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.._Ids in Image Segmentation
Overview

m Segmentation as pixel labeling

= Probabilistic approach

[0 Segmentation as MAP estimation
1 Markov Random Field (MRF)
1 Gibbs distribution & Energy function

m Classical energy minimization
0 Simulated Annealing
[0 Markov Chain Monte Carlo (MCMC) sampling

m Example MRF model & Demo
m Parameter estimation (EM)



Segmentation as a Pixel Labelling Task

1. Extract features from the input image
00 Each pixel s in the image has a feature vector
00 For the whole image, we have |

f={f.:seS}

2. Define the set of labels A
00 Each pixel s is assigned a label O, € A B . LT
00 For the whole image, we have

o ={w,,s € S}

= For an NxM image, there are |A|NM possible labelings.
O Which one is the right segmentation?



Probabilistic Approach, MAP

m Define a probability measure on the set of all
possible labelings and select the most likely one.

m P(o| f) measures the probability of a labelling,
given the observed feature f

m Our goal is to find an optimal labeling @ which
maximizes P(w | f)

m This is called the Maximum a Posteriori (MAP)
estimate:

o™ =argmaxP(w | f)

wel)



S in Image Segmentation

Bayesian Framework
likelihood

m By Bayes Theorem, we have

m P(f)is constant
= We need to define P(w)and P(f | ®) in our

model
1 We will use Markov Random Fields



Why MRF Modelization?

m In real Images, regions are often homogenous;
neighboring pixels usually have similar properties
(intensity, color, texture, ...)

m Markov Random Field (MRF) is a probabilistic model
which captures such contextual constraints

m Well studied, strong theoretical background
m Allows MCMC sampling of the (hidden) underlying
structure = Simulated Annealing

m Fast and exact solution for certain type of models =»
Graph cut [Kolmogorov]
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What is MRF?

m To give a formal definition for Markov Random
Fields, we need some basic building blocks
1 Observation Field and (hidden) Labeling Field
1 Pixels and their Neighbors
1 Cligues and Cligue Potentials
1 Energy function
1 Gibbs Distribution



Definition — Neighbors

m For each pixel, we can define some surrounding
pixels as its neighbors.

m Example : 15 order neighbors and 2"d order

neighbors

r

- —0

o
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Definition — MRF

m  The labeling field X can be modeled as a
Markov Random Field (MRF) if

1. Forall weQ:P(X=w)>0

2. ForeverySe SandweQ:
Plo,|w,,r#s)=P(o, |ow,,reN,)

N denotes the neighbors of pixel s




Hammersley-Clifford Theorem

m The Hammersley-Clifford Theorem states that a random
field is a MRF if and only if P(@) follows a Gibbs
distribution.

() = %exp(—u (@) = %exp(—ZvC (@)

ceC

= where Z = % exp(-U (@)) is a normalization constan
wel)
m This theorem provides us an
easy way of defining MRF models via
cligue potentials.




Definition — Clique

m A subset C c S is called a cligue if every pair of
pixels in this subset are neighbors.

m A clique containing n pixels is called nt" order
clique, denoted by C_.

m The set of cligues in an image Is denoted by

? c=c,Uc,U..uc,

'_‘_‘ C —0?

singleton doubleton
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Definition — Clique Potential

m For each clique c in the image, we can assign a
value V, (w)which is called cligue potential of c,
where @ Iis the configuration of the labeling field

m The sum of potentials of all cligues gives us the
energyu (o) of the configuration®

U(w) = ZVC((D) = Z:VC1 (o) + ZVC2 (0, 0;) +...

ceC ieC; (1,))eC,
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Segmentation of grayscale images:

A simple MRF model

= Construct a segmentation model where regions are
formed by spatial clusters of pixels with similar
intensity:

Model —p |MRF segmentation model
parameters g +

find MAP estimate ¢

segmentation

Q

Input image
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MRF segmentation model

m Pixel labels (or classes) are represented by
Gaussian distributions:

1
P(fs|a)s) — \/EO' exp(_ 262

m Clique potentials:

0 Singleton: proportional to the likelihood of
features given w: log(P(f | w)).

0 Doubleton: favours similar labels at neighbouring

pixels — smoothness prior { ® 60 8 }

—-p f W, = O
+4 It o * o,

Cliques

V. (1, ])=p6(w, o) :{

As fincreases, regions become more homogenous



Model parameters

classes:

= Doubleton potential

1 less dependent on the input =»
= can be fixed a priori

= Number of labels (JA])

1 Problem dependent=>»
= usually given by the user or
= inferred from some higher level knowledge

m Each label LA is represented by a Gaussian
distribution N(u,,c,):
1 estimated from the input image

15



Model parameters

m The class statistics (mean and variance)
can be estimated via the empirical mean
and variance:

1
YA e A ‘”’3\:|S|Zf5?
A SES}L
1
oy =—— > (fs —m\)°
|SA|SES},L

O where S, denotes the set of pixels in the
training set of class A

[0 a training set consists in a representative
region selected by the user

classes:

16
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Energy function

m Now we can define the energy function of

our MRF model:
%
U(w)=Y|log( 270, )+ J”“)J Zﬂé(a) )
S \ 0
m Recall:

P(0] )= exp(-U (@) = exp(- XV, ()

m Hence &M° =argmax P(w| ) = arg mmU(a))

we()
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Optimization

m Problem reduced to the
minimization of a non-convex
energy function

01 Many local minima | \”'ll
. I
m Gradient descent? C I'l L
0 Works only if we have a good | | I""ﬁ.

Initial segmentation \ /

m Simulated Annealing .
1 Always works (at least in theory)

=




ICM (~Gradient descent) [Besag86]

) Start at a “good" initial configuration w° and set

F
b

k=0,

For each configuration which differs at mast in one
alement from the current configuration & {they
are denoted by N ), compute the energy Uln)

(= N k)

From the configurations in ,-"-u"_,.;_. select the one
which has a minimal energy:

ST =arg min Un). (6)
'i'-'”'_'""".;._:'?

Goto BStep 3 with E— Lk 41 until convergence is
cbtained (Tfor example, the energy change is less
than a certain threshoid).

19
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ICM (iterated conditional mode)

O

o= =@

()
R

O

: accept a move even if
energy increases (with certain probability)

O

o=0O=0

‘ ‘ means observed

ICM Global min

O-=@=(

Can get stuck in local minima!

Slide adopted from C. Rother ICCV’09 tutorial:
http://research_microsoft.com/en-us/um/cambridge/projects/tutorial/



Simulated Annealing (Metropolis)

Pl oy
1 ]
St

T
| i
S

Ser k= 0 and inftialize «w randomiy. Choose a
sufficiently high initial temperature T = Tj.

Construct a trial perturbation n from the current
configuration w such that 3 differs only in one el-
ameant from w.

(Metropolis criteria) Compute AU = Ulyg) —
[F{w) and accept n If AUl < 0 else accept with
probability exp(—AU/T) {analogy with thermody-
namics).

n AL <0,
w=+4 n ITAU =0 and ¢ < exp(—4U/T). (4)
w OTthorwise

where £ is a uniform randcm number in [0,1).

Decrease the temperature: T = Tj4q and goto
Step @ with k= k4 1 until the system is frozen.

21



Temperature Schedule

4
i3
=1k \\'
=| D I
S I|
3 I.\/\-\“\qu
T
' \/
T
T = T ()

with

T axiwy—minii{w g
M T::_ﬂ (w) min () (9)

22
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Temperature Schedule

Laogarithmic sched- Exponential sched-
ule (4/1n(k)). ule (0.95%.4).

m Initial temperature: set it to a relatively low value (~4)=>
faster execution
0 must be high enough to allow random jumps at the beginning!
m Schedule: T.ic—l—l = c- 1. Bb=0,1,2,...

m Stopping criteria:
0 Fixed number of iterations
0 Energy change is less than a threshols

23



Demo

= Download from:
http://www.inf.u-szeged.hu/~kato/software/

I MRF Image Segmentationk[)emu SRevision: 1.7 §

Gibbs zampler «

Wariance
578.59
£11.85
514.26
59557

' 2 T [
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Summary

m Design your model carefully

O Optimization iIs just a tool, do not expect a
good segmentation from a wrong model

= What about other than graylevel features?
1Extension to color is relatively straightforward



What color features?

| RGB histogram

26



Extract Color Feature

= We adopt the CIE-L*u*v* color space because it
Is perceptually uniform.

