Presented at SSIP 2011, Szeged, Hungary

# Markov Random Fields in Image Segmentation

#### Zoltan Kato

Image Processing & Computer Graphics Dept. University of Szeged Hungary

# Overview

- Segmentation as pixel labeling
- Probabilistic approach
  - Segmentation as MAP estimation
  - □ Markov Random Field (MRF)
  - □ Gibbs distribution & Energy function
- Classical energy minimization
  - □ Simulated Annealing
  - Markov Chain Monte Carlo (MCMC) sampling
- Example MRF model & Demo
- Parameter estimation (EM)

### Segmentation as a Pixel Labelling Task

- 1. Extract features from the input image
  - □ Each pixel *s* in the image has a feature vector
  - □ For the whole image, we have

$$f = \{\vec{f}_s : s \in S\}$$

- 2. Define the set of labels  $\Lambda$ 
  - Each pixel s is assigned a label  $\omega_{s} \in \Lambda$
  - □ For the whole image, we have

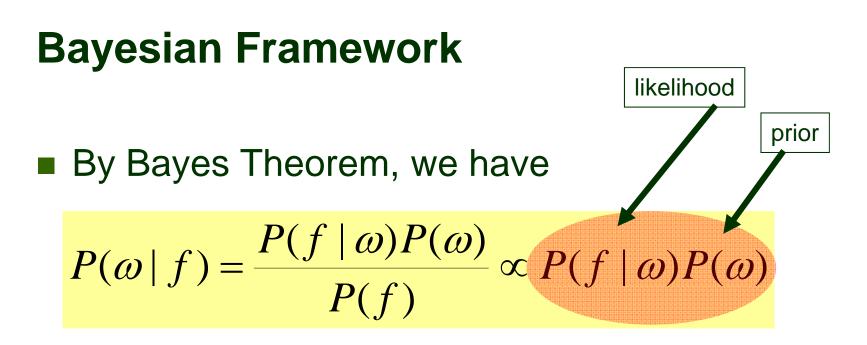
$$\omega = \{\omega_s, s \in S\}$$

For an *N×M* image, there are |*A*|<sup>NM</sup> possible labelings.
 Which one is the right segmentation?

### **Probabilistic Approach, MAP**

- Define a <u>probability measure</u> on the set of all possible labelings and select the most likely one.
- $P(\omega | f)$  measures the probability of a labelling, given the observed feature f
- Our goal is to find an optimal labeling  $\hat{\omega}$  which <u>maximizes</u>  $P(\omega | f)$
- This is called the <u>Maximum a Posteriori</u> (MAP) estimate:

$$\hat{\omega}^{MAP} = \arg \max_{\omega \in \Omega} P(\omega \mid f)$$



- $\blacksquare P(f)$  is constant
- We need to define  $P(\omega)$  and  $P(f \mid \omega)$  in our model
  - □ We will use Markov Random Fields

### Why MRF Modelization?

- In real images, regions are often homogenous; neighboring pixels usually have similar properties (intensity, color, texture, ...)
- Markov Random Field (MRF) is a probabilistic model which captures such contextual constraints
- Well studied, strong theoretical background
- Allows MCMC sampling of the (hidden) underlying structure 
   Simulated Annealing
- Fast and exact solution for certain type of models ->
   Graph cut [Kolmogorov]

### What is MRF?

 To give a formal definition for Markov Random Fields, we need some basic building blocks
 Observation Field and (hidden) Labeling Field
 Pixels and their Neighbors
 Cliques and Clique Potentials
 Energy function
 Gibbs Distribution

### **Definition – Neighbors**

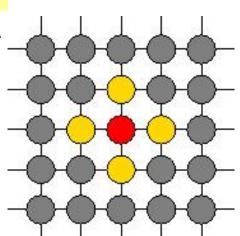
- For each pixel, we can define some surrounding pixels as its neighbors.
- Example : 1<sup>st</sup> order neighbors and 2<sup>nd</sup> order neighbors

### **Definition – MRF**

- The labeling field X can be modeled as a Markov Random Field (MRF) if
  - 1. For all  $\omega \in \Omega$ :  $P(X = \omega) > 0$
  - 2. For every  $s \in S$  and  $\omega \in \Omega$ :

 $P(\omega_s \mid \omega_r, r \neq s) = P(\omega_s \mid \omega_r, r \in N_s)$ 

 $N_s$  denotes the neighbors of pixel s.

