SHAPE MODELLING WITH CONTOURS AND FIELDS

lan Jermyn

Josiane Zerubia Zoltan Kato Marie Rochery Peter Horvath Ting Peng Aymen El Ghoul INRIA University of Szeged INRIA, Szeged INRIA, CASIA INRIA

Overview

Why shape and what is shape?

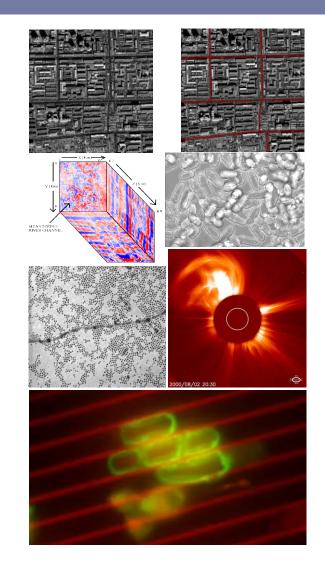
- Running example: segmentation.
- Representation.
- Classical approach:
 - Distances, templates, comparison.
- Nonlocal interactions.
 - (Higher-order) active contours (models, stability);
 - Phase fields (relation to contours, advantages);
 - Binary fields (relation to phase fields, advantages).
- Other models:
 - Low-curvature networks; directed networks; multilayer model; complex shapes.
- Future.

Why shape? Shape is useful

- Many subsets of the world are differentiated from their surroundings.
- The subset has geometry.
- The geometry may be correlated with other properties of the subset.
 - Thus it can be used to make inferences about these properties, and vice-versa.

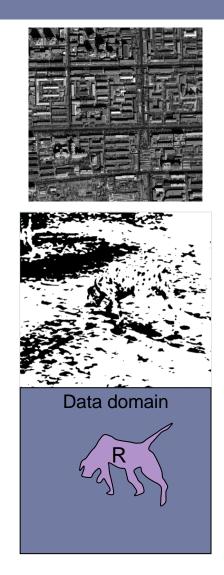
Example: segmentation

- 4
- Find the region R in the data domain that 'corresponds to' a given 'entity'.
- Many applications:
 - Oil strata; roads, rivers, trees; cells; brain fibres; <u>CMEs</u>;...
- Data volume is often huge:
 - EO satellite generates 1TB/day.
 - 62% growth in 2009; 35ZB by 2020.
- Automated inference is crucial for full exploitation of this data.



Why shape? Shape is necessary

- Images are complex:
 - Generic techniques are often insufficient for automatic solutions.
- Regions of interest are often distinguished by their shape:
 - A model of likely region shape is crucial.
 - Prior information K.



What is shape?

A subset of a manifold.

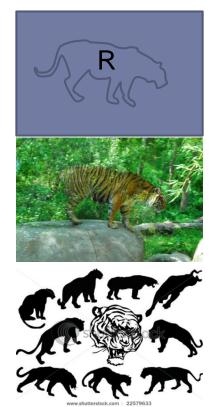
- E.g. codimension-0 submanifold of Rⁿ.
 Complicated space *R*.
- Prior information K is not usually enough to specify one subset:
 Uncertainty.
- Need probability distribution P(R | K):
 - "What we know about $R \in \mathcal{R}$ given prior information K".
 - E.g. that R corresponds to entity X and...
 - Probability distribution often specified by an 'energy':

 $P(R|K) \propto \exp\{-E(R|K)\}$

R no

Example: segmentation

- □ Probability region R corresponds to X, given image I and prior information K. $P(R|I,K) \propto P(I|R,K)P(R|K)$
- □ P(I | R, K): image model.
 - Probability observed image is I, given region R corresponds to X and prior information K.
- P(R | K): shape model.
 - Probability that R corresponds to X given prior information K.



Which probability distributions?

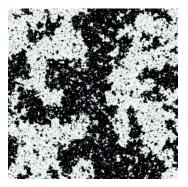
Invariance (maybe):
 P(g(R)) = P(R), g ∈ G.
 G: Euclidean, similarity, isometry,...
 Low entropy.

Knowledge of one part of a subset boundary should enable prediction of other parts:

$$\square H(X, Y) = H(Y | X) + H(X) .$$

Long-range dependencies.

How to build such distributions and on which space?



Which space?

- Space \mathcal{R} is hard to deal with directly:
 - **\square** Use 'representation space' S.
- □ **One-to-one** (ρ : $\mathcal{R} \to \mathcal{S}$ invertible):
 - Characteristic function; distance function.
 - Seems good, but does not simplify space, singular.
- □ Many-to-one (ρ : $\mathcal{R} \to \mathcal{S}$ not injective):
 - Landmark points; shape space; Fourier descriptors; medial axis; 'canonical form'.
 - **D** Plus: invariance already in representation ($\rho(R) = \rho(g(R))$);
 - Minus: information lost (R cannot be reconstructed from S = $\rho(R)$).
- □ One-to-many (ρ : $S \rightarrow R$):
 - Parameterized closed curve ('contour'); phase field.
 - Have to deal with redundancy (group H) or induced model.

Overview

- Why shape and what is shape?
 - Running example: segmentation.
 - Representation.
- Classical approach:
 - Distances, templates, comparison.
- Nonlocal interactions.
 - (Higher-order) active contours (models, stability);
 - Phase fields (relation to contours, advantages);
 - Binary fields (relation to phase fields, advantages).
- Other models:
 - Low-curvature networks; directed networks; multilayer model; complex shapes.
- Future.

Classical approach

- Define a distance on representation space: d²(S, S').
 - For one-to-many ρ , minimization is needed to define a distance on \mathcal{R} .
 - For many-to-one ρ , distance is pseudometric on \mathcal{R} .
- Examples:
 - Length of geodesics in a Riemannian metric on parameterized closed curves.
 - Graph matching metrics, e.g. for medial axis.
 - Gromov-Hausdorff metric on isometry equivalence classes of boundaries.

