A Universal and Exact Linear Framework for Estimation, Registration and Recognition of Deformable Objects

Joseph M. Francos, Rami Hagege,
Shahar Kovalsky and Nadav Geva
EE Dept. Ben-Gurion University

The Simplest Possible Case

A

The Problem is not Linear

The Geometric Mathematical Problem

The Template $g(x)$

The Deformation $\varphi(x)$

The Observation $h(x)$

The Basic Relation

$$
h(x)=g(\varphi(x))
$$

The Problem - Knowing $h(x)$ and $g(x)$ what is $\varphi(x)$?

Existing Art

- Apply each of the possible deformations to the template in search for the deformed template that minimizes a cost
- Unlimited resources: time and computations
- The "solution": Optimization. Implies local minima problems.

The Implicit Solution

The Basic Relation - $h(x)=g(\varphi(x))$

$$
\hat{\varphi}(x)=\operatorname{argmin}_{\varphi(x)}(D(h(x), g(\varphi(x)))+L(\varphi(x)))
$$

D - A functional measuring the dissimilaritybetween $h(x)$ and $g(\varphi(x))$
L - A functional describing prior knowledgeon $\varphi(x)$

Existing Art

- Apply each of the possible deformations to the template in search for the deformed template that minimizes a cost
- Unlimited resources: time and computations
- The "solution": Optimization. Implies local minima problems.
Alternatively: Attempts to bypass the difficulties:
- Landmarks and their extensions: Local descriptors, e.g. SIFT, MSER.

Existing Art

- Apply each of the possible deformations to the template in search for the deformed template that minimizes a cost
- Unlimited resources: time and computations
- The "solution": Optimization. Implies local minima problems.
Alternatively: Attempts to bypass the difficulties:
- Assuming the deformation is very small and the object is simple various ad-hoc approximations are made :
- Landmarks
- Linearization

High sensitivity in the presence of large deformations or noise.

Existing Art

- Apply each of the possible deformations to the template in search for the deformed template that minimizes a cost
- Unlimited resources: time and computations
- The "solution": Optimization. Implies local minima problems.
Alternatively: Attempts to bypass the difficulties:
- Assuming the deformation is very small and the object is simple various ad-hoc approximations are made :
- Landmarks and their extensions: Local descriptors
- Linearization

High sensitivity in the presence of large deformations or noise. Poor repeatability and distinctiveness of the feature detectors

> No explicit solution exists even for the simplest sub-problem.

The Space of Allowed Deformations is Low Dimensional !!!

Non Linear Structure

Non linear structure remains non linear in all
linearly dependent coordinate systems

The Simplest Possible Case

A

First step: Jacobian Evaluation

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be some measurable function. Let $\mathbf{y}=\mathrm{Ax}$. Since

$$
\begin{gathered}
h(\mathbf{x})=g(\mathbf{A} \mathbf{x}) \\
\int_{\mathbb{R}^{n}} w(h(\mathbf{x}))=\int_{\mathbb{R}^{n}} w(g(\mathbf{A x}))=\left|\mathbf{A}^{-1}\right| \int_{\mathbb{R}^{n}} w(g(\mathbf{y})) \\
\left|\mathbf{A}^{-1}\right|=\frac{\int_{\mathbb{R}^{n}} w(h(\mathbf{x}))}{\int_{\mathbb{R}^{n}} w(g(\mathbf{y}))}
\end{gathered}
$$

Second Step: The Elements of A
 $$
\int_{\mathbb{R}^{n}} \mathbf{x} w_{l}(h(\mathbf{x}))=\int_{\mathbb{R}^{n}} \mathbf{x} w_{l}(g(\mathbf{A} \mathbf{x}))
$$
 $$
=\left|\mathbf{A}^{-1}\right| \int_{\mathbb{R}^{n}}\left(\mathbf{A}^{-1} \mathbf{y}\right) \mathbf{w}_{l}(g(\mathbf{y}))
$$
 $$
=\left|\mathbf{A}^{-1}\right| \mathbf{A}^{-1} \int_{\mathbb{R}^{n}} \mathbf{y} \mathbf{w}_{l}(g(\mathbf{y}))
$$

which is a linear equation expressed in terms of the unknown transformation parameters. In a matrix form
$|\mathbf{A}|\left[\int_{\mathbb{R}^{n}} \mathbf{x} \mathbf{w}_{1}(h(\mathbf{x})), \ldots, \int_{\mathbb{R}^{n}} \mathbf{x} w_{p}(h(\mathbf{x}))\right]=\mathbf{A}^{-1}\left[\int_{\mathbb{R}^{n}} \mathbf{y} w_{1}(g(\mathbf{y})), \ldots, \int_{\mathbb{R}^{n}} \mathbf{y} w_{p}(g(\mathbf{y}))\right]$

$$
|\mathbf{A}| H_{p}=\mathbf{A}^{-1} G_{p}
$$

Elastic Deformations

The Problem:

$$
h(x)=g(\varphi(x)) \quad \varphi^{-1}(z)^{\prime}=\sum_{i=1}^{N} a_{i} e_{i}(\mathrm{z})
$$

