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Overview

Segmentation as pixel labeling
P b bili ti hProbabilistic approach

Segmentation as MAP estimation
M k R d Fi ld (MRF)Markov Random Field (MRF)
Gibbs distribution & Energy function

Cl i l i i i tiClassical energy minimization
Simulated Annealing
Markov Chain Monte Carlo (MCMC) samplingMarkov Chain Monte Carlo (MCMC) sampling

Example MRF model & Demo
P t ti ti (EM)Parameter estimation (EM)
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Segmentation as a Pixel Labelling Task

1. Extract features from the input image
Each pixel s in the image has a feature vector     p g
For the whole image, we have

sf
r

}:{ Ssff ∈=
r

2. Define the set of labels Λ
E h i l i i d l b l

}:{ Ssff s ∈=

ΛEach pixel s is assigned a label 
For the whole image, we have

Λ∈sω

}{ Ss ∈ωω
For an N×M image, there are |Λ|NM possible labelings.

Whi h i th i ht t ti ?Whi h i th i ht t ti ?

},{ Sss ∈= ωω

Which one is the right segmentation?Which one is the right segmentation?
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Probabilistic Approach, MAP

Define a probability measure on the set of all 
possible labelings and select the most likely onepossible labelings and select the most likely one.

measures the probability of a labelling, 
given the observed feature

)|( fP ω
fgiven the observed feature 

Our goal is to find an optimal labeling      which 
maximizes

ω̂
f

)|( fPmaximizes
This is called the Maximum a Posteriori (MAP) 
estimate:

)|( fP ω

estimate:

)|(maxargˆ fPMAP ωω = )|(maxarg fP ωω
ω Ω∈

=
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Bayesian Framework
likelihood

By Bayes Theorem, we have
prior

)()|(
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is constant
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)|( f
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f

)( fP is constant 
We need to define         and               in our 

d l

)( fP
)(ωP )|( ωfP

model
We will use Markov Random Fields
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Why MRF Modelization?

In real images, regions are often homogenous; 
neighboring pi els s all ha e similar propertiesneighboring pixels usually have similar properties  
(intensity, color, texture, …)
M k R d Fi ld (MRF) i b bili ti d lMarkov Random Field (MRF) is a probabilistic model 
which captures such contextual constraints
W ll t di d t th ti l b k dWell studied, strong theoretical background
Allows MCMC sampling of the (hidden) underlying 
t t Si l t d A listructure Simulated Annealing

Fast and exact solution for certain type of models 
G h t [K l ]Graph cut [Kolmogorov]
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What is MRF?

To give a formal definition for Markov Random 
Fi ld d b i b ildi bl kFields, we need some basic building blocks

Observation Field and (hidden) Labeling Field 
Pixels and their Neighbors
Cliques and Clique Potentials
Energy function
Gibbs Distribution
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Definition – Neighbors

For each pixel, we can define some surrounding 
i l it i hbpixels as its neighbors.

Example : 1st order neighbors and 2nd order 
neighbors
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Definition – MRF

The labeling field X can be modeled as a 
M k R d Fi ld (MRF) ifMarkov Random Field (MRF) if 

1. For all 0)(: >=ΧΩ∈ ωω P
2. For every         and          :Ss ∈ Ω∈ω

),|(),|( srsrs NrPsrP ∈=≠ ωωωω

denotes the neighbors of pixel s
),|(),|( srsrs

sN
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Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a random 
field is a MRF if and only if         follows a Gibbs )(ωPy
distribution.

)(

11 ∑ ))(exp(1))(exp(1)( ∑
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where                               is a normalization constant∑
Ω∈

−=
ω

ω))(exp( UZ

This theorem provides us an 
easy way of defining MRF models via 
clique potentialsclique potentials.
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Definition – Clique 

A subset            is called a clique if every pair of 
i l i thi b t i hb

SC ⊆
pixels in this subset are neighbors.
A clique containing n pixels is called nth order
clique, denoted by .
The set of cliques in an image is denoted by 

nC
q g y

kCCCC UUU ...21=

singleton doubleton
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Definition – Clique Potential

For each clique c in the image, we can assign  a 
l hi h i ll d li t ti l f)(Vvalue         which is called clique potential of c, 

where      is the configuration of the labeling field
)(ωcV

ω
The sum of potentials of all cliques gives us the 
energy         of the configuration)(ωU ωgy g)(

...),(V)(V)(V)(U
21 jiCiCc ∑∑∑ +ωω+ω=ω=ω
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Segmentation of grayscale images:Segmentation of grayscale images:
A simple MRF modelp
Construct a segmentation model where regions are 
formed by spatial clusters of pixels with similar y p p
intensity:

MRF segmentation model
+

find MAP estimate ω̂

Model 
parameters

find MAP estimate     ω

segmentation
ω̂

Input image
ω
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MRF segmentation model
Pixel labels (or classes) are represented by 
Gaussian distributions:
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Clique potentials:
Singleton: proportional to the likelihood of 
f t i l (P(f | ))features given ω: log(P(f | ω)).
Doubleton: favours similar labels at neighbouring 
pixels – smoothness priorp p

