructed from S =
p(R)).

One-to-many (p: § — R):
o Parameterized closed curve (‘contour’); phase field.
o Have to deal with (group H) or model.
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Classical approach
e
Define a distance on '
d4(s, 9.
o For one-to-many p, minimization is needed to
define a distance on R.

o For many-to-one p, distance is pseudometric
on k.

Examples:
o Length of geodesics in a on

o Graph matching metrics, e.g. for medial axis.

O on isometry
equivalence classes of boundaries.



Classical approach

Construct P(S) using distance(s) from ‘template’
shape(s) S, (part of K).
o is distance: ‘Gaussian’.

P(S|S()) XX exp{—d2(S, S())}

nvariance via mixture model over G:

P(S|So]) o /G dg exp{—d2(S, g(S0))} = exp{—d*(S, " (S0))}

o "> assumes G acts consistently on S.
o Gives rise to

Frequently used implicitly in"’

J



Classical approach

Distance / template approach is
very useful, but...

Does (oris )
IN many important cases:

o Unknown topology and

o E.g. multiple objects.

Need modelling framework

allowing strong constraints on
shape, but with

Networks:

many loops

Multiple
objects:
many
components




What to do?

Explicit nonlocal interactions between boundary points:
o Create :

O templates: topology / extent need not be constrained.
o ‘pose estimation’: invariance is manifest in model.

Exploit between formulations:
o Contour:
Intuitive; facilitates stability analysis.
o Phase field:
Linear space; lower complexity; easy implementation.
o Binary field:

Facilitates sampling, hence learning; allows use of graph cut
algorithms.
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Contours: building E

R Is represented by parameterized Image
closed curve(s), the ‘contour’ ~ . g1

Simplest Invariant energy:
o of oR and of R:

Eco(v) = AcL(y) + acA(v)

L) = [ o)

o Short-range interactions between |,y _ 1 / dt () x (2
boundary points. E

i Describes _ Expressions invariant
. _ to Diff(S1) hence well-
o Insufficient for all but the simplest defined on R.

problems.



Building E: nonlocal interactions

Introduce prior information via
between tuples of points.

v(t'),3(t) X\ (®), (@)
\/ Interaction

E.g. Euclidean invariant two-point term:

B(y) = / / dt dt’ 4(t) - 4(t') T(|y() — 4 (t')])




Energy for networks

Eg(v) =AL(y) + cA(y

ﬁ//dtdtfy

") Wa(|y(t) —

v(t')])

Gradient descent (with large B):

o Acircleis a

of the energy.

¥(r)

¢ x AWK o

have low-energy and are stable:

o The energy Eg

o Good for roads, blood vessels, &c.



Energy for a ‘gas of near-circles’

Experiments show that the same
energy Eg can model a

o l.e. such configurations are

Only true for certain parameter
ranges.

o Which ranges?
Stability analysis enables

to model different
structures.




Stability analysis: circle and bar
e

Expand Eg(y, + 8y) to second order in 6 : Y
OF 1 02E ,
Ea(vo + 07) = E(v) + (87| H(%» + 5@7\ 55 (70)|97")
i .
Must be zero Must be positive definite y0
O means Fourier modes are not

coupled.
o Constraints on parameters.

Ay A
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Phase diagram: bars and circles.
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Example: segmentation

from P(R | I, K) via a MAP
estimate:

A

R = argm]%XP(R\I, K) = arg m}%nE(R, I)

o Where

E(R,I)= —nP(R|I,K) = —nP(I|R, K) — nP(R|K) + const
= E1(1,7v) + Ec(vy) + const

Algorithm: gradient descent using
level sets.

But nonlocal term requires:

O the contour;

O around the contour;

1 J
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Problems with contours
-

Modelling:

o Space of regions is complicated in terms of
No (self)-intersections; relative ; not
not space.

o Probabilistic formulation is

Algorithm (distance function level sets):

o Topology change is limited:
to initial conditions.

o Gradient descent is complicated to implement.

Solution: phase fields.



Phase fields

Phase fields are a level set
representation:

0 G () ={X: d(x) >z}
. Ginzburg-Landau

energy:

D 1, 1 f
Eo(¢) = / {73¢ - 0¢ + >\(1¢4 - §¢2)} : \A/

Define ¢g:

= ar min Fyo(R
PR g¢:c(¢):R o(R?)




Relation to contours

So induced model is
Eos(¢r) ~ A\cL(OR)

et
Because ¢y Is a minimum for fixed R, .-°¢R3
descent with E, descent with L.

Also true to first order In

/ D e—Eo(®) o, =AcL(OR)
Cz (¢):R




Adding nonlocal interactions
.00

Use that d¢ IS zero except near oR, where it
IS proportional to the

__Pe / /a et B0} Ge((0), 1) {3

Enr (¢ // d’z d*2’| 0¢(x)- G(z,x') {0p(a’
QQ

o Can show that Ey (¢g; 8, G) = Eq(7; Ber Go);

Induced model is higher-order active contour.

translate
accurately from contour to phase field. .




