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Overview 
2 

 Why shape and what is shape? 
 Running example: segmentation. 

 Representation. 

 Classical approach: 
 Distances, templates, comparison. 

 Nonlocal interactions. 
 (Higher-order) active contours (models, stability);  

 Phase fields (relation to contours, advantages); 

 Binary fields (relation to phase fields, advantages). 

 Other models: 
 Low-curvature networks; directed networks; multilayer model; 

complex shapes. 

 Future. 



Why shape? Shape is useful 
3 

 Many subsets of the world are 

differentiated from their 

surroundings. 

 The subset has geometry.  

 The geometry may be correlated 

with other properties of the 

subset. 

 Thus it can be used to make 

inferences about these properties, 

and vice-versa. 



Example: segmentation 
4 

 Find the region R in the data 
domain that „corresponds to‟ a 
given „entity‟. 

 Many applications: 
 Oil strata; roads, rivers, trees; 

cells; brain fibres; CMEs;...  

 Data volume is often huge: 
 EO satellite generates 1TB/day. 

 62% growth in 2009; 35ZB by 
2020. 

 Automated inference is crucial 
for full exploitation of this data. 

http://www.google.co.uk/images?rlz=1C1GPCK_enGB400&q=coronal+mass+ejection&qscrl=1&um=1&ie=UTF-8&source=og&sa=N&hl=en&tab=wi&biw=1920&bih=1085


Why shape? Shape is necessary 
5 

 Images are complex: 

 Generic techniques are often 

insufficient for automatic 

solutions. 

 Regions of interest are often 

distinguished by their 

shape:  

 A model of likely region 
shape is crucial. 

 Prior information K.  R 

Data domain 



What is shape? 

 A subset of a manifold.  
 E.g. codimension-0 submanifold of Rn.  

 Complicated space R. 

 Prior information K is not usually 
enough to specify one subset: 
 Uncertainty.  

 Need probability distribution P(R j K):  
 “What we know about R 2 R given prior 

information K”. 
 E.g. that R corresponds to entity X and… 

 Probability distribution often specified by 
an „energy‟: 

6 

R 

P(RjK) / expf¡E(RjK)g



Example: segmentation 
7 

 Probability region R corresponds to X, 

given image I and prior information K. 

 

 P(I | R, K): image model.  

 Probability observed image is I, given 

region R corresponds to X and prior 

information K. 

 P(R | K): shape model.  

 Probability that R corresponds to X 

given prior information K. 

P(RjI;K)/ P(IjR;K)P(RjK)
R 



Which probability distributions? 

 Invariance (maybe): 
 P(g(R)) = P(R) , g 2 G . 

 G: Euclidean, similarity, isometry,… 

 Low entropy. 

 Knowledge of one part of a subset 
boundary should enable prediction 
of other parts: 

 H(X, Y) = H(Y j X) + H(X) . 

 Long-range dependencies. 

 How to build such distributions and 
on which space? 

8 



Which space? 

 Space R is hard to deal with directly: 
 Use „representation space‟ S. 

 One-to-one (½: R ! S invertible):  
 Characteristic function; distance function. 

 Seems good, but does not simplify space, singular.  

 Many-to-one (½: R ! S not injective):  
 Landmark points; shape space; Fourier descriptors; medial 

axis; „canonical form‟. 

 Plus: invariance already in representation (½(R) = ½(g(R))); 

 Minus: information lost (R cannot be reconstructed from S = 
½(R)). 

 One-to-many (½: S ! R):  
 Parameterized closed curve („contour‟); phase field.  

 Have to deal with redundancy (group H) or induced model. 
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Overview 
10 

 Why shape and what is shape? 
 Running example: segmentation. 

 Representation. 

 Classical approach: 
 Distances, templates, comparison. 

 Nonlocal interactions. 
 (Higher-order) active contours (models, stability);  

 Phase fields (relation to contours, advantages); 

 Binary fields (relation to phase fields, advantages). 

 Other models: 
 Low-curvature networks; directed networks; multilayer model; 

complex shapes. 

 Future. 



Classical approach 
11 

 Define a distance on representation space: 
d2(S, S0). 
 For one-to-many ½, minimization is needed to 

define a distance on R.  

 For many-to-one ½, distance is pseudometric 
on R. 

 Examples:  

 Length of geodesics in a Riemannian metric on 
parameterized closed curves. 

 Graph matching metrics, e.g. for medial axis. 

 Gromov-Hausdorff metric on isometry 
equivalence classes of boundaries. 