Classical approach

- Construct P(S) using distance(s) from 'template' shape(s) S₀ (part of K).
 - Energy is distance: 'Gaussian'.

 $\mathcal{P}(S|S_0) \propto \exp\{-d^2(S,S_0)\}$

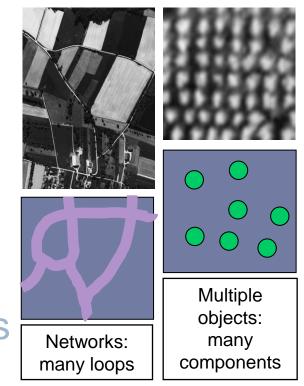
Invariance via mixture model over G:

$$P(S|[S_0]) \propto \int_G dg \, \exp\{-d^2(S, g(S_0))\} \simeq \exp\{-d^2(S, g^*(S_0))\}$$

- Pose estimation': assumes G acts consistently on S.
 Gives rise to long-range dependencies.
- Frequently used implicitly in 'shape classification'.

Classical approach

- Distance / template approach is very useful, but...
- Does not apply (or is inefficient) in many important cases:
 - Unknown topology and extent.
 - E.g. multiple objects.
- Need modelling framework allowing strong constraints on shape, but with weak constraints on topology.



What to do?

- Explicit nonlocal interactions between boundary points:
 Create long-range dependencies;
 - Avoid templates: topology / extent need not be constrained.
 - Avoid 'pose estimation': invariance is manifest in model.
- Exploit equivalences between formulations:
 - **Contour:**
 - Intuitive; facilitates stability analysis.
 - Phase field:
 - Linear space; lower complexity; easy implementation.
 - Binary field:
 - Facilitates sampling, hence learning; allows use of graph cut algorithms.

Overview

- Why shape and what is shape?
 - Running example: segmentation.
 - Representation.
- Classical approach:
 - Distances, templates, comparison.
- Nonlocal interactions.
 - (Higher-order) active contours (models, stability);
 - Phase fields (relation to contours, advantages);
 - Binary fields (relation to phase fields, advantages).
- Other models:
 - Low-curvature networks; directed networks; multilayer model; complex shapes.
- Future.

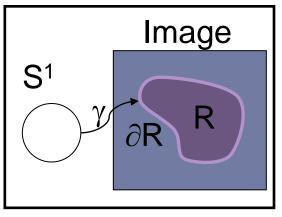
Contours: building E

 \square R is represented by parameterized closed curve(s), the 'contour' γ .

Simplest invariant energy:
 Length of ∂R and area of R:

$$E_{G,0}(\gamma) = \lambda_C L(\gamma) + \alpha_C A(\gamma)$$

- Cf. Ising model, Brownian motion.
- Short-range interactions between boundary points.
- Describes boundary smoothness.
- Insufficient for all but the simplest problems.

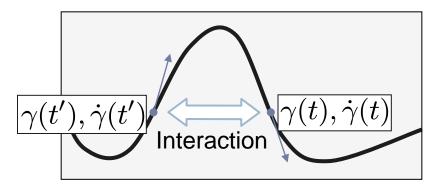


$$egin{aligned} L(\gamma) &= \int dt |\dot{\gamma}(t)| \ A(\gamma) &= rac{1}{2} \int dt \; [\dot{\gamma}(t) imes \gamma(t)] \end{aligned}$$

Expressions invariant to Diff(S¹) hence welldefined on \mathcal{R} .

Building E: nonlocal interactions

Introduce prior information via nonlocal interactions between tuples of points.



□ E.g. Euclidean invariant two-point term:

$$E(\gamma) = -\iint dt \, dt' \, \dot{\gamma}(t) \cdot \dot{\gamma}(t') \, \Psi(|\gamma(t) - \gamma(t')|)$$

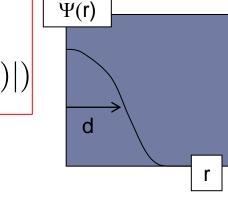
Energy for networks

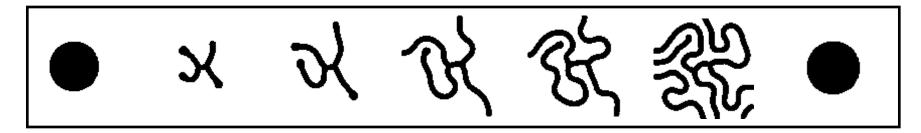
18

$$E_{\rm G}(\gamma) = \lambda L(\gamma) + \alpha A(\gamma) - \frac{\beta}{2} \iint dt \, dt' \, \dot{\gamma}(t) \cdot \dot{\gamma}(t') \, \Psi_d(|\gamma(t) - \gamma(t')|)$$

Gradient descent (with large β):

A circle is a saddle point of the energy.



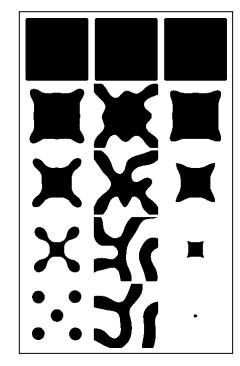


Network structures have low-energy and are stable:

- **\square** The energy E_G 'models' them.
- Good for roads, blood vessels, &c.

