Presented at SSIP 2011, Szeged, Hungary

Markov Random Fields in Image Segmentation

Zoltan Kato

Image Processing & Computer Graphics Dept. University of Szeged Hungary

Overview

- Segmentation as pixel labeling
- Probabilistic approach
 - Segmentation as MAP estimation
 - □ Markov Random Field (MRF)
 - □ Gibbs distribution & Energy function
- Classical energy minimization
 - □ Simulated Annealing
 - Markov Chain Monte Carlo (MCMC) sampling
- Example MRF model & Demo
- Parameter estimation (EM)

Segmentation as a Pixel Labelling Task

- 1. Extract features from the input image
 - □ Each pixel *s* in the image has a feature vector
 - □ For the whole image, we have

$$f = \{\vec{f}_s : s \in S\}$$

- 2. Define the set of labels Λ
 - Each pixel s is assigned a label $\omega_{s} \in \Lambda$
 - □ For the whole image, we have

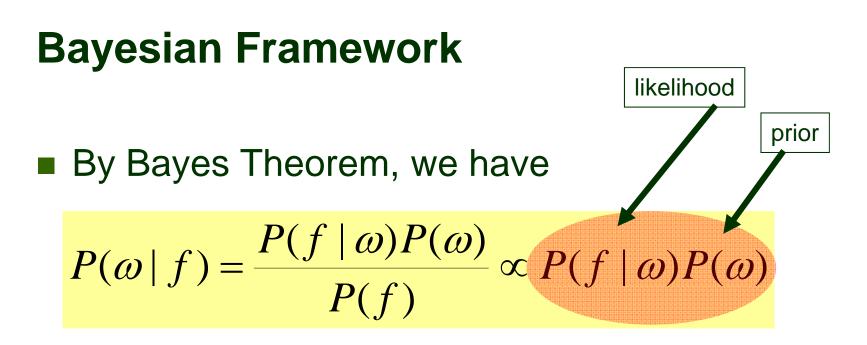
$$\omega = \{\omega_s, s \in S\}$$

For an *N×M* image, there are |*A*|^{NM} possible labelings.
 Which one is the right segmentation?

Probabilistic Approach, MAP

- Define a <u>probability measure</u> on the set of all possible labelings and select the most likely one.
- $P(\omega | f)$ measures the probability of a labelling, given the observed feature f
- Our goal is to find an optimal labeling $\hat{\omega}$ which <u>maximizes</u> $P(\omega | f)$
- This is called the <u>Maximum a Posteriori</u> (MAP) estimate:

$$\hat{\omega}^{MAP} = \arg \max_{\omega \in \Omega} P(\omega \mid f)$$



- $\blacksquare P(f)$ is constant
- We need to define $P(\omega)$ and $P(f \mid \omega)$ in our model
 - □ We will use Markov Random Fields

Why MRF Modelization?

- In real images, regions are often homogenous; neighboring pixels usually have similar properties (intensity, color, texture, ...)
- Markov Random Field (MRF) is a probabilistic model which captures such contextual constraints
- Well studied, strong theoretical background
- Allows MCMC sampling of the (hidden) underlying structure
 Simulated Annealing
- Fast and exact solution for certain type of models ->
 Graph cut [Kolmogorov]

What is MRF?

 To give a formal definition for Markov Random Fields, we need some basic building blocks
 Observation Field and (hidden) Labeling Field
 Pixels and their Neighbors
 Cliques and Clique Potentials
 Energy function
 Gibbs Distribution

Definition – Neighbors

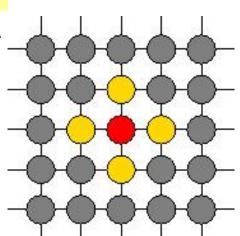
- For each pixel, we can define some surrounding pixels as its neighbors.
- Example : 1st order neighbors and 2nd order neighbors

Definition – MRF

- The labeling field X can be modeled as a Markov Random Field (MRF) if
 - 1. For all $\omega \in \Omega$: $P(X = \omega) > 0$
 - 2. For every $s \in S$ and $\omega \in \Omega$:

 $P(\omega_s \mid \omega_r, r \neq s) = P(\omega_s \mid \omega_r, r \in N_s)$

 N_s denotes the neighbors of pixel s.

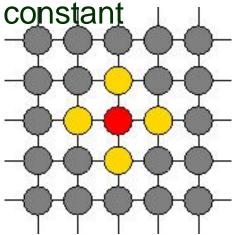


Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a random field is a MRF if and only if P(ω) follows a Gibbs distribution.