Classical approach 
12 

 Construct P(S) using distance(s) from „template‟ 
shape(s) S0 (part of K). 

 Energy is distance: „Gaussian‟. 

 

 

 Invariance via mixture model over G: 

 

 

 „Pose estimation‟: assumes G acts consistently on S. 

 Gives rise to long-range dependencies. 

 Frequently used implicitly in „shape classification‟.  

P(Sj[S0]) /
Z

G

dg expf¡d2(S; g(S0))g ' expf¡d2(S; g¤(S0))g

P(SjS0) / expf¡d2(S;S0)g



Classical approach 
13 

 Distance / template approach is 
very useful, but… 

 Does not apply (or is inefficient) 
in many important cases: 

 Unknown topology and extent. 

 E.g. multiple objects. 

 Need modelling framework 
allowing strong constraints on 
shape, but with weak constraints 
on topology. 

Multiple 

objects: 

many 

components 
Networks: 

many loops 



What to do? 
14 

 Explicit nonlocal interactions between boundary points: 

 Create long-range dependencies; 

 Avoid templates: topology / extent need not be constrained. 

 Avoid „pose estimation‟: invariance is manifest in model. 

 Exploit equivalences between formulations:  

 Contour:  

 Intuitive; facilitates stability analysis.  

 Phase field:  

 Linear space; lower complexity; easy implementation. 

 Binary field: 

 Facilitates sampling, hence learning; allows use of graph cut 
algorithms. 



Overview 
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Contours: building E 
16 

 R is represented by parameterized 
closed curve(s), the „contour‟ ° . 

 Simplest invariant energy:  

 Length of R and area of R: 

 

 

 Cf. Ising model, Brownian motion. 

 Short-range interactions between 
boundary points. 

 Describes boundary smoothness. 

 Insufficient for all but the simplest 
problems.  

EG;0(°) = ¸CL(°) +®CA(°)

R 
R 

S1 

 

Image 

L(°) =

Z
dtj _°(t)j

A(°) =
1

2

Z
dt [ _°(t) £ °(t)]

Expressions invariant 

to Diff(S1) hence well-
defined on R. 



Building E: nonlocal interactions 
17 

 Introduce prior information via nonlocal 

interactions between tuples of points. 
 

 

 

 

 

 E.g. Euclidean invariant two-point term: 

 

Interaction 

°(t); _°(t)°(t0); _°(t0)

E(°) = ¡

ZZ
dt dt0 _°(t) ¢ _°(t0) ª(j°(t) ¡ °(t0)j)



Energy for networks 
18 

 

 

 

 Gradient descent (with large ¯): 

 A circle is a saddle point of the energy.  

 

 

 

 

 Network structures have low-energy and are stable:  

 The energy EG „models‟ them. 

 Good for roads, blood vessels, &c. 

EG(°) =¸L(°) + ®A(°)

¡ ¯

2

ZZ
dt dt0 _°(t) ¢ _°(t0) ªd(j°(t)¡ °(t0)j)

r 

(r) 

d 



Energy for a „gas of near-circles‟ 
19 

 Experiments show that the same 
energy EG can model a „gas of 
near-circles‟ :  

 I.e. such configurations are local 
minima. 

 Only true for certain parameter 
ranges. 

 Which ranges? 

 Stability analysis enables fixing of 
parameters to model different 
structures. 



Stability analysis: circle and bar 
20 

 Expand EG(0 + ) to second order in ±° : 

 

 

 

 Rotation invariance means Fourier modes are not 
coupled.  

 Constraints on parameters. 

 

 

Must be zero Must be positive definite 

EG(°0 + ±°) = E(°0) + h±°j±E

±°
(°0)i+

1

2
h±°j ±2E

±°±°0
(°0)j±°0i


0 

 

¸+ ¸- 



Phase diagram: bars and circles. 
21 

B+  

C+ 

B+, C+ 

B+, C- 

UB, UC 

B-, C+ 

B-, C- 

C- 

B- 
)sinh( Ca 

)sinh( Ca 

®C << ¯C

®C >> ¯C



Numerical check: circles 
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Numerical check: bars 
23 

EG(°) = ` eG(°)



Example: segmentation 
24 

 Extract information from P(R j I, K) via a MAP 
estimate: 

 

 
 Where 

 

 

 

 Algorithm: gradient descent using distance function 
level sets. 

 But nonlocal term requires: 
 Extracting the contour; 

 Multiple integrations around the contour; 

 „Velocity extension‟. 