Energy for a 'gas of near-circles'

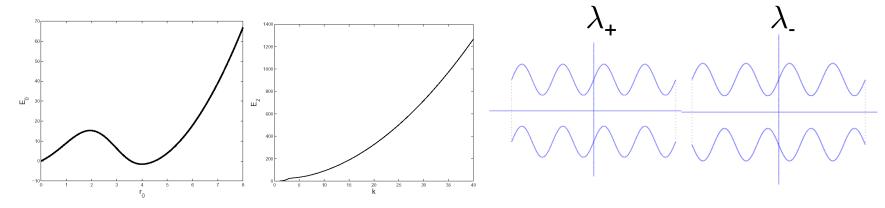
- Experiments show that the same energy E_G can model a 'gas of near-circles' :
 - I.e. such configurations are local minima.
- Only true for certain parameter ranges.
 - Which ranges?
- Stability analysis enables fixing of parameters to model different structures.



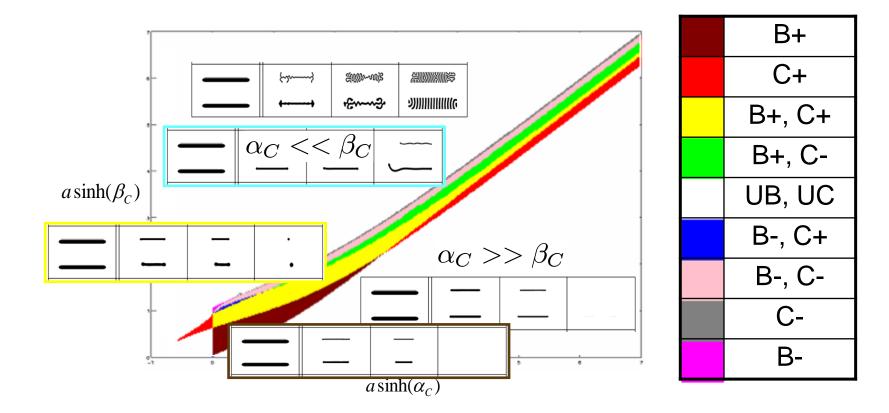
Stability analysis: circle and bar

20

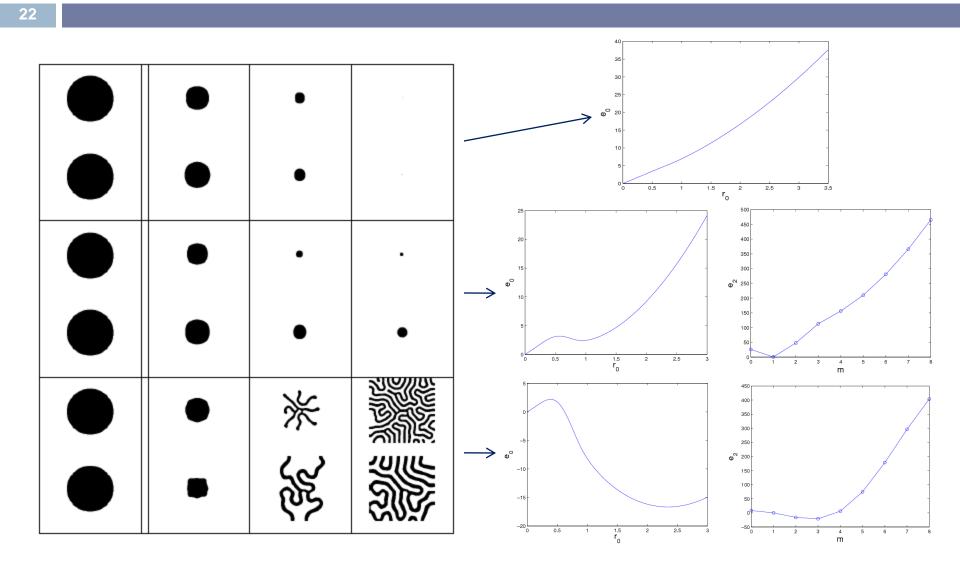
- $= \underbrace{\text{Expand } \mathsf{E}_{\mathsf{G}}(\gamma_{0} + \delta\gamma) \text{ to second order in } \delta\gamma :}_{E_{G}(\gamma_{0} + \delta\gamma) = E(\gamma_{0}) + \langle\delta\gamma| \frac{\delta E}{\delta\gamma}(\gamma_{0})\rangle + \frac{1}{2}\langle\delta\gamma| \frac{\delta^{2} E}{\delta\gamma\delta\gamma'}(\gamma_{0})|\delta\gamma'\rangle}_{\text{Must be zero}}$
 - Rotation invariance means Fourier modes are not coupled.
 - Constraints on parameters.



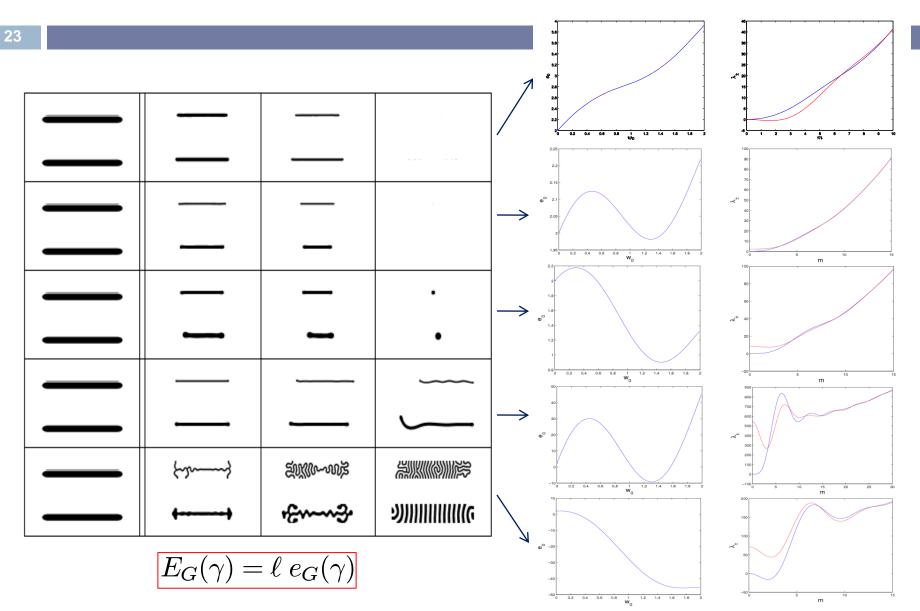
Phase diagram: bars and circles.