Advantages: model
e
Complex topologies are ;
o No constraints on ¢.

Representation space is linear:

o ¢ can be expressed in any basis, e.g., in wavelet
nasis for of shape.

o Probabilistic formulation (relatively) simple
(continuum Markov random field).

Nonlocal terms are quadratic.



Advantages: algorithm

nstances come at

Descent is based solely on gradlent
o Implementation is : No

Complex topologies and multiple ij. 1

\

Neutral initialization and topological
freedom:

o No ' NO

o Number of and
changes easily.

o More robust to choice of initial condition.
Nonlocal terms are linear:

O evaluation in Fourier domain.
o improved.

O implementation.




Example: segmentation

One can build eguivalents of contour
E,(l, 7):

o o¢ the

o(1+ ¢)/21s the

o For example:

Ei(I,7) = /a n- o1y / dn - 0T = Ey(I,6)




Example: segmentation

.00
Calculating the MAP estimate:

A A

R = argm]%n E(R,I) = (.(9)

A

¢ = argmqgn E(¢,I) = E1(I,¢) + Eo(¢) + Enr(9)

Algorithm: gradient descent, but, whereas...

o Nonlocal contour terms are to evaluate,
o Nonlocal phase field terms require only convolution:
5ENL 2 1 02 / /
zﬁ/dx 0°G(z — 2" )p(x
55(2) . ( )p(")




Comparison to contours

-
‘ "as opposed to ‘shrink-

wrapping’ of contour.

o Potential for and hardware
Implementation.



forest42_amin_indeo.avi

to contours

1SON

Compar

duced with respect to contour

by

10N

Execution time re
lementat

imp




Binary field

Because ¢ ~ + 1, one can binarize
(and discretize space):

o Ising model (i.e. boundary length)
plus

Advantages:
o MCMC sampling 1s more efficient:
Can use

o Can use QPBO algorithm:
Gives access to most of global minimum.
Conclusion: works well.

Potential: facilitates parameter and
model
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| ow-curvature networks

Use a more complex interaction to achieve
network branches.

} 90 pixels

QuickBird image of Beijing
(0.6m)




| ow-curvature networks: model

e
Decouple interactions and bar.

Make ‘along-bar’ interactions and

In terms of the contour:

o) =5 [ {ﬁl("y°f) (7 +7) () + B (37) (7 7) \If<£—2)}

oWherer=~-+
Phase field version



| ow-curvature networks: results

LO L1 L2

Q=TP /(TP + FP + FN)

(Quality measure based

on GIS maps of Beijing.)
—d4

0.8644 0.8086

3 Pel —‘ T 0.9779 | 0.9543
e g Gl = [ —
=L el 0.8237 0.6233




| ow-curvature networks: results




ted networks
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Directed networks: idea

Directed networks carry ‘flow’.
Typical properties:

o a of branch widths, but

o changes of width are , except
o at , Where flow is conserved.

Model should reproduce these
properties.

Solution: use vector field to
represent ’

44



Directed networks: model

Use two field variables:
o The phase field, ¢, to describe the region;

o A vector field, v, to describe the flow.

Desiderata:
o (¢, |v]) = (1, 1) and (-1, 0) should be

stable, corresponding to the region and its -

complement;
o v should be smooth;
o v should be parallel to the boundary;
o v should have small divergence.
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geometry

Directed networks
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Evolution of v for gap closure




synthetic result

Directed networks

R
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Directed networks: results




Multilayer binary field

Removes a by representing
overlapping objects on different

Enables control of ‘inter-object’ interactions.
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Complex shapes

Parameter changes can render one or more
Fourier perturbations of a stable circle

Can higher-order effects stabilize them? .

o If so, it can lead to . \
o In principle, could model all . \/‘\/

X \RY
Q . Gos *

Hierarchy of shapes of increasing
bifurcating from circle?



ParametersForPlottingAQuartic.nbp

Summary

Use explicit nonlocal interactions between
boundary points to model shape while

Exploit equivalences between formulations:

O ;
Intuitive; stability analysis for parameter estimation.
O ;
Linear space; lower complexity; easy implementation.
O

Facilitates sampling, hence learning; allows use of graph cut
algorithms.



Future directions

Models:

Complex shapes.

Learning models from examples.
Higher dimensions.

Multiscale: wavelets.

Analysis of binary field model.
Connection to point processes.
Algorithms:

o Efficient sampling (via wavelets?).
o Analysis of the behaviour of graph cut algorithms.
Many new applications:

o Segmentation of cells; oil strata; CME; solar and ionospheric
electron density reconstruction;...



Thank you



Very Vague Big Picture