R̂ = argmax
R

P(RjI;K) = argmin
R

E(R; I)

E(R; I) = ¡ lnP(RjI; K) = ¡ lnP(IjR; K)¡ lnP(RjK) + const

= EI(I; °) +EG(°) + const



Roads 
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EI(I; °) =

Z

@R

n ¢ @I(°)¡
Z

@R£@R
@I ¢ @I0 _° ¢ _°0 ª(j° ¡ °0j)



Tree crowns 
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EI(I; °) =

Z

@R

n ¢ @I(°) +

Z

R

(I ¡ ¹)2

2¾2
+

Z

¹R

(I ¡ ¹¹)2

2¹¾2



Problems with contours 
27 

 Modelling: 

 Space of regions is complicated in terms of  contours: 

 No (self)-intersections; relative orientations; not connected; 
not linear space. 

 Probabilistic formulation is difficult.  

 Algorithm (distance function level sets): 

 Topology change is limited:  

 Not robust to initial conditions. 

 Gradient descent is complicated to implement. 

 Slow.  

 Solution: phase fields.  



Phase fields 
28 

 Phase fields are a level set 

representation:  

 z() = {x : (x) > z}.  

 Basic model: Ginzburg-Landau 

energy: 

 

 

 Define R: 
R 

R = 1 

R = -1 

E0(Á) =

Z



½
D

2
@Á ¢ @Á + ¸(

1

4
Á4 ¡ 1

2
Á2)

¾

ÁR = arg min
Á: ³(Á)=R

E0(R)



Relation to contours  
29 

 So induced model is approximately 

 

 

 Because R is a minimum for fixed R, 

descent with E0 mimics descent with L. 

 Also true to first order in fluctuations: 


R1 

R2 
R3 

E0(ÁR) ' ¸CL(@R)

Z

³z(Á)=R

DÁ e¡E0(Á) ¼ e¡¸CL(@R)



 Use that ÁR is zero except near R, where it 
is proportional to the normal vector. 

 

 

 

 
 Can show that ENL(ÁR; ¯, G) ' EQ(°; ¯C, GC); 

induced model is higher-order active contour. 

 Stability analysis constraints translate 
accurately from contour to phase field.  

EQ(°) = ¡¯C

2

ZZ

@R2
dt dt0 _°(t) ¢GC(°(t); °(t

0)) ¢ _°(t0)

ENL(Á) = ¡¯

2

ZZ

2
d2x d2x0 @Á(x) ¢G(x; x0) ¢ @Á(x0)

Adding nonlocal interactions 
30 



Advantages: model 

 Complex topologies are easily represented:  

 No constraints on Á.  

 Representation space is linear: 

  can be expressed in any basis, e.g., in wavelet 

basis for multiscale analysis of shape. 

 Probabilistic formulation (relatively) simple 

(continuum Markov random field). 

 Nonlocal terms are quadratic. 

31 



Advantages: algorithm 

 Complex topologies and multiple 
instances come at no extra cost. 

 Descent is based solely on gradient: 

 Implementation is simple: no 
reinitialization. 

 Neutral initialization and topological 
freedom: 

 No initial region; no bias. 

 Number of connected components and 
handles changes easily. 

 More robust to choice of initial condition. 

 Nonlocal terms are linear:  

 Pointwise evaluation in Fourier domain. 

 Computation time improved.  

 Simple implementation. 

+ 
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Example: segmentation 
33 

 One can build equivalents of contour likelihood  
energies EI(I, °): 

 Á the normal vector; 

 (1 + Á)/2 is the characteristic function. 

 For example:  

 
EI(I; °) =

Z

@R

n ¢ @I(°) '
Z



@ÁR ¢ @I = EI(I; Á)



Example: segmentation 

 Calculating the MAP estimate:  

 

 

 

 Algorithm: gradient descent, but, whereas… 

 Nonlocal contour terms are complex to evaluate, 

 Nonlocal phase field terms require only convolution:  

 

R̂ = argmin
R

E(R; I) = ³z(Á̂)

Á̂ = argmin
Á

E(Á; I) = EI(I; Á) + E0(Á) + ENL(Á)

±ENL

±Á(x)
= ¯

Z



d2x0 @2G(x¡ x0)Á(x0)
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Comparison to contours 
35 

 „Evolution everywhere‟ as opposed to „shrink-

wrapping‟ of contour. 

 Potential for parallelization and hardware 

implementation. 