Numerical check: circles



Numerical check: bars



Example: segmentation

24

Extract information from P(R | I, K) via a MAP estimate:

$$\hat{R} = \arg\max_{R} P(R|I, K) = \arg\min_{R} E(R, I)$$

Where

$$E(R, I) = -\ln P(R|I, K) = -\ln P(I|R, K) - \ln P(R|K) + \text{const}$$
$$= E_{I}(I, \gamma) + E_{G}(\gamma) + \text{const}$$

- Algorithm: gradient descent using distance function level sets.
- But nonlocal term requires:
 - Extracting the contour;
 - Multiple integrations around the contour;
 - Velocity extension'.

Roads

25

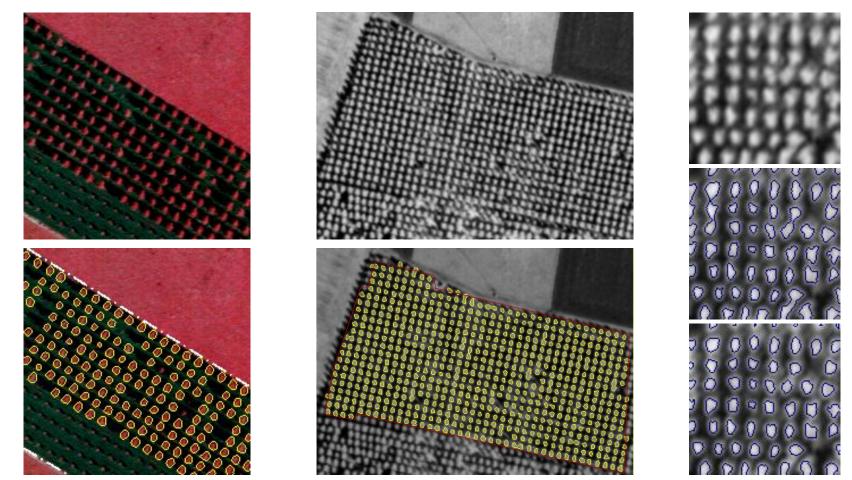
$$E_{I}(I,\gamma) = \int_{\partial R} n \cdot \partial I(\gamma) - \int_{\partial R \times \partial R} \partial I \cdot \partial I' \dot{\gamma} \cdot \dot{\gamma}' \Psi(|\gamma - \gamma'|)$$

11-

Tree crowns

26

 $E_I(I,\gamma) = \int_{\partial R} n \cdot \partial I(\gamma) + \int_R \frac{(I-\mu)^2}{2\sigma^2} + \int_{\bar{R}} \frac{(I-\bar{\mu})^2}{2\bar{\sigma}^2}$



Problems with contours

Modelling:

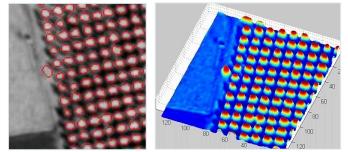
Space of regions is complicated in terms of contours:

- No (self)-intersections; relative orientations; not connected; not linear space.
- Probabilistic formulation is difficult.
- Algorithm (distance function level sets):
 - Topology change is limited:
 - Not robust to initial conditions.
 - Gradient descent is complicated to implement.
 - Slow.
- Solution: phase fields.

Phase fields

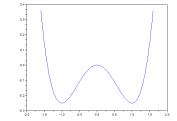
Phase fields are a level set representation:

 $\Box \zeta_{z}(\phi) = \{ \mathsf{X} : \phi(\mathsf{X}) > \mathsf{Z} \}.$



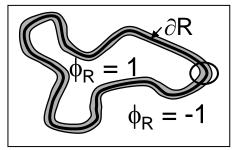
Basic model: Ginzburg-Landau energy:

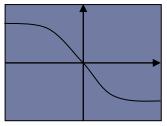
$$E_0(\phi) = \int \left\{ \frac{D}{2} \partial \phi \cdot \partial \phi + \lambda \left(\frac{1}{4}\phi^4 - \frac{1}{2}\phi^2\right) \right\}$$



□ Define ϕ_R :

$$\phi_R = \arg\min_{\phi:\,\zeta(\phi)=R} E_0(R)$$





Relation to contours

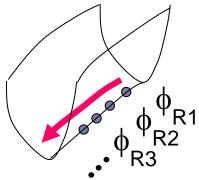
29

So induced model is approximately

 $E_0(\phi_R) \simeq \lambda_C L(\partial R)$

- □ Because ϕ_R is a minimum for fixed R, descent with E₀ mimics descent with L.
- Also true to first order in fluctuations:

$$\int_{\zeta_z(\phi)=R} D\phi \, e^{-E_0(\phi)} \approx e^{-\lambda_C L(\partial R)}$$



Adding nonlocal interactions

□ Use that $\partial \phi_R$ is zero except near ∂R , where it is proportional to the normal vector.

$$E_Q(\gamma) = -\frac{\beta_C}{2} \iint_{\partial R^2} dt \, dt' \, \dot{\gamma}(t) \cdot \mathbf{G}_C(\gamma(t), \gamma(t')) \cdot \dot{\gamma}(t')$$

$$E_{NL}(\phi) = -\frac{\beta}{2} \iint_{2} d^{2}x \ d^{2}x' \ \partial\phi(x) \cdot \mathbf{G}(x, x') \cdot \partial\phi(x')$$

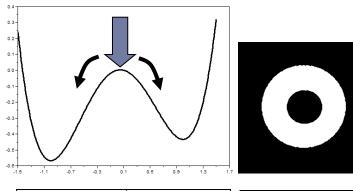
- Can show that $E_{NL}(\phi_R; \beta, G) \simeq E_Q(\gamma; \beta_C, G_C);$ induced model is higher-order active contour.
- Stability analysis constraints translate accurately from contour to phase field.

