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Overview 
2 

 Why shape and what is shape? 
 Running example: segmentation. 

 Representation. 

 Classical approach: 
 Distances, templates, comparison. 

 Nonlocal interactions. 
 (Higher-order) active contours (models, stability);  

 Phase fields (relation to contours, advantages); 

 Binary fields (relation to phase fields, advantages). 

 Other models: 
 Low-curvature networks; directed networks; multilayer model; 

complex shapes. 

 Future. 



Why shape? Shape is useful 
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 Many subsets of the world are 

differentiated from their 

surroundings. 

 The subset has geometry.  

 The geometry may be correlated 

with other properties of the 

subset. 

 Thus it can be used to make 

inferences about these properties, 

and vice-versa. 



Example: segmentation 
4 

 Find the region R in the data 
domain that „corresponds to‟ a 
given „entity‟. 

 Many applications: 
 Oil strata; roads, rivers, trees; 

cells; brain fibres; CMEs;...  

 Data volume is often huge: 
 EO satellite generates 1TB/day. 

 62% growth in 2009; 35ZB by 
2020. 

 Automated inference is crucial 
for full exploitation of this data. 

http://www.google.co.uk/images?rlz=1C1GPCK_enGB400&q=coronal+mass+ejection&qscrl=1&um=1&ie=UTF-8&source=og&sa=N&hl=en&tab=wi&biw=1920&bih=1085


Why shape? Shape is necessary 
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 Images are complex: 

 Generic techniques are often 

insufficient for automatic 

solutions. 

 Regions of interest are often 

distinguished by their 

shape:  

 A model of likely region 
shape is crucial. 

 Prior information K.  R 

Data domain 



What is shape? 

 A subset of a manifold.  
 E.g. codimension-0 submanifold of Rn.  

 Complicated space R. 

 Prior information K is not usually 
enough to specify one subset: 
 Uncertainty.  

 Need probability distribution P(R j K):  
 “What we know about R 2 R given prior 

information K”. 
 E.g. that R corresponds to entity X and… 

 Probability distribution often specified by 
an „energy‟: 
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R 

P(RjK) / expf¡E(RjK)g



Example: segmentation 
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 Probability region R corresponds to X, 

given image I and prior information K. 

 

 P(I | R, K): image model.  

 Probability observed image is I, given 

region R corresponds to X and prior 

information K. 

 P(R | K): shape model.  

 Probability that R corresponds to X 

given prior information K. 

P(RjI;K)/ P(IjR;K)P(RjK)
R 



Which probability distributions? 

 Invariance (maybe): 
 P(g(R)) = P(R) , g 2 G . 

 G: Euclidean, similarity, isometry,… 

 Low entropy. 

 Knowledge of one part of a subset 
boundary should enable prediction 
of other parts: 

 H(X, Y) = H(Y j X) + H(X) . 

 Long-range dependencies. 

 How to build such distributions and 
on which space? 
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Which space? 

 Space R is hard to deal with directly: 
 Use „representation space‟ S. 

 One-to-one (½: R ! S invertible):  
 Characteristic function; distance function. 

 Seems good, but does not simplify space, singular.  

 Many-to-one (½: R ! S not injective):  
 Landmark points; shape space; Fourier descriptors; medial 

axis; „canonical form‟. 

 Plus: invariance already in representation (½(R) = ½(g(R))); 

 Minus: information lost (R cannot be reconstructed from S = 
½(R)). 

 One-to-many (½: S ! R):  
 Parameterized closed curve („contour‟); phase field.  

 Have to deal with redundancy (group H) or induced model. 

9 
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Classical approach 
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 Define a distance on representation space: 
d2(S, S0). 
 For one-to-many ½, minimization is needed to 

define a distance on R.  

 For many-to-one ½, distance is pseudometric 
on R. 

 Examples:  

 Length of geodesics in a Riemannian metric on 
parameterized closed curves. 

 Graph matching metrics, e.g. for medial axis. 

 Gromov-Hausdorff metric on isometry 
equivalence classes of boundaries. 



Classical approach 
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 Construct P(S) using distance(s) from „template‟ 
shape(s) S0 (part of K). 

 Energy is distance: „Gaussian‟. 

 

 

 Invariance via mixture model over G: 

 

 

 „Pose estimation‟: assumes G acts consistently on S. 