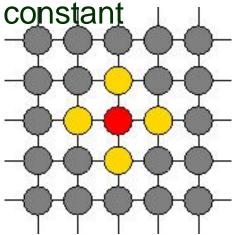


### Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a random field is a MRF if and only if P(ω) follows a Gibbs distribution.

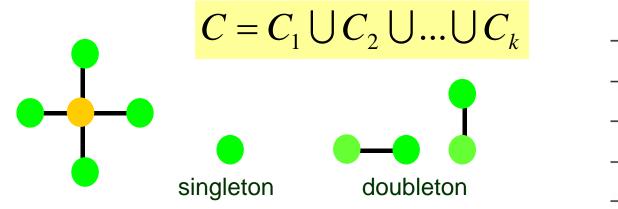
$$P(\omega) = \frac{1}{Z} \exp(-U(\omega)) = \frac{1}{Z} \exp(-\sum_{c \in C} V_c(\omega))$$

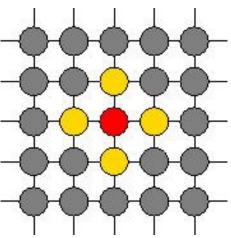
- where  $Z = \sum_{\omega \in \Omega} \exp(-U(\omega))$  is a normalization constant
- This theorem provides us an easy way of defining MRF models via <u>clique potentials</u>.



### **Definition – Clique**

- A subset C ⊆ S is called a <u>clique</u> if every pair of pixels in this subset are neighbors.
- A clique containing *n* pixels is called <u>*n*<sup>th</sup> order</u> <u>*clique*</u>, denoted by  $C_n$ .
- The set of cliques in an image is denoted by





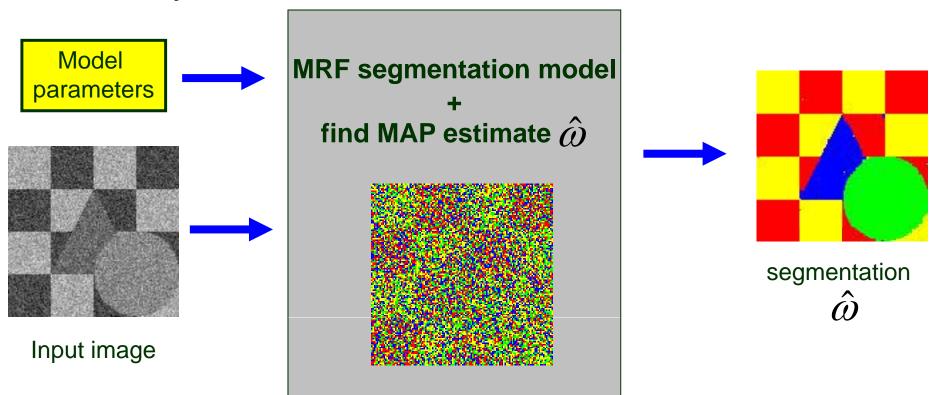
### **Definition – Clique Potential**

- For each clique *c* in the image, we can assign a value  $V_c(\omega)$  which is called <u>clique potential</u> of *c*, where  $\omega$  is the configuration of the labeling field
- The sum of potentials of all cliques gives us the energy U(ω) of the configuration ω

$$U(\omega) = \sum_{c \in C} V_c(\omega) = \sum_{i \in C_1} V_{C_1}(\omega_i) + \sum_{(i,j) \in C_2} V_{C_2}(\omega_i, \omega_j) + \dots$$

