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Ensemble based systems

Ensemble learning iIs the process by
which  multiple models, such as
classifiers or experts, are strategically

particular computational intelligence
problem.



When to use ensembles?

e Not sufficient predictive performance
e Too much data

e Too few data

e Too complex data

e Multiple information sources




Not sufficient predictive performance

e Different algorithms have different
predictive performances in different
contexts

e Sometimes they do not have enough
generalization capabilities to classify
unknown instances using their learned
model




Solution

e Combining class labels provided by
the individual predictors

e Combining real values provided by
the individual predictors

e Other combinations methods




Combining class labels

 Non-learning based (majority voting,
borda count)

e | earning-based (weighted majority
voting, Behavioral Knowledge Space
(BKS), Wernecke method)




Majority voting
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Weighted majority voting

e \We assign a weight to each algorithm
based on its performance on a dataset

e The better the performance the larger
weight assigned

e Usually, the following formula is used
(pt Is the performance, wt Is the
weight assigned to the predictor t):
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Other methods

e Behavioral Knowledge Space (BKS):
stores the predictive outcomes for
each voting combination during
training.

e Wernecke method: extends BKS by
Introducing confidence intervals

e Borda Count: rank of the class
membership probabilities




Combining real values
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Mean Rule: C,:0.310, C,: 0.382, C5:0.308
Max Rule: C,: 0.85, C,:0.7, Cs;:08
Median Rule: C,:0.2, C,: 0.5, C;:0.2
Minimum Rule: Cy: 0.1, C,:0.01, C;:0.14
Weighted Average C,: 0.395, C,: 0.333, C,;:0.272
Majority Voting: C;:1, C.: 3, C,: 1 Vote
Weighted Majority Voting: C,:0.3, C,: 0.55, Cq: 0.15 Votes
Borda Count: Cy:5 C,: 6, C3: 4 Votes

Figure 15. Example on various combination rules.




Too much data

e |[f we want to learn on too much data,
we need to split the data into disjoint
parts

e \We train an algorithm on each part

e Finally, we combine the outcomes of
the algorithms




Classifier 2 — Decision Boundary 2 Classifier 3 — Decision Boundary 3
A

Feature 2

Feature 2
O
=]
Featurs 2

o C g
et
o OD Co "oo o

Feature 1

>

Feature 1

Ensemble Decision Boundary

Feature 2
Feature 2

Figure 3. Combining classifiers that are trained on different subsets of the training data.




Too few data

e |f we want to learn on too few data,
we need to split the data into random,
possibly overlapping parts

e We train an algorithm on each parts

e Finally, we combine the outcomes of
the algorithms




Bagging

Entire Original Training Data
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Figure 4. k-fold data splitting for generating different, but overlapping, training datasets.




Too complex data

e We use a ,,divide-and-conquer’-based
solution strategy

e \We use a voting among the algorithms
trained for the different subproblems




Training Data Examples
for Class 1

Observation/Measurement/Feature 2

Complex Decision Examples
Boundary to Be Learned for Class 2

Observation/Measurement/Feature 1

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers.




Observation/Measurement/Feature 2

Observation/Measurement/Feature 1

Figure 2. Ensemble of classifiers spanning the decision
space.




Theoretical bounds of majority voting

e Does an ensemble-based system
always performes better than an
Individual approach?

e The worst case scenario for 9
algorithms, each having 60% accuracy,
IS 28% accuracy!

e Weighted majority voting Is proven to
be better than majority voting when

each participant have at least 50%
accuracy.




How to choose participants?

e Diversity measures

e There are no evidence of a link
between diversity and accuracy, but a
good place to start investigating.

e The best case scenario is when the
proportion of the correct votes equals
the majority.




Diversity measures

hj is correct hj is incorrect
h;j is correct a b
h; is incorrect C d
R ad — bc D<p=<1
T larhcrdarord o

Qjj = (ad — bc)/(ad + bc)

Dij=b+c,
DF;;=d.




Clinical example —

Aotartinn nf the nntie Aice

e an important prerequisite for
automatic screening of retina images:
the accurate localization of the main
anatomical features in the image,
notably the optic disc (OD) and the
macula.




Basic problem

e optic disc - bright region with circular shape
e macula - oval-shaped highly pigmented spot
e fovea - responsible for the sharpest vision




Basic problem

e all of the OD algorithms return with the OD
center as a single pixel




Basic problem

e the circle with maximal number of
candidates is chosen for the optic disc




Basic problem

e to make a good decision even in the case
when the bad candidates have majority




Majority voting

e letD={D,,D,,....D,} be a set (also called

ensemble) of classifiers.
¢« QO={o0,n,...,0.} be aset of class labels.
« D:R"—> Q (i=1,.,n)
e The majority voting method of combining classifier

decisions Is to assign the class label o, to x that is

supported by the majority of the classifiers D..