 Gives rise to long-range dependencies. 

 Frequently used implicitly in „shape classification‟.  

P(Sj[S0]) /
Z

G

dg expf¡d2(S; g(S0))g ' expf¡d2(S; g¤(S0))g

P(SjS0) / expf¡d2(S;S0)g



Classical approach 
13 

 Distance / template approach is 
very useful, but… 

 Does not apply (or is inefficient) 
in many important cases: 

 Unknown topology and extent. 

 E.g. multiple objects. 

 Need modelling framework 
allowing strong constraints on 
shape, but with weak constraints 
on topology. 

Multiple 

objects: 

many 

components 
Networks: 

many loops 



What to do? 
14 

 Explicit nonlocal interactions between boundary points: 

 Create long-range dependencies; 

 Avoid templates: topology / extent need not be constrained. 

 Avoid „pose estimation‟: invariance is manifest in model. 

 Exploit equivalences between formulations:  

 Contour:  

 Intuitive; facilitates stability analysis.  

 Phase field:  

 Linear space; lower complexity; easy implementation. 

 Binary field: 

 Facilitates sampling, hence learning; allows use of graph cut 
algorithms. 
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Contours: building E 
16 

 R is represented by parameterized 
closed curve(s), the „contour‟ ° . 

 Simplest invariant energy:  

 Length of R and area of R: 

 

 

 Cf. Ising model, Brownian motion. 

 Short-range interactions between 
boundary points. 

 Describes boundary smoothness. 

 Insufficient for all but the simplest 
problems.  

EG;0(°) = ¸CL(°) +®CA(°)

R 
R 

S1 

 

Image 

L(°) =

Z
dtj _°(t)j

A(°) =
1

2

Z
dt [ _°(t) £ °(t)]

Expressions invariant 

to Diff(S1) hence well-
defined on R. 



Building E: nonlocal interactions 
17 

 Introduce prior information via nonlocal 

interactions between tuples of points. 
 

 

 

 

 

 E.g. Euclidean invariant two-point term: 

 

Interaction 

°(t); _°(t)°(t0); _°(t0)

E(°) = ¡

ZZ
dt dt0 _°(t) ¢ _°(t0) ª(j°(t) ¡ °(t0)j)



Energy for networks 
18 

 

 

 

 Gradient descent (with large ¯): 

 A circle is a saddle point of the energy.  

 

 

 

 

 Network structures have low-energy and are stable:  

 The energy EG „models‟ them. 

 Good for roads, blood vessels, &c. 

EG(°) =¸L(°) + ®A(°)

¡ ¯

2

ZZ
dt dt0 _°(t) ¢ _°(t0) ªd(j°(t)¡ °(t0)j)

r 

(r) 

d 



Energy for a „gas of near-circles‟ 
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 Experiments show that the same 
energy EG can model a „gas of 
near-circles‟ :  

 I.e. such configurations are local 
minima. 

 Only true for certain parameter 
ranges. 

 Which ranges? 

 Stability analysis enables fixing of 
parameters to model different 
structures. 



Stability analysis: circle and bar 
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 Expand EG(0 + ) to second order in ±° : 

 

 

 

 Rotation invariance means Fourier modes are not 
coupled.  

 Constraints on parameters. 

 

 

Must be zero Must be positive definite 

EG(°0 + ±°) = E(°0) + h±°j±E

±°
(°0)i+

1

2
h±°j ±2E

±°±°0
(°0)j±°0i


0 

 

¸+ ¸- 



Phase diagram: bars and circles. 
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Numerical check: circles 
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Numerical check: bars 
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EG(°) = ` eG(°)



Example: segmentation 
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 Extract information from P(R j I, K) via a MAP 
estimate: 

 

 
 Where 

 

 

 

 Algorithm: gradient descent using distance function 
level sets. 

 But nonlocal term requires: 
 Extracting the contour; 

 Multiple integrations around the contour; 

 „Velocity extension‟. 