## Segmentation of grayscale images: A simple MRF model

Construct a segmentation model where regions are formed by spatial clusters of pixels with similar intensity:



# MRF segmentation model

 Pixel labels (or classes) are represented by Gaussian distributions:

$$P(f_s \mid \omega_s) = \frac{1}{\sqrt{2\pi}\sigma_{\omega_s}} \exp\left(-\frac{(f_s - \mu_{\omega_s})^2}{2\sigma_{\omega_s}^2}\right)$$

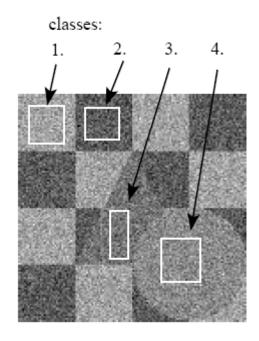
- Clique potentials:
  - □ **Singleton**: proportional to the likelihood of features given  $\omega$ :  $log(P(f | \omega))$ .
  - Doubleton: favours similar labels at neighbouring pixels smoothness prior

$$V_{c_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$

As  $\beta$  increases, regions become more homogenous

# Model parameters

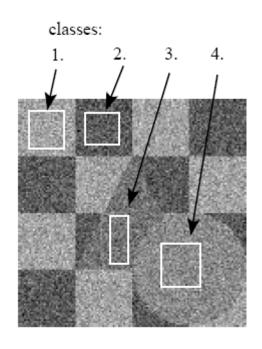
- Doubleton potential β
  - $\Box$  less dependent on the input  $\clubsuit$ 
    - can be fixed a priori
- Number of labels  $(|\Lambda|)$ 
  - Problem dependent ->
    - usually given by the user or
    - inferred from some higher level knowledge
- Each label λ∈Λ is represented by a Gaussian distribution N(µ<sub>λ</sub>,σ<sub>λ</sub>):
  - estimated from the input image



## Model parameters

The class statistics (mean and variance) can be estimated via the *empirical mean* and variance:

$$\forall \lambda \in \Lambda : \qquad \mu_{\lambda} = \frac{1}{\mid S_{\lambda} \mid} \sum_{s \in S_{\lambda}} f_s, \\ \sigma_{\lambda}^2 = \frac{1}{\mid S_{\lambda} \mid} \sum_{s \in S_{\lambda}} (f_s - \mu_{\lambda})^2$$



- a training set consists in a representative region selected by the user

# **Energy function**

Now we can define the energy function of our MRF model:

$$U(\omega) = \sum_{s} \left( \log(\sqrt{2\pi}\sigma_{\omega_{s}}) + \frac{(f_{s} - \mu_{\omega_{s}})^{2}}{2\sigma_{\omega_{s}}^{2}} \right) + \sum_{s,r} \beta \delta(\omega_{s}, \omega_{r})$$
  
**Recall:**  

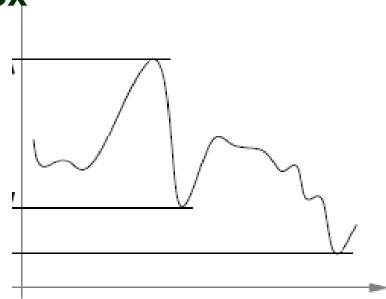
$$P(\omega \mid f) = \frac{1}{Z} \exp(-U(\omega)) = \frac{1}{Z} \exp(-\sum_{c \in C} V_{c}(\omega))$$
  
**Hence**  

$$\partial^{MAP} = \arg \max_{\omega \in \Omega} P(\omega \mid f) = \arg \min_{\omega \in \Omega} U(\omega)$$

# Optimization

- Problem reduced to the minimization of a non-convex energy function
  - Many local minima
- Gradient descent?
  - Works only if we have a good initial segmentation
- Simulated Annealing