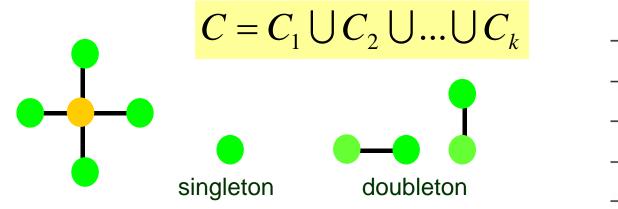
$$P(\omega) = \frac{1}{Z} \exp(-U(\omega)) = \frac{1}{Z} \exp(-\sum_{c \in C} V_c(\omega))$$

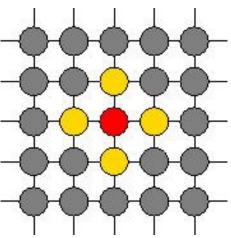
- where $Z = \sum_{\omega \in \Omega} \exp(-U(\omega))$ is a normalization constant
- This theorem provides us an easy way of defining MRF models via <u>clique potentials</u>.



Definition – Clique

- A subset C ⊆ S is called a <u>clique</u> if every pair of pixels in this subset are neighbors.
- A clique containing *n* pixels is called <u>*n*th order</u> <u>*clique*</u>, denoted by C_n .
- The set of cliques in an image is denoted by





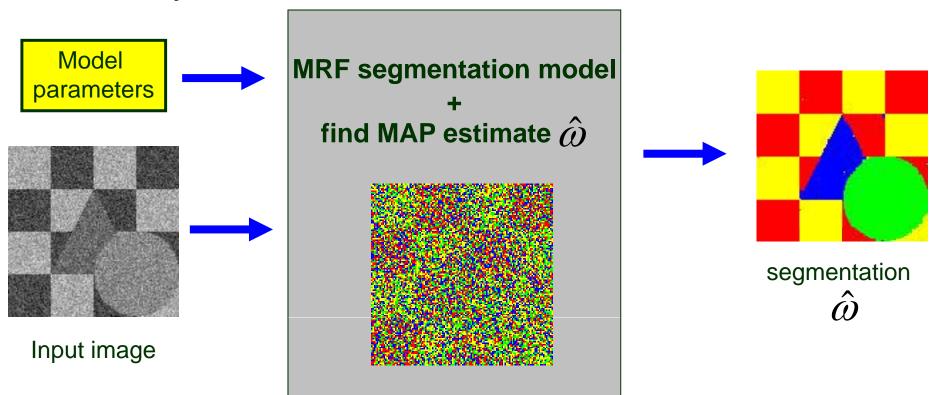
Definition – Clique Potential

- For each clique *c* in the image, we can assign a value $V_c(\omega)$ which is called <u>clique potential</u> of *c*, where ω is the configuration of the labeling field
- The sum of potentials of all cliques gives us the energy U(ω) of the configuration ω

$$U(\omega) = \sum_{c \in C} V_c(\omega) = \sum_{i \in C_1} V_{C_1}(\omega_i) + \sum_{(i,j) \in C_2} V_{C_2}(\omega_i, \omega_j) + \dots$$

Segmentation of grayscale images: A simple MRF model

Construct a segmentation model where regions are formed by spatial clusters of pixels with similar intensity:



MRF segmentation model

 Pixel labels (or classes) are represented by Gaussian distributions:

$$P(f_s \mid \omega_s) = \frac{1}{\sqrt{2\pi}\sigma_{\omega_s}} \exp\left(-\frac{(f_s - \mu_{\omega_s})^2}{2\sigma_{\omega_s}^2}\right)$$

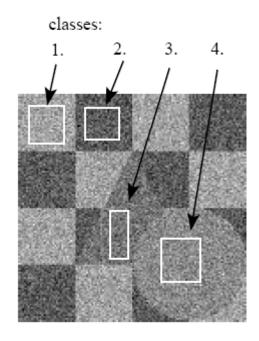
- Clique potentials:
 - □ **Singleton**: proportional to the likelihood of features given ω : $log(P(f | \omega))$.
 - Doubleton: favours similar labels at neighbouring pixels smoothness prior

$$V_{c_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$

As β increases, regions become more homogenous

Model parameters

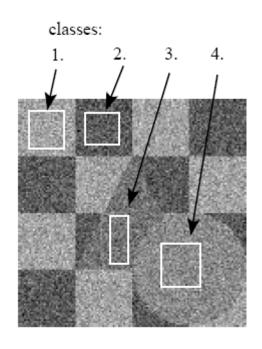
- Doubleton potential β
 - \Box less dependent on the input \clubsuit
 - can be fixed a priori
- Number of labels $(|\Lambda|)$
 - Problem dependent ->
 - usually given by the user or
 - inferred from some higher level knowledge
- Each label λ∈Λ is represented by a Gaussian distribution N(µ_λ,σ_λ):
 - estimated from the input image