R̂ = argmax
R

P(RjI;K) = argmin
R

E(R; I)

E(R; I) = ¡ lnP(RjI; K) = ¡ lnP(IjR; K)¡ lnP(RjK) + const

= EI(I; °) +EG(°) + const



Roads 
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EI(I; °) =

Z

@R

n ¢ @I(°)¡
Z

@R£@R
@I ¢ @I0 _° ¢ _°0 ª(j° ¡ °0j)



Tree crowns 
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EI(I; °) =

Z

@R

n ¢ @I(°) +

Z

R

(I ¡ ¹)2

2¾2
+

Z

¹R

(I ¡ ¹¹)2

2¹¾2



Problems with contours 
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 Modelling: 

 Space of regions is complicated in terms of  contours: 

 No (self)-intersections; relative orientations; not connected; 
not linear space. 

 Probabilistic formulation is difficult.  

 Algorithm (distance function level sets): 

 Topology change is limited:  

 Not robust to initial conditions. 

 Gradient descent is complicated to implement. 

 Slow.  

 Solution: phase fields.  



Phase fields 
28 

 Phase fields are a level set 

representation:  

 z() = {x : (x) > z}.  

 Basic model: Ginzburg-Landau 

energy: 

 

 

 Define R: 
R 

R = 1 

R = -1 

E0(Á) =

Z

­

½
D

2
@Á ¢ @Á + ¸(

1

4
Á4 ¡ 1

2
Á2)

¾

ÁR = arg min
Á: ³(Á)=R

E0(R)



Relation to contours  
29 

 So induced model is approximately 

 

 

 Because R is a minimum for fixed R, 

descent with E0 mimics descent with L. 

 Also true to first order in fluctuations: 


R1 

R2 
R3 

E0(ÁR) ' ¸CL(@R)

Z

³z(Á)=R

DÁ e¡E0(Á) ¼ e¡¸CL(@R)



 Use that ÁR is zero except near R, where it 
is proportional to the normal vector. 

 

 

 

 
 Can show that ENL(ÁR; ¯, G) ' EQ(°; ¯C, GC); 

induced model is higher-order active contour. 

 Stability analysis constraints translate 
accurately from contour to phase field.  

EQ(°) = ¡¯C

2

ZZ

@R2
dt dt0 _°(t) ¢GC(°(t); °(t

0)) ¢ _°(t0)

ENL(Á) = ¡¯

2

ZZ

­2
d2x d2x0 @Á(x) ¢G(x; x0) ¢ @Á(x0)

Adding nonlocal interactions 
30 



Advantages: model 

 Complex topologies are easily represented:  

 No constraints on Á.  

 Representation space is linear: 

  can be expressed in any basis, e.g., in wavelet 

basis for multiscale analysis of shape. 

 Probabilistic formulation (relatively) simple 

(continuum Markov random field). 

 Nonlocal terms are quadratic. 
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Advantages: algorithm 

 Complex topologies and multiple 
instances come at no extra cost. 

 Descent is based solely on gradient: 

 Implementation is simple: no 
reinitialization. 

 Neutral initialization and topological 
freedom: 

 No initial region; no bias. 

 Number of connected components and 
handles changes easily. 

 More robust to choice of initial condition. 

 Nonlocal terms are linear:  

 Pointwise evaluation in Fourier domain. 

 Computation time improved.  

 Simple implementation. 

+ 
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Example: segmentation 
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 One can build equivalents of contour likelihood  
energies EI(I, °): 

 Á the normal vector; 

 (1 + Á)/2 is the characteristic function. 

 For example:  

 
EI(I; °) =

Z

@R

n ¢ @I(°) '
Z

­

@ÁR ¢ @I = EI(I; Á)



Example: segmentation 

 Calculating the MAP estimate:  

 

 

 

 Algorithm: gradient descent, but, whereas… 

 Nonlocal contour terms are complex to evaluate, 

 Nonlocal phase field terms require only convolution:  

 

R̂ = argmin
R

E(R; I) = ³z(Á̂)

Á̂ = argmin
Á

E(Á; I) = EI(I; Á) + E0(Á) + ENL(Á)

±ENL

±Á(x)
= ¯

Z

­

d2x0 @2G(x¡ x0)Á(x0)

34 



Comparison to contours 
35 

 „Evolution everywhere‟ as opposed to „shrink-

wrapping‟ of contour. 

 Potential for parallelization and hardware 

implementation. 

 

 

forest42_amin_indeo.avi


Comparison to contours 
36 

 Execution time reduced with respect to contour 

implementation by factor of ~10-100. 