Always works (at least in theory)

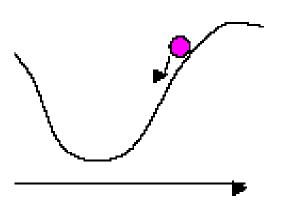


## ICM (~Gradient descent) [Besag86]

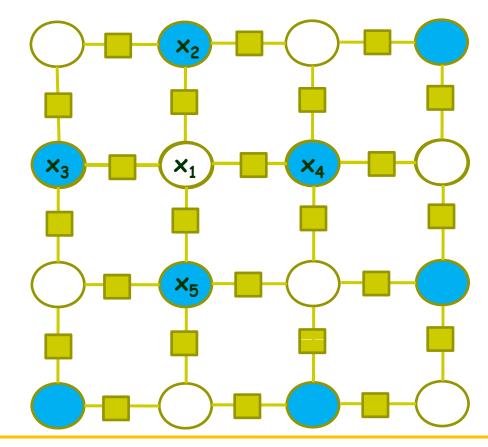
- Start at a "good" initial configuration ω<sup>0</sup> and set k = 0.
- ② For each configuration which differs at most in one element from the current configuration  $\omega^k$  (they are denoted by  $\mathcal{N}_{\omega^k}$ ), compute the energy  $U(\eta)$   $(\eta \in \mathcal{N}_{\omega^k})$ .
- ③ From the configurations in N<sub>wk</sub>, select the one which has a minimal energy:

$$\omega^{k+1} = \arg\min_{\eta \in \mathcal{N}_{\omega^k}} U(\eta). \tag{6}$$

① Goto Step ② with k = k + 1 until convergence is obtained (for example, the energy change is less than a certain threshold).



# ICM (iterated conditional mode)



**Simulated Annealing**: accept a move even if energy increases (with certain probability)









ICM

Global min

Can get stuck in local minima!

Slide adopted from C. Rother ICCV'09 tutorial: http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/

### Simulated Annealing (Metropolis)

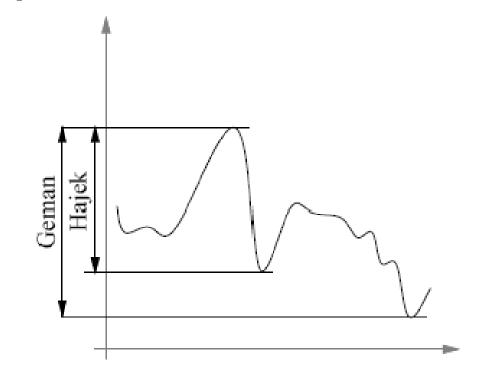
- Set k = 0 and initialize ω randomly. Choose a sufficiently high initial temperature T = T<sub>0</sub>.
- ② Construct a trial perturbation η from the current configuration ω such that η differs only in one element from ω.
- (Metropolis criteria) Compute  $\Delta U = U(\eta) U(\omega)$  and accept  $\eta$  if  $\Delta U < 0$  else accept with probability  $\exp(-\Delta U/T)$  (analogy with thermodynamics):

$$\omega = \begin{cases} \eta & \text{if } \Delta U \leq 0, \\ \eta & \text{if } \Delta U > 0 \text{ and } \xi < \exp(-\Delta U/T), \quad (4) \\ \omega & \text{otherwise} \end{cases}$$

where  $\xi$  is a uniform random number in [0, 1).

④ Decrease the temperature: T = T<sub>k+1</sub> and goto Step ② with k = k + 1 until the system is frozen.