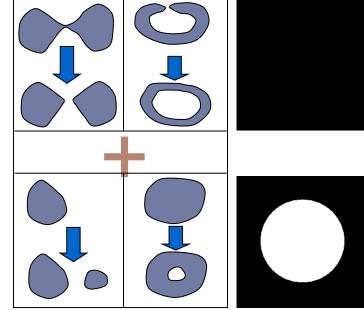
Advantages: model

- Complex topologies are easily represented:
 No constraints on φ.
- Representation space is linear:
 - \$\overline{1}\$ can be expressed in any basis, e.g., in wavelet basis for multiscale analysis of shape.
 - Probabilistic formulation (relatively) simple (continuum Markov random field).
- Nonlocal terms are quadratic.

Advantages: algorithm

- Complex topologies and multiple instances come at no extra cost.
- Descent is based solely on gradient:
 - Implementation is simple: no reinitialization.
- Neutral initialization and topological freedom:
 - No initial region; no bias.
 - Number of connected components and handles changes easily.
 - More robust to choice of initial condition.
- Nonlocal terms are linear:
 - Pointwise evaluation in Fourier domain.
 - Computation time improved.
 - Simple implementation.





Example: segmentation

- One can build equivalents of contour likelihood energies E_I(I, γ):
 - $\Box \partial \phi$ the normal vector;
 - **(1 + \phi)/2 is the characteristic function.**
 - For example:

$$E_I(I,\gamma) = \int_{\partial R} n \cdot \partial I(\gamma) \simeq \int \partial \phi_R \cdot \partial I = E_I(I,\phi)$$

Example: segmentation

34

Calculating the MAP estimate:

$$\hat{R} = \arg\min_{R} E(R, I) = \zeta_{z}(\hat{\phi})$$
$$\hat{\phi} = \arg\min_{\phi} E(\phi, I) = E_{I}(I, \phi) + E_{0}(\phi) + E_{NL}(\phi)$$

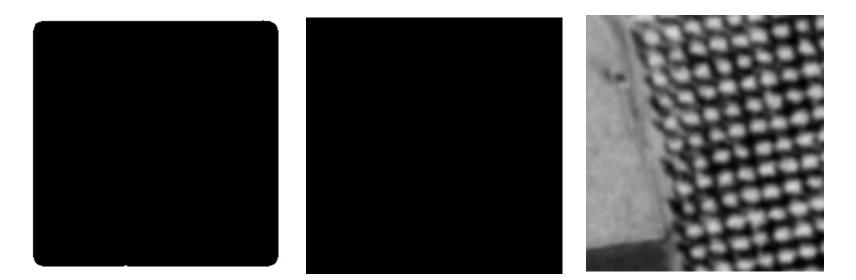
Algorithm: gradient descent, but, whereas...
 Nonlocal contour terms are complex to evaluate,
 Nonlocal phase field terms require only convolution:

$$\frac{\delta E_{NL}}{\delta \phi(x)} = \beta \int d^2 x' \; \partial^2 G(x - x') \phi(x')$$

Comparison to contours

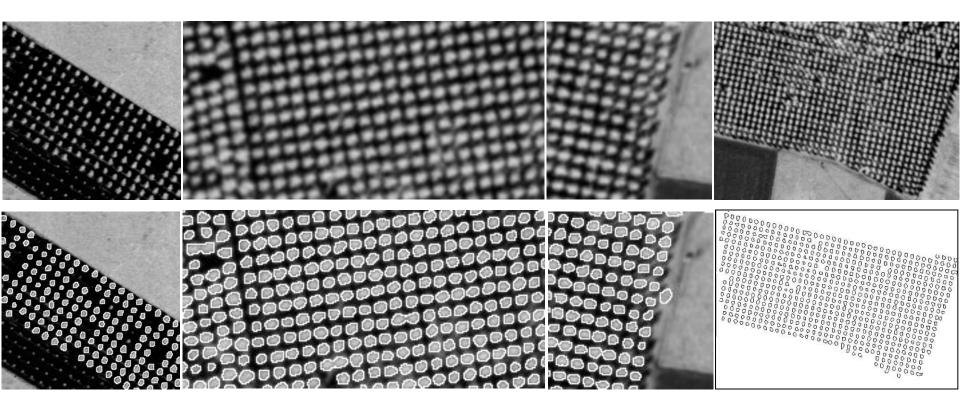
'Evolution everywhere' as opposed to 'shrinkwrapping' of contour.

Potential for parallelization and hardware implementation.



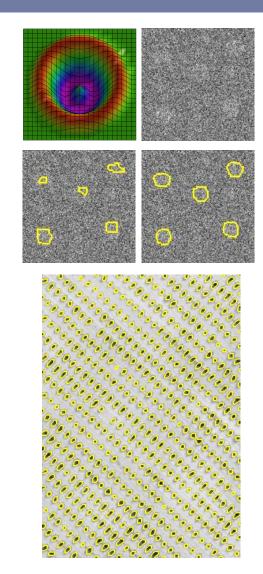
Comparison to contours

Execution time reduced with respect to contour implementation by factor of ~10-100.



Binary field

- Because $\phi \simeq \pm 1$, one can binarize (and discretize space):
 - Ising model (i.e. boundary length) plus long-range interactions.
- Advantages:
 - MCMC sampling is more efficient:
 - Can use simulated annealing.
 - Can use QPBO algorithm:
 - Gives access to most of global minimum.
 - Conclusion: gradient descent works well.
- Potential: facilitates parameter and model learning.