Majority voting

e Let L be odd, Q= {m,, o, } and all classifiers have
the same classification accuracy p. The majority
vote method with independent classifier decisions
gives an overall correct classification accuracy

calculated by the binomial formula:

n/?2

Prngj= ) (ijnk (1-p)*

k=0

e When the classifiers are independent and p>0.5,
this method is guaranteed to give a higher accuracy

than individual classifiers.




Accuracy of correct classification

p=0.6
p=0.7
p=0.8
p=0.9

p=0.6
p=0.7
p=0.8
p=0.9

The majority voting method

nh=3
0.6480
0.7840
0.8960
0.9720

n=3
0.8208
0.9163
0.9728
0.9963

n=>5
0.6826
0.8369
0.9421
0.9914

Spatial voting (optic disc geometry)

n=5
0.8390
0.9373
0.9850
0.9988

n=7
0.7102
0.8740
0.9667
0.9973

n=17
0.8895
0.9658
0.9942
0.9997

n=9
0.7334
0.9012
0.9804
0.9991

n=9
0.9247
0.9823
0.9980
0.9999



Pattern of success

The ,,pattern of success" is a distribution of the
L classifier outputs for D such that:

e The probability of any combination of

[n/2] + 1 correct and [n/2] incorrect votes Is a.
e The probability of all L votes being incorrect
IS .

e The probability of all other combinations is

ZEr0.

e, Best” case: 1111000, ,,worst” case: 1110000.



Pattern of success

The pattern of success and failure:
e useful information in clinical systems

e characterize the expected value of the
system error and the boundary of the system

accuracy:
[minimum accuracy, maximum accuracy]




Spatial voting

eIn such scenarios (algorithms vote by

\ coordinates) It may happen that less number
of ,,good” votes defeat larger number of
,,bad” votes.

Model: p, . the probability for good decision
(n algorithms, k are correct)

eE.g. 1100000 still may be
correct, p,,




Basic concepts

* n=(y..., n,) - N-dimensional random variable
e the coordinates y; of # are independent
Pin,=1)=p; Pn;=0)=1-p (=1,...,n)
where 0 <p <1. (n algorithms)
e execute the experiment ¢ times independently

e the outcomes in a table of size n x ¢ (J-th
column: the realization in the j-th experiment)

(t objects)




Basic concepts

the random variables u;,..., u, :
e If In the J-th column there are &k ones then
P(Hj: 1) — Pk P(“j: O) =1 — Pk (i: 19”'9 t);

where the p ,-s (k=0, 1, ..., n) are given

numbers with

= the p-s are independent.




Basic concepts

Finally, put
=V =1}
Is the number of "good" decisions. Observe

that all the individual decisions n, (i =1,...,

(t, p). Then & is also of binomial distribution

with the appropriate parameters.

n)

are of binomial distribution with parameters



Basic results

eForany;j=1,..., t we have
: R n—k
P(u;=1)=) pu L P A=p)
k=0
eLet ¢ = P(n,;=1). The random variable & is of
binomial distribution with parameters (¢, q).
emajority voting is "better" than the individual

decisions, if g >p.




Basic results

Letp ,=k/m (k=0,1,...,n). Then we have

g =pand EE=1p.

1--

pnh

0

0 k n

If we have p,, >k/n (k=0,1, ..., n), then

g>pand EE>1p.



Special case (simple majority)

Suppose that nis odd, p >1/2 and

EE>1p.

P=1L1 ifk>n/2

P, = 0, otherwise

(k=0, 1,..., n). Then g >p, and consequently

j [— _

pﬂk




Optic Disc geometry

eincrease exponentially in k for a given n.

the probability that the diameter of a point
set Is not less than a given constant decreases
exponentially (number of points to infinity)

e this diameter: the radius of the OD



Accuracy of correct classification
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~ 2nd example —
microaneurysm detection

 Diabetic Retinopathy (DR)
« Early treatment
* Microaneurysm detection

* Hard to maintain reliability




Automatic screening of DR




Usual steps of microaneurysm
detection

Image acquistion

¢

Preprocessing

¢

Candidate extraction

¢

Classification




Steps of the proposed detector

Ensemble Pool
Preprocessing methods Candidate extractors

PP+« | PP2| ... | PPu||/|CE:| | CEz| ... |CEn
\ /
Search algorithm
PP | CE; PP:| CE;: PPi| CEjs