### **Temperature Schedule**

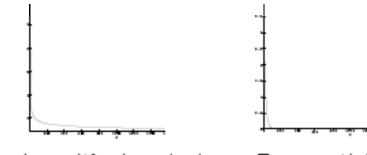


$$T_k \ge \frac{\Gamma}{\ln(k)} \tag{8}$$

with

$$\Gamma > \max_{\omega \in \Omega} U(\omega) - \min_{\omega \in \Omega} U(\omega) \tag{9}$$

## **Temperature Schedule**



Logarithmic schedule  $(4/\ln(k))$ . Exponential schedule  $(0.95^k \cdot 4)$ .

■ Initial temperature: set it to a relatively low value (~4) → faster execution

□ must be high enough to allow random jumps at the beginning!

**Schedule:**  $T_{k+1} = c \cdot T_k, \quad k = 0, 1, 2, ...$ 

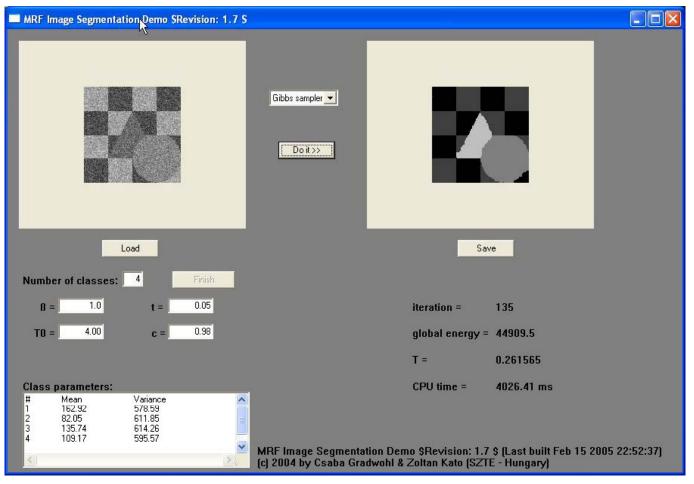
### **Stopping criteria:**

- □ Fixed number of iterations
- □ Energy change is less than a threshols

## Demo

Download from:

http://www.inf.u-szeged.hu/~kato/software/



# Summary

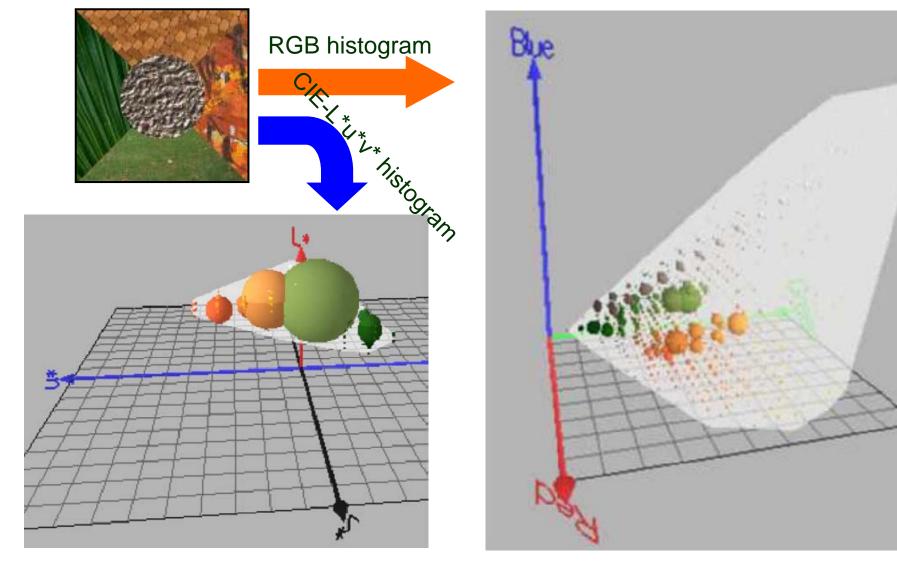
Design your model carefully

 Optimization is just a tool, do not expect a good segmentation from a wrong model

 What about other than graylevel features?