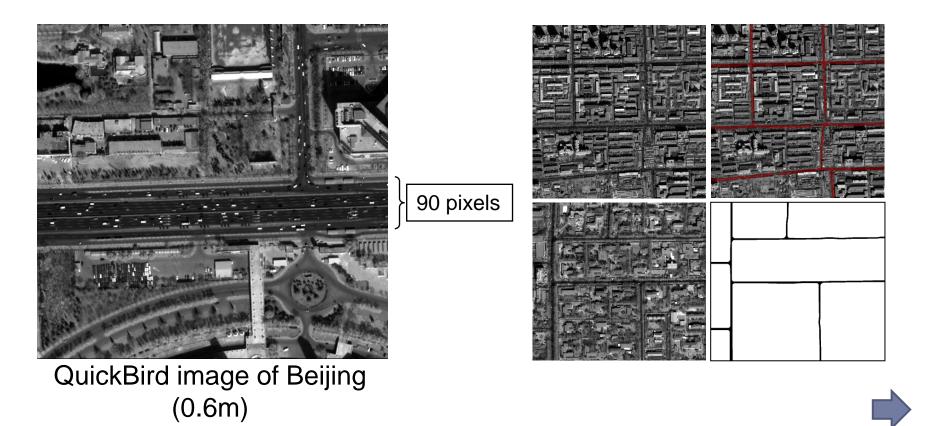


Overview

- Why shape and what is shape?
 - Running example: segmentation.
 - Representation.
- Classical approach:
 - Distances, templates, comparison.
- Nonlocal interactions.
 - (Higher-order) active contours (models, stability);
 - Phase fields (relation to contours, advantages);
 - Binary fields (relation to phase fields, advantages).
- Other models:
 - Low-curvature networks; directed networks; multilayer model; complex shapes.
- Future.

Low-curvature networks

Use a more complex interaction to achieve long, straight network branches.



Low-curvature networks: model

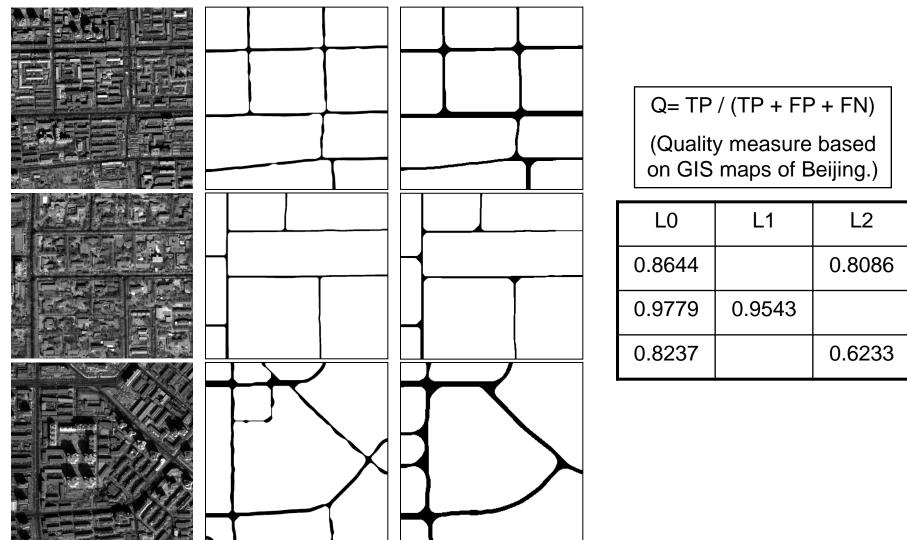
- Decouple interactions along and across bar.
- Make 'along-bar' interactions longer-range and stronger.
- In terms of the contour:

$$E_Q(\gamma) = -\frac{1}{2} \iint_{\partial R \times \partial R'} \left\{ \beta_1 \left(\dot{\gamma} \cdot \hat{r} \right) \left(\dot{\gamma}' \cdot \hat{r} \right) \, \Psi \left(\frac{|r|}{d_1} \right) + \beta_2 \left(\dot{\gamma} \cdot \hat{r}^\perp \right) \left(\dot{\gamma}' \cdot \hat{r}^\perp \right) \, \Psi \left(\frac{|r|}{d_2} \right) \right\}$$

• Where $r = \gamma - \gamma'$

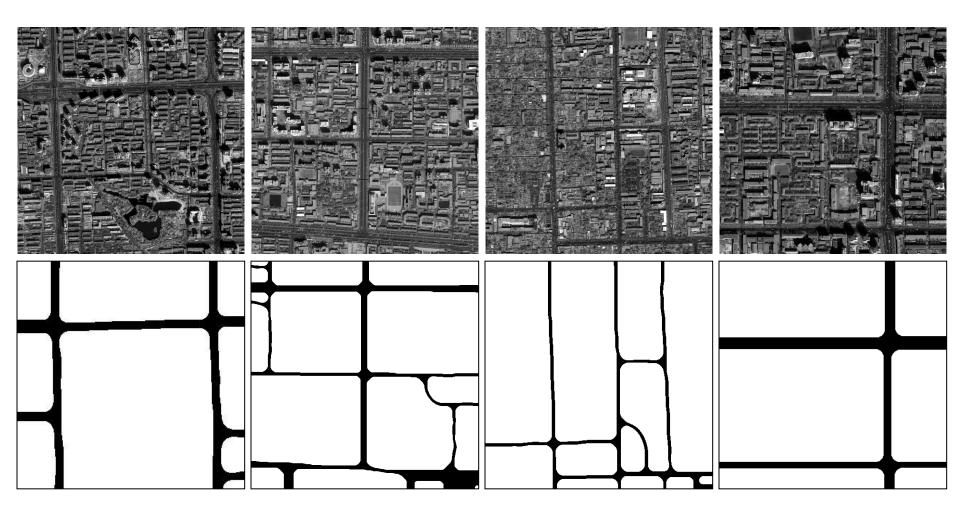
Phase field version analogous.