Model parameters

The class statistics (mean and variance) can be estimated via the *empirical mean* and variance:

$$\forall \lambda \in \Lambda : \qquad \mu_{\lambda} = \frac{1}{\mid S_{\lambda} \mid} \sum_{s \in S_{\lambda}} f_s, \\ \sigma_{\lambda}^2 = \frac{1}{\mid S_{\lambda} \mid} \sum_{s \in S_{\lambda}} (f_s - \mu_{\lambda})^2$$



- a training set consists in a representative region selected by the user

Energy function

Now we can define the energy function of our MRF model:

$$U(\omega) = \sum_{s} \left(\log(\sqrt{2\pi}\sigma_{\omega_{s}}) + \frac{(f_{s} - \mu_{\omega_{s}})^{2}}{2\sigma_{\omega_{s}}^{2}} \right) + \sum_{s,r} \beta \delta(\omega_{s}, \omega_{r})$$

Recall:

$$P(\omega \mid f) = \frac{1}{Z} \exp(-U(\omega)) = \frac{1}{Z} \exp(-\sum_{c \in C} V_{c}(\omega))$$

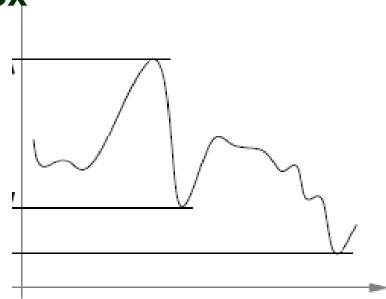
Hence

$$\partial^{MAP} = \arg \max_{\omega \in \Omega} P(\omega \mid f) = \arg \min_{\omega \in \Omega} U(\omega)$$

Optimization

- Problem reduced to the minimization of a non-convex energy function
 - Many local minima
- Gradient descent?
 - Works only if we have a good initial segmentation
- Simulated Annealing

Always works (at least in theory)

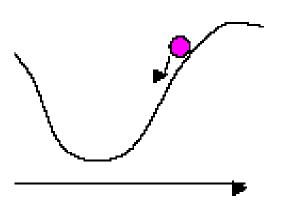


ICM (~Gradient descent) [Besag86]

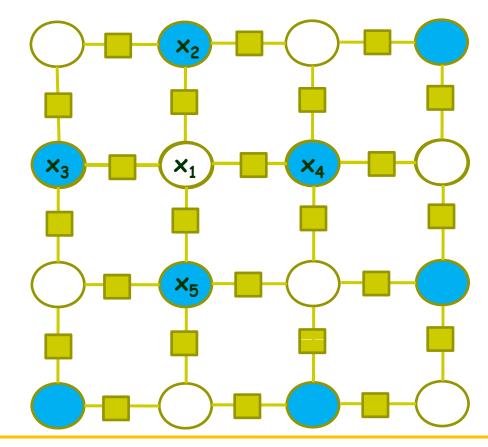
- Start at a "good" initial configuration ω⁰ and set k = 0.
- ② For each configuration which differs at most in one element from the current configuration ω^k (they are denoted by \mathcal{N}_{ω^k}), compute the energy $U(\eta)$ $(\eta \in \mathcal{N}_{\omega^k})$.
- ③ From the configurations in N_{wk}, select the one which has a minimal energy:

$$\omega^{k+1} = \arg\min_{\eta \in \mathcal{N}_{\omega^k}} U(\eta). \tag{6}$$

① Goto Step ② with k = k + 1 until convergence is obtained (for example, the energy change is less than a certain threshold).



ICM (iterated conditional mode)



Simulated Annealing: accept a move even if energy increases (with certain probability)

ICM

Global min

Can get stuck in local minima!