1 Color difference can be measured by Euclidean
distance of two color vectors.

m \WWe convert each pixel from RGB space to CIE-
L*u*v* space =»
1 We have 3 color feature images Je
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Color MRF segmentation model

m Pixel labels (or classes) are represented by
three-variate Gaussian distributions:

1 1,- . 4,7 =
P(f @) = ——exp(— (-0, )2, (f,-0,)")
J@r)|z,, |

m Clique potentials:

0 Singleton: proportional to the likelihood of
features given w: log(P(f | w)).

0 Doubleton: favours similar labels at neighbouring

pixels — smoothness prior { ® 60 8 }

-p 1 o =0,
+06 i W, # O

Cliques

V. (1, ])=p6(w, o) :{

As fincreases, regions become more homogenous
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Summary

m Design your model carefully

COptimization iIs just a tool, do not expect a good
segmentation from a wrong model

= What about other than graylevel features?
1Extension to color is relatively straightforward

m Can we segment images without user
Interaction?

Yes, but you need to estimate model
parameters automatically (EM algorithm)
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Incomplete data problem

m Supervised parameter estimation

Jwe are given a labelled data set to learn from
= €.g. somebody manually assigned labels to pixels

= How to proceed without labelled data?
Learning from incomplete data
[ Standard solution is an iterative procedure

called Expectation-Maximization

= Assigns labels and estimates parameters
simultaneously

= Chicken-Egg problem



g
EM principles : The two steps

E Step : For each pixel,
use parameters to compute probability distribution

\_

Parameters :
P(pixel/label)P(label)

~

/

A

\’

-

N

Weighted labeling :
P(label/pixel)

~

)

M Step : Update the estimates of parameters
based on weighted (or "soft”) labeling

31
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The basic idea of EM

m Each of the E and M steps Is
straightforward assuming the other Is
solved

C0Knowing the label of each pixel, we can
estimate the parameters

= Similar to supervised learning (hard vs. soft
labeling)
[1Knowing the parameters of the distributions,
we can assign a label to each pixel

= by Maximum Likelihood — i.e. using the singleton
energies only without pairwise interactions
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Parameter estimation via EM

m Basically, we will fit a mixture of Gaussian
to the image histogram

0We know the number of labels |A| = number of
mixture components

m At each pixel, the complete data includes
0 The observed feature f,

COHidden pixel labels | (a vector of size |A))

» specifies the contribution of the pixel feature to
each of the labels — i.e. a soft labeling

33
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Parameter estimation via EM

m E step: recompute | at each pixel s:

P(T, | 4)P(4)
2 P 1 1)P(2)

AeA

IL=P(A|f,) =

m M step: update Gaussian parameters for
each label A S P(1]f) ZPWf ).

Pl:SES ’
(4) S| H, =

ZP(/IH )
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Summary

m Design your model carefully

0 Optimization is just a tool, do not expect a good
segmentation from a wrong model

= What about other than graylevel features
1 Extension to color is relatively

m Can we segment images without user interaction?

0 Yes, but you need to estimate model parameters
automatically (EM algorithm)

m Can we segment more complex images?
1 Yes, but then you need a more complex MRF model

35
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In Image Segmentation

Color Textured Segmentation
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Color & Motion Segmentation
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Summary

m Design your model carefully

0 Optimization is just a tool, do not expect a good
segmentation from a wrong model

m \What about other than graylevel features
1 Extension to color is relatively
m Can we segment images without user interaction?
0 Yes, but you need to estimate model parameters
automatically (EM algorithm)

m Can we segment more complex images?
0 Yes, but then you need a more complex MRF model

= What if we do not know |A|?

0 Fully automatic segmentation requires
= Modeling of the parameters AND
= a more sophisticated sampling algorithm (Reversible jump MCMC)
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MRF+RJIJMCMC vs. JSEG

JSEG (Y. Deng, B.S.Manjunath: PAMI'01):

1. color quantization: colors are
guantized to several representing
classes that can be used to
differentiate regions in the image.

2. spatial segmentation: A region
growing method is then used to
segment the image.

39



Benchmark results using the

Berkeley Segmentation Dataset

JSEG RIMCMC
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