The operation of the fundamental functional:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} w(h(x)) d x=\int_{-\infty}^{\infty} w(g(\varphi(x))) d x= \\
& \int_{-\infty}^{\infty} \varphi^{-1}(z)^{\prime} w(g(z)) d z=\sum_{i=1}^{N} a_{i} \int_{-\infty}^{\infty} e_{i}(z) w(g(z)) d z
\end{aligned}
$$

A Linear Constraint!
Independent of the template ' g ' !
Independent of the geometric deformation model!

The Basic Solution

$$
\begin{gathered}
{\left[\begin{array}{c}
\int w_{1} \circ h \\
\vdots \\
\int w_{m} \circ h
\end{array}\right]=\left[\begin{array}{ccc}
\int e_{1} w_{1} \circ g & \cdots & \int e_{m} w_{1} \circ g \\
\vdots & \ddots & \vdots \\
\int e_{1} w_{m} \circ g & \cdots & \int e_{m} w_{m} \circ g
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]} \\
V=M a
\end{gathered}
$$

M is invertible for almost any template $g(x)$

$$
a=M^{-1} V
$$

A universal, linear, explicit and exact solution!

Elastic Deformations

Universal Manifold Embedding

- If the set of deformations, G, admits a finite dimensional representation, there is a mapping from the space of observations to a low dimensional linear space.
- The manifold corresponding to each object is mapped to a linear subspace with the same dimension as that of the manifold.
- The embedding of the space of observations depends on the deformation model, and is independent of the specific observed object, hence it is universal.

Universal Manifold Embedding

Required and Available Knowledge
$g(x)$

$\left(\int_{X} w_{1}(h(x)) d x\right)$
Knowing $V(h(x))=$
the problem is solved!

Unfortunately, all we can actually calculate however is
$Y\left(h_{o}(n \Delta s)\right)=\left(\begin{array}{c}\sum w_{1}\left(h_{o}(n \Delta s)\right) \Delta s \\ \vdots \\ \sum w_{N_{f}}\left(h_{o}(n \Delta s)\right) \Delta s\end{array}\right)$

The Basic Stochastic Solution

$$
V(h)=M a+n
$$

The LMMSE estimator
$\hat{a}=E(a)+[\operatorname{cov}(V(h))]^{-1} \operatorname{cov}(V(h), a)[V(h)-E(V(h))]$

Where this is leading us ?
A Random Sets Framework for Error Analysis in Estimating Geometric Transformations

Two Representations of Functions

A Point to Point Map
Each point in X is mapped to a unique point in Y

Decomposition of Space
Each value of Y is represented as a subset of X

Standard Error Models

- The most common models, e.g., additive-, or multiplicative noise models provide a point-wise description of the noise effect by stochastically defining how the amplitude of the observed signal at every point in time, or space, is affected by the noise.
- The global effects of the noise contribution are measured by evaluating moments of the observed signal, or by estimating its probability distribution.

Natural Error Model - A Set Decomposition Perspective

From this point of view for each value of Y we have a subset in X

Together these sets decompose X completely

Error Analysis - The Concept

- Since our goal is to estimate the geometric transformation, the appropriate noise model for the problem is a model that explicitly relates the presence of noise and the measures of the geometric entities in the observed image.
- These entities are the above zero- and firstorder moments

Quantized Range

The observed signals are quantized. Hence the effect of noise (of any kind) is the random mapping of a sample (pixel) whose measured quantized amplitude is j in the template to some other level k in the observation.

Definitions

- Let S be the support of some function f whose range is $\{0, \ldots, \mathrm{~N}\}$
- Let S_{k} denote the support of the points $\left(x_{1}, x_{2}\right) \in S$ such that $f\left(x_{1}, x_{2}\right)=k$
- S can be represented as a union of disjoint level sets S_{k} $S=\underset{k \in[0, \ldots, N\}}{\coprod} S_{k}$
- Let P be a probability transition matrix, such that $P_{j k}$ denotes the transition probability from level j to level k due to the noise.
- Assuming independence of the noise samples, this probability measure is identical for every point in the domain.