Low-curvature networks: results



Low-curvature networks: results

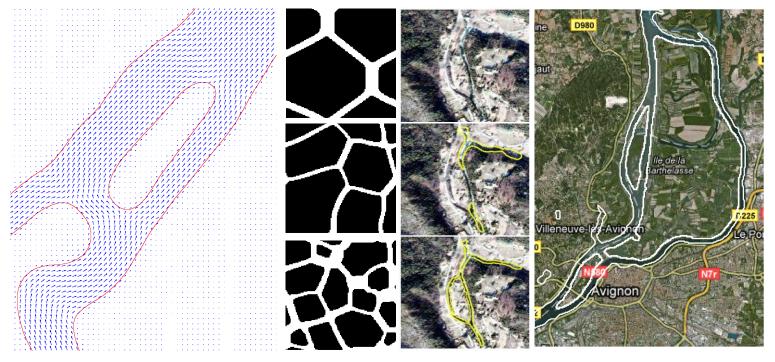
42



Directed networks

Directed networks carry 'flow'.

Adding a conserved, 'fixed magnitude' vector field prolongs branches; stabilizes a range of widths; produces asymmetric junctions.



Directed networks: idea

Directed networks carry 'flow'.

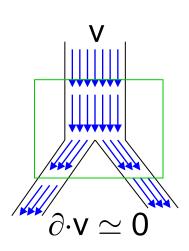
Typical properties:

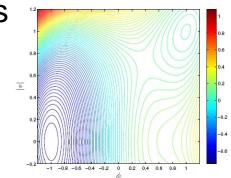
- a large range of branch widths, but
- changes of width are slow, except
- at junctions, where flow is conserved.
- Model should reproduce these properties.
- Solution: use vector field to represent 'conserved flow'.

Directed networks: model

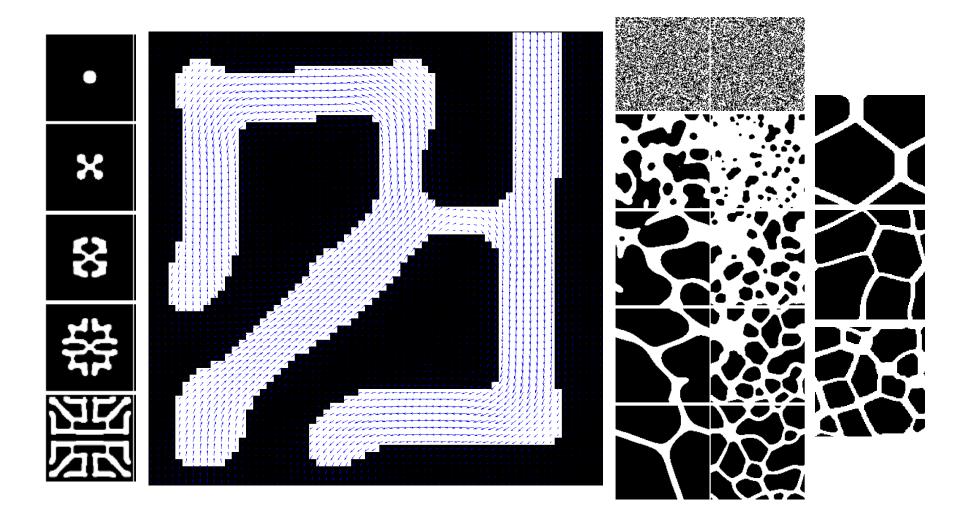
- Use two field variables:
 The phase field, φ, to describe the region;
 A vector field, v, to describe the flow.
 Desiderata:
 - (\phi, |v|) = (1, 1) and (-1, 0) should be stable, corresponding to the region and its complement;
 - v should be smooth;
 - v should be parallel to the boundary;
 - v should have small divergence.

 $E_P(\phi, v) = E_{NL}(\phi) + \int \frac{D}{2} |\partial \phi|^2 + \frac{D_v}{2} (\partial \cdot v)^2 + \frac{L_v}{2} |\partial v|^2 + W(\phi, |v|)$

