3D Reconstruction from Video Streams Collected by Autonomous Vehicles

Participant: Advisor:

: Severino Gomes-Neto Bruno Carvalho (spgn at ppgsc.ufrn.br) (motta at dimap.ufrn.br)

19th Summer School on Image Processing Szeged - Hungary

Outline

Outline

- Unauthorized Bio
- 3D Reconstruction and Autonomous Navigation
- VeRoNa Simulator
- VALEN
- BRUMA
- Near Future

Unauthorized Bio 🔵 🌑 🔵

3D Reconstruction and Autonomous Navigation –

 $\langle \nabla \rangle$

Unauthorized Bio 😑 🔵 🔵

3D Reconstruction and Autonomous Navigation –

 \bigtriangledown

3D Reconstruction and Autonomous Navigation

3D Reconstruction and Autonomous Navigation

3D Reconstruction and Autonomous Navigation

VeRoNa Simulator 🔴 🔴

- 3D Reconstruction
 - Real-time Structure from Motion
 - No prior knowledge
 - Few assumptions
 - Precision vs. Time consumption

3D Reconstruction and Autonomous Navigation

3D Reconstruction and Autonomous Navigation –

- VeRoNa Simulator 🔵 🔵
- Autonomous Navigation
 - Collision avoidance
 - Reach the target
 - Carry the camera(s)
 - Device dependency vs. Portability

VeRoNa Simulator

VeRoNa Simulator

VeRoNa Simulator 🔵 🔴

VeRoNa

Behicle and Robot Navigation Simulator

VeRoNa Simulator

VeRoNa Simulator

- Policy-based programming
- Unity Game Engine
 - Portability and low cost
 - Capable of loading maps, models and scripts
 - Graphics, AI and network inter-operant engines
- Top-down approach
 - Path planning
 - Trajectory control
 - Odometry

VALEN (Variable Amount of Local Estimation Nodes)

VALEN::Conjectures

• Conjecture 1

VALEN

 Noise and inaccuracies harm distinct image regions in distinct ways and amounts

Near Future

BRUMA 😑 🕘 🔵

- Conjecture 2
 - It is possible to enhance the generated hypotheses quality by generating hypotheses over specific image regions
- Conjecture 3
 - It is possible to speed up the hypotheses evaluation process quality by generating hypotheses over specific image regions

VALEN::Conceptual Example

Near	Future	(
lioui	i atai o	\smile

 $\langle \! \rangle$

VALEN CONTRACTOR OF CONTACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR

BRUMA (Block Resizing for UnderManned Amount of Assays Avoidance)

BRUMA:: Schemes	Preemption	
VALEN 💛 💛 💛	BRUMA BRUMA	
Scheme	Score	
Depth-first	$\forall h_i, \pi_m(h_i) = \sum_{j=1}^m \rho(o_j, h_i)$	
Breadth-first	$\forall o_j, \pi_n(o_j) = \sum_{i=1}^n \rho(o_j, h_i)$	
Hybrid	$\forall o_j, \pi_n(o_j) = \sum_{i=1}^n \rho(o_j, h_{i j})$	÷

BRUMA::Preemption Schemes

 \bigotimes

BRUMA::Comparing the Preemption Functions

BRUMA 😑 🔵 🌑

• Standard function

$$f(i) = \left[M \cdot 2^{-\left\lfloor \frac{i}{B} \right\rfloor} \right]$$

• BRUMA

$$f(i) = \begin{bmatrix} M_i \cdot p_i^{-\left\lfloor \frac{i}{B_i} \right\rfloor} \end{bmatrix}$$

M = number of available hypotheses i = the i-th iteration B = block size

Near Future

 M_i = number of available hypotheses p_i = elimination factor B_i = block size at the i-th iteration

Near Future

Near Future

VALEN O

BRUMA 💛 💛 💛

- Six months in George Mason University (VOLLG Positioning)
- Keep developing VeRoNa Simulator
- Deliver a scheme for selecting the values of parameters in BRUMA function
- Develop the VALEN "layer" discovery algorithm