 

 

forest42_amin_indeo.avi


Comparison to contours 
36 

 Execution time reduced with respect to contour 

implementation by factor of ~10-100. 



Binary field  
37 

 Because Á ' § 1, one can binarize 
(and discretize space):  

 Ising model (i.e. boundary length) 
plus long-range interactions.  

 Advantages:  

 MCMC sampling is more efficient: 

 Can use simulated annealing.  

 Can use QPBO algorithm: 

 Gives access to most of global minimum.  

 Conclusion: gradient descent works well. 

 Potential: facilitates parameter and 
model learning.  



Overview 
38 

 Why shape and what is shape? 
 Running example: segmentation. 

 Representation. 

 Classical approach: 
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Low-curvature networks 
39 

 Use a more complex interaction to achieve 

long, straight network branches.  

 

QuickBird image of Beijing 

(0.6m) 

90 pixels 



Low-curvature networks: model 
40 

 Decouple interactions along and across bar.  

 Make „along-bar‟ interactions longer-range and 

stronger.  

 In terms of the contour: 

 

 

 Where r = ° - °0 

 Phase field version analogous. 

EQ(°) = ¡1

2

ZZ

@R£@R0

(
¯1
¡
_° ¢ r̂

¢¡
_°0 ¢ r̂

¢
ª
¡ jrj
d1

¢
+¯2

¡
_° ¢ r̂?

¢¡
_°0 ¢ r̂?

¢
ª
¡ jrj
d2

¢
)



Low-curvature networks: results 
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L0 L1 L2 

0.8644 0.8086 

0.9779 0.9543 

0.8237 0.6233 

Q= TP / (TP + FP + FN) 

(Quality measure based 

on GIS maps of Beijing.) 



Low-curvature networks: results 
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Directed networks 
43 

 Directed networks carry „flow‟. 

 Adding a conserved, „fixed magnitude‟ vector field 

prolongs branches; stabilizes a range of widths; 

produces asymmetric junctions. 

 

 This 



Directed networks: idea 

 Directed networks carry „flow‟. 

 Typical properties: 
 a large range of branch widths, but 

 changes of width are slow, except 

 at junctions, where flow is conserved.  

 Model should reproduce these 

properties. 

 Solution: use vector field to 

represent „conserved flow‟.  

44 



Directed networks: model 
45 

 Use two field variables:  

 The phase field, Á, to describe the region; 

 A vector field, v, to describe the flow. 

 Desiderata: 

 (Á, jvj) = (1, 1) and (-1, 0) should be 

stable, corresponding to the region and its 

complement; 

 v should be smooth; 

 v should be parallel to the boundary; 

 v should have small divergence. 

 EP (Á; v) = ENL(Á) +

Z



D

2
j@Áj2 + Dv

2
(@ ¢ v)2 + Lv

2
j@vj2 +W(Á; jvj)

v 

¢v ' 0 



Directed networks: geometry 
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Evolution of v for gap closure 
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Directed networks: synthetic result 

48 



Directed networks: results 
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Multilayer binary field 
50 

 Removes a limitation by representing 

overlapping objects on different layers. 

 Enables control of „inter-object‟ interactions.  



Complex shapes 
51 

 Parameter changes can render one or more 
Fourier perturbations of a stable circle unstable. 

 Can higher-order effects stabilize them? 

 If so, it can lead to new stable shapes. 

 In principle, could model all star domains. 

 

 

 

 Hierarchy of shapes of increasing complexity 
bifurcating from circle? 

 

ParametersForPlottingAQuartic.nbp


Summary 
52 

 Use explicit nonlocal interactions between 
boundary points to model shape while avoiding 
templates. 

 Exploit equivalences between formulations:  

 Contour:  

 Intuitive; stability analysis for parameter estimation.  

 Phase field:  

 Linear space; lower complexity; easy implementation. 

 Binary field: 

 Facilitates sampling, hence learning; allows use of graph cut 
algorithms. 



Future directions 
53 

 Models:  
 Complex shapes. 

 Learning models from examples. 

 Higher dimensions. 

 Multiscale: wavelets. 

 Analysis of binary field model. 

 Connection to point processes. 

 Algorithms: 
 Efficient sampling (via wavelets?).  

 Analysis of the behaviour of graph cut algorithms. 

 Many new applications: 
 Segmentation of cells; oil strata; CME; solar and ionospheric 

electron density reconstruction;...  

 



Thank you 
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Very Vague Big Picture 
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