 Extension to color is relatively straightforward

## What color features?

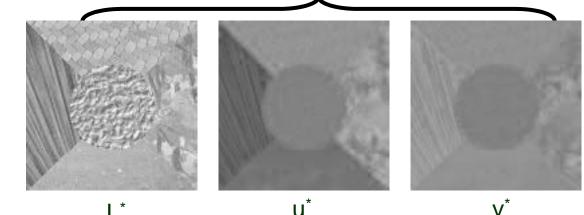


## **Extract Color Feature**

- We adopt the CIE-L\*u\*v\* color space because it is <u>perceptually uniform</u>.
  - Color difference can be measured by Euclidean distance of two color vectors.
- We convert each pixel from RGB space to CIE-L\*u\*v\* space →

□ We have 3 color feature images





# Color MRF segmentation model

Pixel labels (or classes) are represented by three-variate Gaussian distributions:

$$P(f_{s} | \omega_{s}) = \frac{1}{\sqrt{(2\pi)^{n} |\Sigma_{\omega_{s}}|}} \exp(-\frac{1}{2}(\vec{f}_{s} - \vec{u}_{\omega_{s}})\Sigma_{\omega_{s}}^{-1}(\vec{f}_{s} - \vec{u}_{\omega_{s}})^{T}$$

- Clique potentials:
  - □ **Singleton**: proportional to the likelihood of features given  $\omega$ :  $log(P(f | \omega))$ .
  - Doubleton: favours similar labels at neighbouring pixels smoothness prior

$$V_{c_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$

As  $\beta$  increases, regions become more homogenous

# Summary

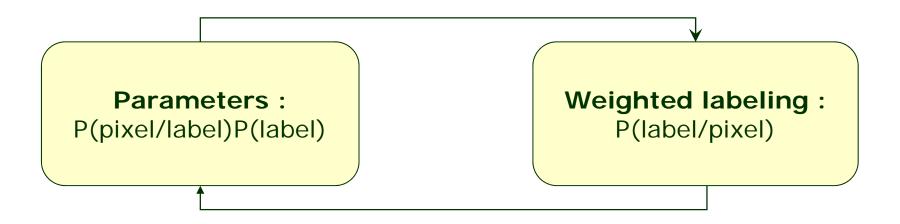
- Design your model carefully
   Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features?
   Extension to color is relatively straightforward
- Can we segment images without user interaction?
  - Yes, but you need to estimate model parameters automatically (EM algorithm)

### Incomplete data problem

- - Assigns labels and estimates parameters simultaneously
  - Chicken-Egg problem

## EM principles : The two steps

**E Step** : For each pixel, use parameters to compute probability distribution



**M Step** : Update the estimates of parameters based on weighted (or "soft") labeling

## The basic idea of EM

- Each of the E and M steps is straightforward assuming the other is solved
  - Knowing the label of each pixel, we can estimate the parameters
    - Similar to supervised learning (hard vs. soft labeling)
  - Knowing the parameters of the distributions, we can assign a label to each pixel
    - by Maximum Likelihood i.e. using the singleton energies only without pairwise interactions

## Parameter estimation via EM

- Basically, we will fit a mixture of Gaussian to the image histogram
  - □ We know the number of labels  $|\Lambda| \equiv$  number of mixture components
- At each pixel, the complete data includes
   The observed feature f<sub>s</sub>
  - $\Box$  Hidden pixel labels  $I_s$  (a vector of size  $|\Lambda|$ )
    - specifies the contribution of the pixel feature to each of the labels – i.e. a soft labeling

## Parameter estimation via EM

**E** step: recompute **I**<sub>s</sub><sup>i</sup> at each pixel s:

$$\mathbf{I}_{s}^{i} = P(\lambda \mid \mathbf{f}_{s}) = \frac{P(\mathbf{f}_{s} \mid \lambda)P(\lambda)}{\sum_{\lambda \in \Lambda} P(\mathbf{f}_{s} \mid \lambda)P(\lambda)}$$