The Methodology

- Let $w_{k}(z)=\left\{\begin{array}{ll}1 & z=k \\ 0 & z \neq k\end{array} \quad k=1 \ldots . . N\right.$
- Define the decomposition of the noise-free observation $h\left(x_{1}, x_{2}\right)$ and noisy observation $\tilde{h}\left(x_{1}, x_{2}\right)$ into their level sets by applying $\left\{w_{k}(z)\right\}_{k=1}^{N}$ to both functions to yield $s=\coprod_{k \in L[m)} s_{k}$ and $s=\underset{k \in L \sim N)}{\amalg} \tilde{s}_{k}$
- Recall that the solution is based on the zeroand first order moments of these sets

The Statistical Question

What are the statistical relations between the desired quantities computed from $h\left(x_{1}, x_{2}\right)$ and those computed from $\tilde{h}\left(x_{1}, x_{2}\right)$?

The Statistical Question

Define

$$
\begin{gathered}
\mu\left(S_{k}\right)=\int_{S} w_{k}\left(h\left(x_{1}, x_{2}\right)\right) \\
V(h)=\left[\mu\left(S_{1}\right), \ldots, \mu\left(S_{N}\right)\right] \\
V_{1}(h)=\left[\int_{S_{1}} x_{1} w_{k}\left(h\left(x_{1}, x_{2}\right)\right), \ldots, \int_{S_{N}} x_{1} w_{k}\left(h\left(x_{1}, x_{2}\right)\right)\right] \\
V_{2}(h)=\left[\int_{S_{1}} x_{2} w_{k}\left(h\left(x_{1}, x_{2}\right)\right), \ldots, \int_{S_{N}} x_{2} w_{k}\left(h\left(x_{1}, x_{2}\right)\right)\right]
\end{gathered}
$$

and similarly for \tilde{h}

First Order Analysis of the Relations Zero Order Moment

Theorem

$$
E(V(\tilde{h}))=V(h) \mathbf{P}
$$

From the analysis of the deterministic case

$$
V(h)=\int_{\mathbb{R}^{n}} w(h(\mathbf{x}))=\left|\mathbf{A}^{-1}\right| \int_{\mathbb{R}^{n}} w(g(\mathbf{y}))=\left|\mathbf{A}^{-1}\right| V(g)
$$

$$
E(V(\tilde{h}))=V(h) \mathbf{P}=\left|\mathbf{A}^{-1}\right| V(g) \mathbf{P}
$$

First Order Analysis of the Relations First Order Moments

Theorem

$$
\begin{aligned}
& V_{l}(h)=\left[\int_{s_{1}} x_{i} w_{k}\left(h\left(x_{1}, x_{2}\right)\right), \ldots, \int_{S_{s}} x_{i} w_{k}\left(h\left(x_{1}, x_{2}\right)\right)\right] \\
& E\left(V_{l}(\tilde{h})\right)=V_{l}(h) \mathbf{P}
\end{aligned}
$$

Substituting in the deterministic case solution

$$
\begin{aligned}
& H_{N}=\left|\mathbf{A}^{-1}\right| \mathbf{A}^{-1} G_{N} \\
& E\left(V_{l}(\tilde{h})\right)=V_{l}(h) \mathbf{P}=\left|\mathbf{A}^{-1}\right|\left[\mathbf{A}^{-1} \mathbf{G}_{N}\right](l,:) \mathbf{P}
\end{aligned}
$$

Conclusions

Combining the results of the deterministic case and the first-order error analysis we have

$$
\tilde{\mathbf{H}}_{N}=\left|\mathbf{A}^{-1}\right| \mathbf{A}^{-1} \mathbf{G}_{N} \mathbf{P}+\mathbf{E}
$$

where E is a zero-mean random matrix.

Yields an unbiased LS solution for the deformation parameters

Discussion

- The effect of the noise, as expressed by the operation of the transition matrix P , is to linearly combine the measures of the level sets in the observation.
- In the presence of noise, all that needs to be done in order to replace the deterministic linear system, by an unbiased linear LS solution is to multiply the right hand side of the system by P .