Binary field  
37 

 Because Á ' § 1, one can binarize 
(and discretize space):  

 Ising model (i.e. boundary length) 
plus long-range interactions.  

 Advantages:  

 MCMC sampling is more efficient: 

 Can use simulated annealing.  

 Can use QPBO algorithm: 

 Gives access to most of global minimum.  

 Conclusion: gradient descent works well. 

 Potential: facilitates parameter and 
model learning.  
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Low-curvature networks 
39 

 Use a more complex interaction to achieve 

long, straight network branches.  

 

QuickBird image of Beijing 

(0.6m) 

90 pixels 



Low-curvature networks: model 
40 

 Decouple interactions along and across bar.  

 Make „along-bar‟ interactions longer-range and 

stronger.  

 In terms of the contour: 

 

 

 Where r = ° - °0 

 Phase field version analogous. 

EQ(°) = ¡1

2

ZZ

@R£@R0

(
¯1
¡
_° ¢ r̂

¢¡
_°0 ¢ r̂

¢
ª
¡ jrj
d1

¢
+¯2

¡
_° ¢ r̂?

¢¡
_°0 ¢ r̂?

¢
ª
¡ jrj
d2

¢
)



Low-curvature networks: results 
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L0 L1 L2 

0.8644 0.8086 

0.9779 0.9543 

0.8237 0.6233 

Q= TP / (TP + FP + FN) 

(Quality measure based 

on GIS maps of Beijing.) 



Low-curvature networks: results 
42 



Directed networks 
43 

 Directed networks carry „flow‟. 

 Adding a conserved, „fixed magnitude‟ vector field 

prolongs branches; stabilizes a range of widths; 

produces asymmetric junctions. 

 

 This 



Directed networks: idea 

 Directed networks carry „flow‟. 

 Typical properties: 
 a large range of branch widths, but 

 changes of width are slow, except 

 at junctions, where flow is conserved.  

 Model should reproduce these 

properties. 

 Solution: use vector field to 

represent „conserved flow‟.  

44 



Directed networks: model 
45 

 Use two field variables:  

 The phase field, Á, to describe the region; 

 A vector field, v, to describe the flow. 

 Desiderata: 

 (Á, jvj) = (1, 1) and (-1, 0) should be 

stable, corresponding to the region and its 

complement; 

 v should be smooth; 

 v should be parallel to the boundary; 

 v should have small divergence. 

 EP (Á; v) = ENL(Á) +

Z

­

D

2
j@Áj2 + Dv

2
(@ ¢ v)2 + Lv

2
j@vj2 +W(Á; jvj)

v 

¢v ' 0 



Directed networks: geometry 
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Evolution of v for gap closure 
47 



Directed networks: synthetic result 

48 



Directed networks: results 

49 



Multilayer binary field 
50 

 Removes a limitation by representing 

overlapping objects on different layers. 

 Enables control of „inter-object‟ interactions.  



Complex shapes 
51 

 Parameter changes can render one or more 
Fourier perturbations of a stable circle unstable. 

 Can higher-order effects stabilize them? 

 If so, it can lead to new stable shapes. 

 In principle, could model all star domains. 

 

 

 

 Hierarchy of shapes of increasing complexity 
bifurcating from circle? 

 

ParametersForPlottingAQuartic.nbp


Summary 
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 Use explicit nonlocal interactions between 
boundary points to model shape while avoiding 
templates. 

 Exploit equivalences between formulations:  

 Contour:  

 Intuitive; stability analysis for parameter estimation.  

 Phase field:  

 Linear space; lower complexity; easy implementation. 

 Binary field: 

 Facilitates sampling, hence learning; allows use of graph cut 
algorithms. 



Future directions 
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 Models:  
 Complex shapes. 

 Learning models from examples. 

 Higher dimensions. 

 Multiscale: wavelets. 

 Analysis of binary field model. 

 Connection to point processes. 

 Algorithms: 
 Efficient sampling (via wavelets?).  

 Analysis of the behaviour of graph cut algorithms. 

 Many new applications: 
 Segmentation of cells; oil strata; CME; solar and ionospheric 

electron density reconstruction;...  

 



Thank you 
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Very Vague Big Picture 
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PS1 

PS2 PS3 

k? 

k? 