i (1,2, 0 M)
i J2y .. €{1, 2, ..., N}

Selected pairs




Steps of the proposed detector

Input
image

Ensemble
Pool

raining
images

= ‘ r MAs
=Kee;rch Selected
iy Algorithm Pairs




Preprocessing

(a) Original

) Walter-Klein constrast enhancement

) CLAHE

) Vessel removal and extrapolation



Candidate extractors

(a) Lazar (b)) Walter
(c) Spencer (d) Hough




Ensemble creation

Ensemble Pool
Preprocessing methods Candidate extractors

PP+« | PP2| ... | PPu||/|CE:| | CEz| ... |CEn
\ /
Search algorithm
PP | CE; PP:| CE;: PPi| CEjs

i (1,2, 0 M)
i J2y .. €{1, 2, ..., N}

Selected pairs




Searching

* We use a simulated annealing based algorithm

* We evaluate the possible ensembles using the
Competiton Performance Metric (CPM): the average
sensitivity at 7 fixed average false positive rates Is
calculated

*The ensemble with the highest CPM is selected



Voting

Input
image

<PP, CE>1

<PP, CE>2

<PP, CE>k

Voting

MASs




Voting scheme

*For each candidate, we count the number of pairs,
for which the same candidate is present.
* We assign a confidence value C between 0 and 1

S"ﬁg the follow ng formulas:

__ the number of pairs where ¢ is present

the number of pairs in the ensemble



Result of voting




Results

*Retinopathy Online Challenge
 Independent evaluation of MA detectors
* 50 randomly selected image

» Detectors are compared using CPM




Pairs included in the ensemble

Candidate
extractor | Walter | Spencer | Hough | Lazar | Zhang

Preprocessing

Walter-Klein .
CLAHE . .

Vessel Removal . .

[llumination equalization .

No preprocessing . . .




FROC curve

Sensitivity
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CPM values

1/8 1/4 1/2 1

12
e
oo

avg.

DRSCREEN 0.173 | 0.275 | 0.380 | 0.444 | 0.526 | 0.5399 | 0.643 | 0434

Niemeijer et al. | 0.243 | 0.297 | 0336 | 0397 | 0.454 | 0498 | 0.542 | 0.395

LaTIM 0.166 | 0.230 | 0.318 | 0.385 | 0.434 | 0.534 | 0.598 | 0.381

OKmedical 0.198 | 0.265 | 0.315 | 0356 | 0.394 | 0466 | 0.501 | 0.357

Lazar et al. 0.169 | 0.248 | 0.274 | 0.367 | 0.385 | 0.499 | 0.542 | 0.355

GIB 0.190 | 0.216 | 0.254 | 0.300 | 0.364 | 0411 | 0519 | 0.322
Fujita 0.181 | 0.224 | 0.259 | 0.289 | 0.347 | 0402 | 0466 | 0.310
IRIA 0.041 | 0.160 | 0.192 | 0.242 | 0.321 | 0.397 | 0493 | 0.264
ISMV 0.134 | 0.146 | 0.202 | 0.249 | 0.286 | 0.345 | 0430 | 0.256

Waikato 0.055 | 0111 | 0.184 | 0.213 | 0.251 | 0.300 | 0.329 | 0.206




Grading based on the presence of

1LV \J

" Threshold | 4 | 05 1 06 | 07 | 08 | 09 | 1.0
easiure

SEN 1 1 1 109910961 0.76 | 0.31
SPE 0 |0.011]003]|014]|051|088]0.98
ACC 0531054055059 |0.75]0.82|0.62

Cloce Threshold | 4 | 05 | 06 | 07 ] 0.8 | 00 | 1.0

RO 0.00 | 0.01]0.03|0.14|0.51 | 0.88 | 0.98

R1 1.00 | 1.00 | 1.00 | 0.97 | 0.92 | 0.60 | 0.18

R2 1.00 | 1.00 | 1.00 | 1.00 | 0.96 | 0.72 | 0.29

R3 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.92 | 0.42




Grading based on the
presence of MAs

ROC curve on the Messidor dataset

Sensitiv

0 0,2 0,4 0,6 0,8
1 - Specificity




Final decision

e Several other features can be
calculated besides MASs:

- AM/FM

- Prefiltering

- MA detection

- Exudate detection

- Distance of the fovea and the optic disc
- Compacteness of the ROI

- Normalizing factor: diamater of the ROI




Results of the final decision

99%/67%/81%

98%/67%/80%

94%/79%/85%

94%/80%/86%

60%/91%/77%

100%/52%/73%

100%/0%/ 45%

100%/0%/ 45%

91%/83%/86%

91%/86%/86%

93%/80%/86%

86%/84%/85%

98%/71%/83%

100%/0/%45%

94%/77%/85%

93%/78%/85%

64%/92%/71%

100%/54%/74%



Thank you

Thanks for your attention.