Slide adopted from C. Rother ICCV'09 tutorial: http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/

Simulated Annealing (Metropolis)

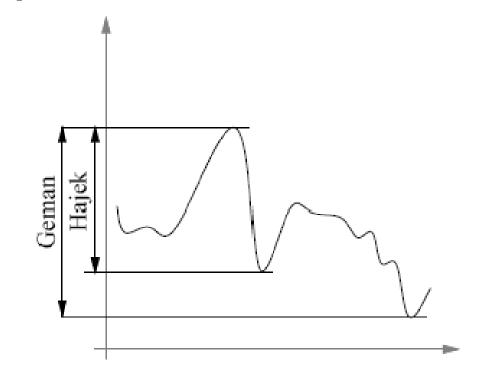
- Set k = 0 and initialize ω randomly. Choose a sufficiently high initial temperature T = T₀.
- ② Construct a trial perturbation η from the current configuration ω such that η differs only in one element from ω.
- (Metropolis criteria) Compute $\Delta U = U(\eta) U(\omega)$ and accept η if $\Delta U < 0$ else accept with probability $\exp(-\Delta U/T)$ (analogy with thermodynamics):

$$\omega = \begin{cases} \eta & \text{if } \Delta U \leq 0, \\ \eta & \text{if } \Delta U > 0 \text{ and } \xi < \exp(-\Delta U/T), \quad (4) \\ \omega & \text{otherwise} \end{cases}$$

where ξ is a uniform random number in [0, 1).

④ Decrease the temperature: T = T_{k+1} and goto Step ② with k = k + 1 until the system is frozen.

Temperature Schedule

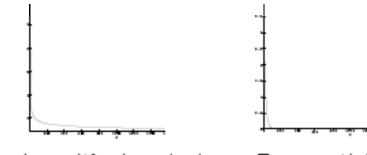


$$T_k \ge \frac{\Gamma}{\ln(k)} \tag{8}$$

with

$$\Gamma > \max_{\omega \in \Omega} U(\omega) - \min_{\omega \in \Omega} U(\omega) \tag{9}$$

Temperature Schedule



Logarithmic schedule $(4/\ln(k))$. Exponential schedule $(0.95^k \cdot 4)$.

■ Initial temperature: set it to a relatively low value (~4) → faster execution

□ must be high enough to allow random jumps at the beginning!

Schedule: $T_{k+1} = c \cdot T_k, \quad k = 0, 1, 2, ...$

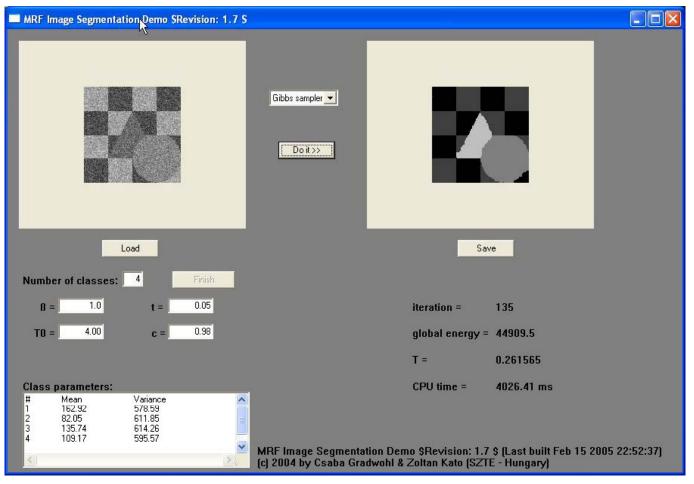
Stopping criteria:

- □ Fixed number of iterations
- □ Energy change is less than a threshols

Demo

Download from:

http://www.inf.u-szeged.hu/~kato/software/



Summary

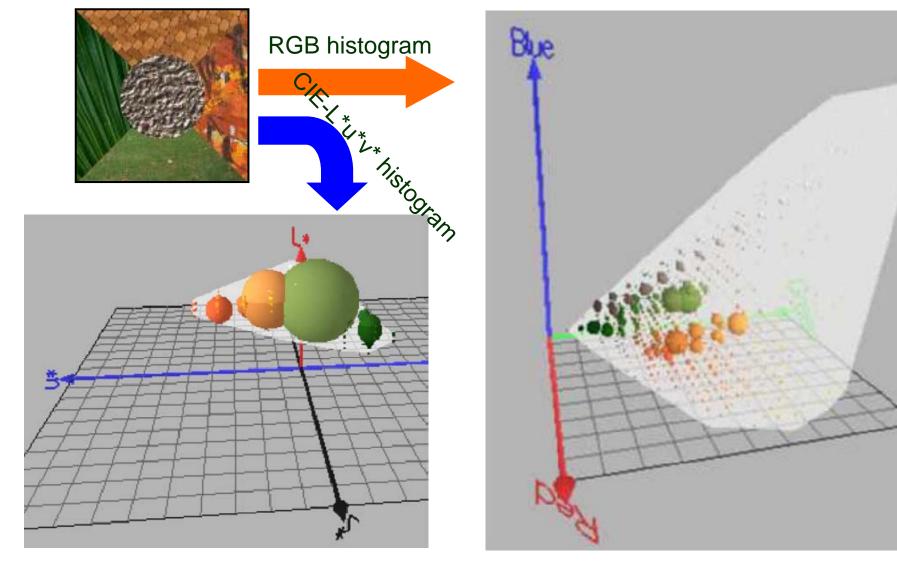
Design your model carefully

 Optimization is just a tool, do not expect a good segmentation from a wrong model

 What about other than graylevel features?

 Extension to color is relatively straightforward

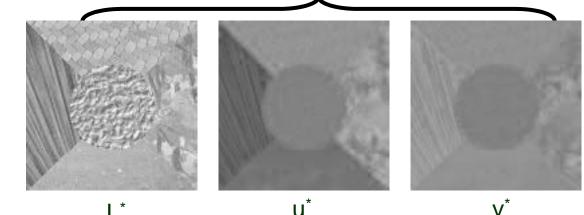
What color features?



Extract Color Feature

- We adopt the CIE-L*u*v* color space because it is <u>perceptually uniform</u>.
 - Color difference can be measured by Euclidean distance of two color vectors.
- We convert each pixel from RGB space to CIE-L*u*v* space →

□ We have 3 color feature images



Color MRF segmentation model

Pixel labels (or classes) are represented by three-variate Gaussian distributions:

$$P(f_{s} | \omega_{s}) = \frac{1}{\sqrt{(2\pi)^{n} |\Sigma_{\omega_{s}}|}} \exp(-\frac{1}{2}(\vec{f}_{s} - \vec{u}_{\omega_{s}})\Sigma_{\omega_{s}}^{-1}(\vec{f}_{s} - \vec{u}_{\omega_{s}})^{T}$$

- Clique potentials:
 - □ **Singleton**: proportional to the likelihood of features given ω : $log(P(f | \omega))$.
 - Doubleton: favours similar labels at neighbouring pixels smoothness prior

$$V_{c_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$

As β increases, regions become more homogenous

Summary

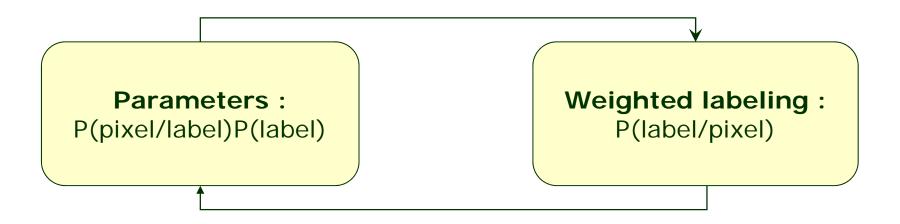
- Design your model carefully
 Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features?
 Extension to color is relatively straightforward
- Can we segment images without user interaction?
 - Yes, but you need to estimate model parameters automatically (EM algorithm)

Incomplete data problem

- - Assigns labels and estimates parameters simultaneously
 - Chicken-Egg problem

EM principles : The two steps

E Step : For each pixel, use parameters to compute probability distribution



M Step : Update the estimates of parameters based on weighted (or "soft") labeling

The basic idea of EM

- Each of the E and M steps is straightforward assuming the other is solved
 - Knowing the label of each pixel, we can estimate the parameters
 - Similar to supervised learning (hard vs. soft labeling)
 - Knowing the parameters of the distributions, we can assign a label to each pixel
 - by Maximum Likelihood i.e. using the singleton energies only without pairwise interactions

Parameter estimation via EM

- Basically, we will fit a mixture of Gaussian to the image histogram
 - □ We know the number of labels $|\Lambda| \equiv$ number of mixture components
- At each pixel, the complete data includes
 The observed feature f_s
 - \Box Hidden pixel labels I_s (a vector of size $|\Lambda|$)
 - specifies the contribution of the pixel feature to each of the labels – i.e. a soft labeling

Parameter estimation via EM

E step: recompute **I**_sⁱ at each pixel s:

$$\mathbf{I}_{s}^{i} = P(\lambda \mid \mathbf{f}_{s}) = \frac{P(\mathbf{f}_{s} \mid \lambda)P(\lambda)}{\sum_{\lambda \in \Lambda} P(\mathbf{f}_{s} \mid \lambda)P(\lambda)}$$