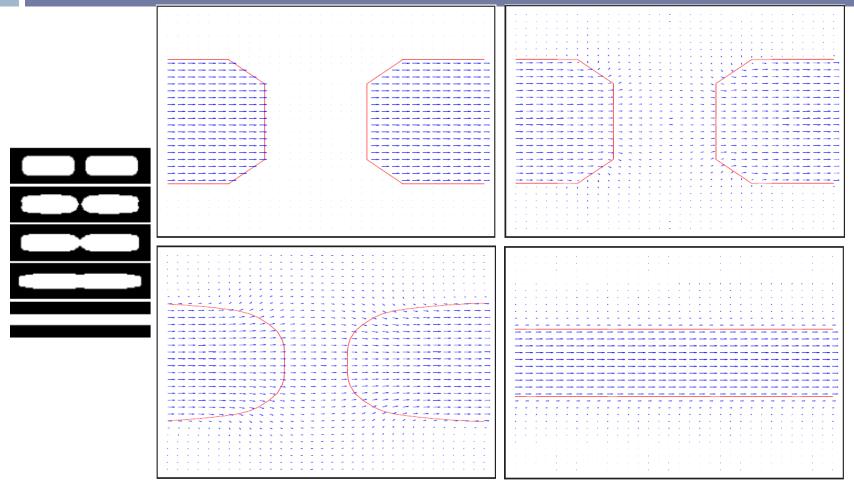




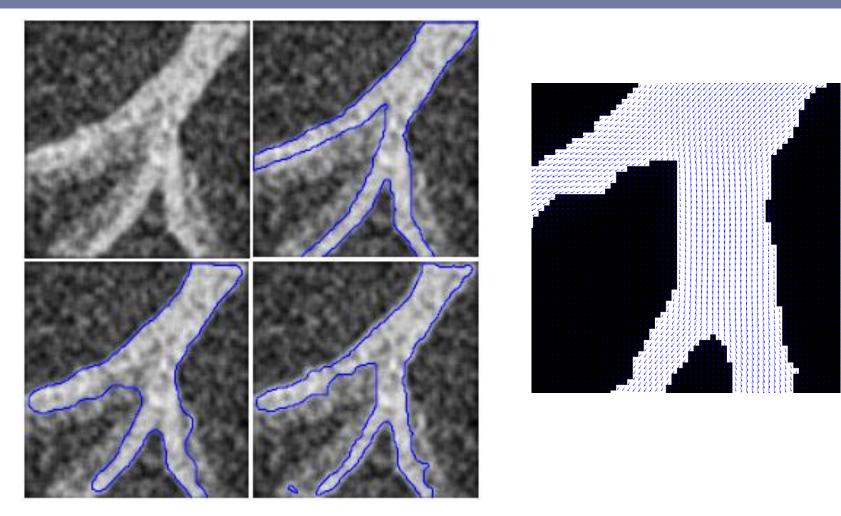
Directed networks: geometry



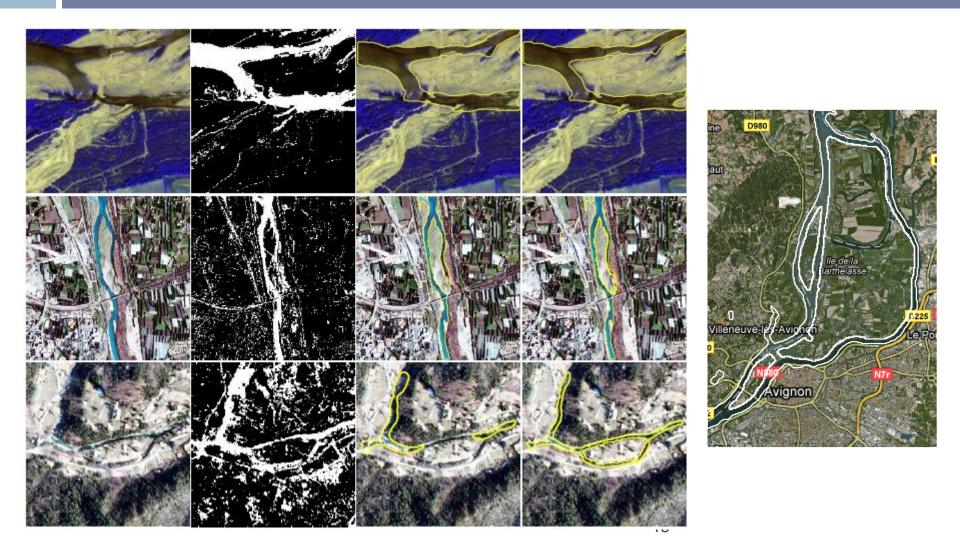
Evolution of v for gap closure



Directed networks: synthetic result

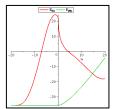


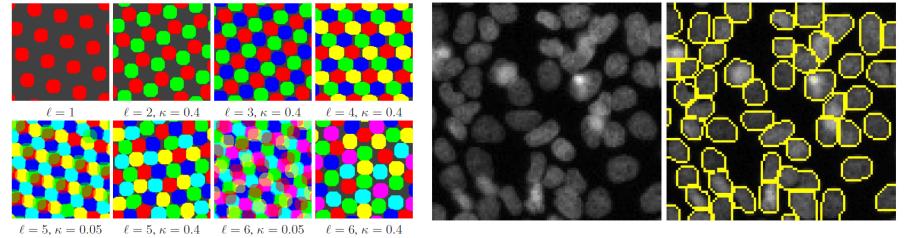
Directed networks: results



Multilayer binary field

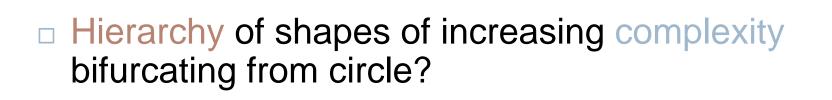
- 50
- Removes a limitation by representing overlapping objects on different layers.
- Enables control of <u>inter-object</u> interactions.





Complex shapes

- 51
- Parameter changes can render one or more
 Fourier perturbations of a stable circle unstable.
- Can higher-order effects stabilize them?
 If so, it can lead to new stable shapes.
 In principle, could model all star domains.



Summary

- Use explicit nonlocal interactions between boundary points to model shape while avoiding templates.
- Exploit equivalences between formulations:
 - **Contour:**
 - Intuitive; stability analysis for parameter estimation.
 - Phase field:
 - Linear space; lower complexity; easy implementation.
 - Binary field:
 - Facilitates sampling, hence learning; allows use of graph cut algorithms.

Future directions

Models:

- Complex shapes.
- Learning models from examples.
- Higher dimensions.
- Multiscale: wavelets.
- Analysis of binary field model.
- Connection to point processes.
- Algorithms:
 - Efficient sampling (via wavelets?).
 - Analysis of the behaviour of graph cut algorithms.
- Many new applications:
 - Segmentation of cells; oil strata; CME; solar and ionospheric electron density reconstruction;...

54

Thank you

Very Vague Big Picture