Single Frame Location/Orientation Estimation

LMMSE Performance

Estimator std as a function of the number of observations used to empirically estimate the covariances of $V_{1}(h), V_{2}(h)$ and their cross-covariance with the angles

Orientation Estimation Varying Illumination std $\approx 1.5^{\circ}$

Estimating the Basis Functions

We wish to estimate a minimal set of basis functions, analytically defined on the continuum of a specific geometric deformation caused by some physical phenomena

$$
\phi_{j} \triangleq\left\{\left(\phi_{x}^{j}\left(x_{i}^{j}, y_{i}^{j}\right), \phi_{y}^{j}\left(x_{i}^{j}, y_{i}^{j}\right)\right\}\right\}_{i=1}^{N}
$$

Interpolate the sampled deformations Φ_{j} on a regular, evenly spaced grid, using B-spline interpolation

$$
\phi_{x}^{j}(x, y)=\sum_{n} \sum_{m} c_{n, m}^{j} f_{B}(x-n, y-m)
$$

Applying PCA on the set of coefficients

$$
c_{n, m}^{j}=\sum_{i=1}^{N_{x}} a_{k}^{j} b_{n, m}^{i}
$$

Estimating the Basis Functions

$$
\begin{aligned}
\phi_{x}^{j}(x, y) & =\sum_{n} \sum_{m} c_{n, m}^{j} f_{B}(x-n, y-m) \\
& =\sum_{n} \sum_{m} \sum_{i=1}^{\sum_{n}} a_{i}^{j} b_{n, m}^{i} f_{B}(x-n, y-m) \\
& =\sum_{i=1}^{N_{x}} a_{i}^{j} \underbrace{i}_{n, m} \sum_{n}^{i} \sum_{e_{i}^{i}(x, y)} f_{B}(x-n, y-m) \\
& =\sum_{i=1}^{N_{N}} a_{i}^{j} e_{i}^{x}(x, y)
\end{aligned}
$$

Change Detection in a Deforming Scanner

Estimation: Estimating the parameters which construct the deformation functions.

Registration of Line Scanner Deformations

> Unknown geometric and radiometric deformations

The need: Change detection (defect detection)

Overall Geometric Deformation

$$
\begin{aligned}
& \phi\binom{x}{y}=\binom{\phi_{x}(x, y)}{\phi_{y}(x, y)}=A \cdot\binom{x+B(x)+\varphi_{x}(y)}{y_{N}+\varphi_{y}(y)}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \cdot\binom{x+B(x)+\varphi_{x}(y)}{y_{N}+\varphi_{y}(y)}= \\
& \binom{a_{11}\left(x+B(x)+\varphi_{x}(y)\right)+a_{12}\left(y_{N}+\varphi_{y}(y)\right)}{a_{21}\left(x+B(x)+\varphi_{x}(y)\right)+a_{22}\left(y_{N}+\varphi_{y}(y)\right)} \cong\binom{a_{11}\left(x+B(x)+\sum_{i} \alpha_{i} e_{i}^{x}\right)+a_{12}\left(y_{N}+\sum_{i} \beta_{i} e_{i}^{y}\right)}{a_{21}\left(x+B(x)+\sum_{i} \alpha_{i} e_{i}^{x}\right)+a_{22}\left(y_{N}+\sum_{i} \beta_{i} e_{i}^{y}\right)}
\end{aligned}
$$

Estimation Statistics (pixels)

-Two orders of magnitude accuracy improvement over standard correlator
-Replaces a tedious computation (many hours) by a real-time solution

Change Detection in Video - Static Camera

Frame $N \quad$ Simple problem !!!

Frame $(N+1)$

(Frame $(N+1))-($ Frame $N)$

Change Detection - Dynamic Platform

$($ Frame $(N+1))-($ Frame $N) \quad$ Dosen't work !

Most of the Energy is the result of the platform movement

Suggested Solution - Simulate static platform by alignment

Change Detection - Dynamic Platform

5x((Frame 1)-(Frame 2 After Alignment $))$

Amplitude
multiplied by 5

Registration of Images Taken from a Moving Platform- the Deformation

The Breakthrough

Explicit solution at the smallest possible computational complexity

- The high dimensional nonlinear problem is formulated in terms of an equivalent linear parameter estimation problem - straightforward to solve.
- Not an approximation but an alternative, equivalent representation.
- The solution is unique, exact and robust to noise.
- Applicable to any deformation regardless of its magnitude.
- Independence of sensor modality and object type.
- Employs all the information in the function, rather than information of "zero measure" (points, contours).