• M step: update Gaussian parameters for each label λ : $\sum_{s} P(\lambda | \mathbf{f}_{s}) = \sum_{s} P(\lambda | \mathbf{f}_{s}) \mathbf{f}_{s}$

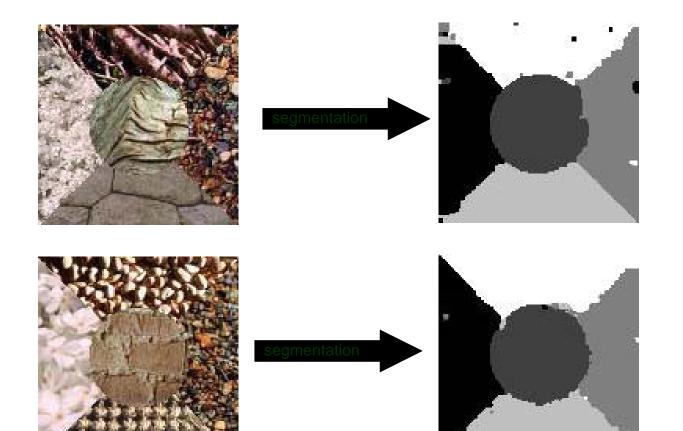
$$P(\lambda) = \frac{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s)}{\mid S \mid}, \quad \mu_{\lambda} = \frac{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s) \mathbf{f}_s}{\sum_{s \in S} P(\lambda \mid \mathbf{f}_s)}, \dots$$

Summary

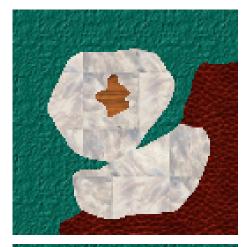
- Design your model carefully
 Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features
 Extension to color is relatively
- Can we segment images without user interaction?
 Yes, but you need to estimate model parameters automatically (EM algorithm)
- Can we segment more complex images?

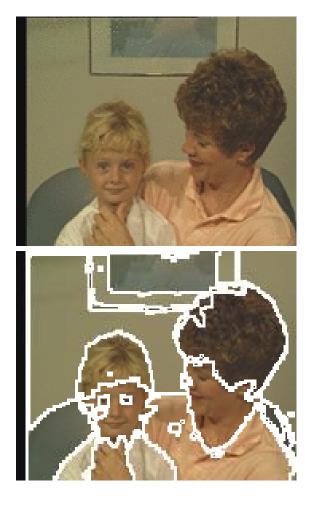
□ Yes, but then you need a more complex MRF model

Color Textured Segmentation



Color & Motion Segmentation





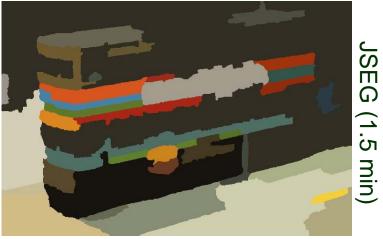
Summary

- Design your model carefully
 Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features
 Extension to color is relatively
- Can we segment images without user interaction?
 Yes, but you need to estimate model parameters automatically (EM algorithm)
- Can we segment more complex images?
 - □ Yes, but then you need a more complex MRF model
- What if we do not know $|\Lambda|$?
 - Fully automatic segmentation requires
 - Modeling of the parameters AND
 - a more sophisticated sampling algorithm (Reversible jump MCMC)

MRF+RJMCMC vs. JSEG

JSEG (Y. Deng, B.S.Manjunath: PAMI'01):

- 1. **color quantization**: colors are quantized to several representing classes that can be used to differentiate regions in the image.
- 2. spatial segmentation: A region growing method is then used to segment the image.



Benchmark results using the Berkeley Segmentation Dataset

JSEG

RJMCMC

References

- Visit <u>http://www.inf.u-szeged.hu/~kato/</u>
- Forthcoming book:

Foundations and Trends[®] in sample Vol. xx, No xx (2011) 1–164 © 2011 xxxxxxxx DOI: xxxxxx

Markov random fields in image segmentation

Zoltan Kato¹ and Josiane Zerubia²

¹ Arpad ter 2 Szeged 6720, Hungary, kato@inf.u-szeged.hu

² 2004 Route des Lucioles Sophia Antipolis 06902 Cedex , France , Josiane.Zerubia@inria.fr