• M step: update Gaussian parameters for each label  $\lambda$ :  $\sum_{s} P(\lambda | \mathbf{f}_{s}) = \sum_{s} P(\lambda | \mathbf{f}_{s}) \mathbf{f}_{s}$ 

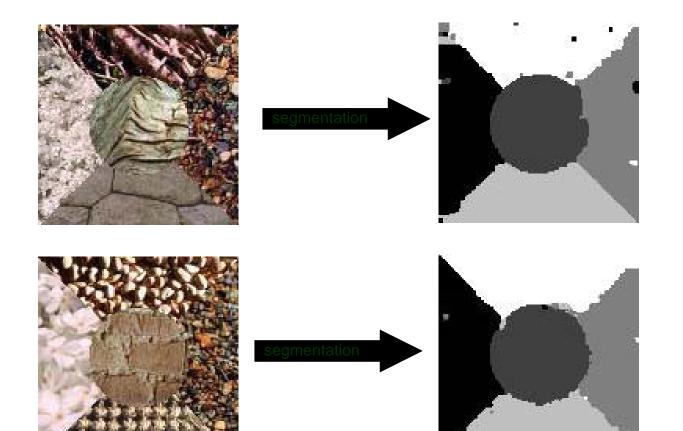
$$P(\lambda) = \frac{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s)}{\mid S \mid}, \quad \mu_{\lambda} = \frac{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s) \mathbf{f}_s}{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s)}, \dots$$

# Summary

- Design your model carefully
   Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features
   Extension to color is relatively
- Can we segment images without user interaction?
   Yes, but you need to estimate model parameters automatically (EM algorithm)
- Can we segment more complex images?

□ Yes, but then you need a more complex MRF model

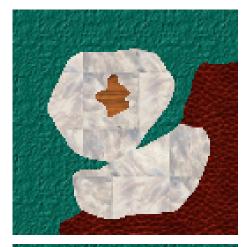
# **Color Textured Segmentation**



# **Color & Motion Segmentation**











# Summary

- Design your model carefully
   Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features
   Extension to color is relatively
- Can we segment images without user interaction?
   Yes, but you need to estimate model parameters automatically (EM algorithm)
- Can we segment more complex images?
  - □ Yes, but then you need a more complex MRF model
- What if we do not know  $|\Lambda|$ ?
  - Fully automatic segmentation requires
    - Modeling of the parameters AND
    - a more sophisticated sampling algorithm (Reversible jump MCMC)

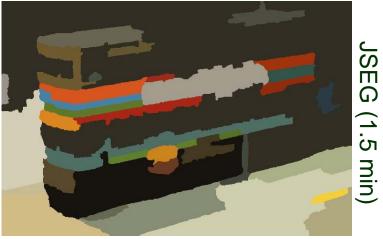
# MRF+RJMCMC vs. JSEG



JSEG (Y. Deng, B.S.Manjunath: PAMI'01):

- 1. **color quantization**: colors are quantized to several representing classes that can be used to differentiate regions in the image.
- 2. spatial segmentation: A region growing method is then used to segment the image.





## Benchmark results using the Berkeley Segmentation Dataset



**JSEG** 

RJMCMC

## References

- Visit <u>http://www.inf.u-szeged.hu/~kato/</u>
- Forthcoming book:

Foundations and Trends<sup>®</sup> in sample Vol. xx, No xx (2011) 1–164 © 2011 xxxxxxxx DOI: xxxxxx



#### Markov random fields in image segmentation

Zoltan Kato<sup>1</sup> and Josiane Zerubia<sup>2</sup>

<sup>1</sup> Arpad ter 2 Szeged 6720, Hungary, kato@inf.u-szeged.hu

<sup>2</sup> 2004 Route des Lucioles Sophia Antipolis 06902 Cedex , France , Josiane.Zerubia@inria.fr