⎩
⎨
⎧

≠+
=−

==
ji

ji
jic if

if
jiV

ωωβ
ωωβ

ωωβδ ),(),(
2

As β increases, regions become more homogenous

⎩ ≠+ jiif ωωβ
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Model parameters

Doubleton potential β
less dependent on the input 

can be fixed a priori

Number of labels (|Λ|)
Problem dependent

usually given by the user or 
inferred from some higher level knowledge

E h l b l λ Λ i t d b G iEach label λ∈Λ is represented by a Gaussian 
distribution N(µλ,σλ):

estimated from the input image
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Model parameters

The class statistics (mean and variance) 
can be estimated via the empirical meancan be estimated via the empirical mean 
and variance:

where Sλ denotes the set of pixels in thewhere Sλ denotes the set of pixels in the 
training set of class λ
a training set consists in a representative 
region selected by the userregion selected by the user
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Energy function

Now we can define the energy function of 
our MRF model:
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Optimization

Problem reduced to the 
i i i ti fminimization of a non-convex

energy function
Many local minima

Gradient descent?
Works only if we have a good
initial segmentation

Simulated Annealing
Always works (at least in theory)y ( y)
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ICM (~Gradient descent) [Besag86]
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ICM (iterated conditional mode)

x2
means observed

x xx x1 x4x3

x5

ICM Global min

Simulated Annealing: accept a move even if 
energy increases (with certain probability)

Can get stuck in local minima!
Slide adopted from C. Rother ICCV’09 tutorial: Slide adopted from C. Rother ICCV’09 tutorial: 
http://research.microsoft.com/enhttp://research.microsoft.com/en--us/um/cambridge/projects/tutorial/us/um/cambridge/projects/tutorial/
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Simulated Annealing (Metropolis)
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Temperature Schedule
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Temperature Schedule

Initial temperature: set it to a relatively low value (~4)
faster execution

must be high enough to allow random jumps at the beginning!

Schedule:
Stopping criteria:

Fixed number of iterations
Energy change is less than a threshols 
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Demo
Download from:Download from:
http://www.inf.u-szeged.hu/~kato/software/
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Summary

Design your model carefully
Optimization is just a tool, do not expect a 
good segmentation from a wrong modelg g g

What about other than graylevel features?
Extension to color is relatively straightforwardExtension to color is relatively straightforward
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What color features?
RGB histogram
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Extract Color Feature

We adopt the CIE-L*u*v* color space because it 
is perceptually uniformis perceptually uniform.

Color difference can be measured by Euclidean 
distance of two color vectors.

We convert each pixel from RGB space to CIE-
L*u*v* space 

We have 3 color feature imagesWe have 3 color feature images

L* u* v*
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Color MRF segmentation model
Pixel labels (or classes) are represented by 
three-variate Gaussian distributions:
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Clique potentials:
Singleton: proportional to the likelihood of 
f t i l (P(f | ))features given ω: log(P(f | ω)).
Doubleton: favours similar labels at neighbouring 
pixels – smoothness priorp p
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Summary

Design your model carefully
Optimization is just a tool, do not expect a good 
segmentation from a wrong model

What about other than graylevel features?
Extension to color is relatively straightforwardy g

Can we segment images without user 
interaction?interaction?

Yes, but you need to estimate model 
parameters automatically (EM algorithm)parameters automatically (EM algorithm)
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Incomplete data problem

Supervised parameter estimation
we are given a labelled data set to learn from

e.g. somebody manually assigned labels to pixels

How to proceed without labelled data? 
Learning from incomplete datag p
Standard solution is an iterative procedure
called Expectation-Maximizationp

Assigns labels and estimates parameters
simultaneously
Chicken-Egg problem
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EM principles : The two steps

E Step : For each pixel, 
use parameters to compute probability distributionuse parameters to compute probability distribution

Parameters :
P(pixel/label)P(label)

Weighted labeling :
P(label/pixel)

M Step : Update the estimates of parameters
based on weighted (or ”soft”) labeling
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The basic idea of EM

Each of the E and M steps is 
t i htf d i th th istraightforward assuming the other is

solved
Knowing the label of each pixel, we can 
estimate the parameters

Similar to supervised learning (hard vs. soft
labeling)

Knowing the parameters of the distributionsKnowing the parameters of the distributions, 
we can assign a label to each pixel

by Maximum Likelihood i e using the singletonby Maximum Likelihood – i.e. using the singleton
energies only without pairwise interactions
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Parameter estimation via EM

Basically, we will fit a mixture of Gaussian 
to the image histogram

We know the number of labels |Λ| ≡ number ofWe know the number of labels |Λ| number of 
mixture components

At each pixel the complete data includesAt each pixel, the complete data includes
The observed feature fs

Hidden pixel labels ls (a vector of size |Λ|) 
specifies the contribution of the pixel feature to 
each of the labels – i.e. a soft labeling
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Parameter estimation via EM

E step: recompute lsi at each pixel s:
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Summary
Design your model carefully

Optimization is just a tool, do not expect a goodOptimization is just a tool, do not expect a good 
segmentation from a wrong model

What about other than graylevel features
Extension to color is relatively

Can we segment images without user interaction?
Y b t d t ti t d l tYes, but you need to estimate model parameters 
automatically (EM algorithm)

Can we segment more complex images?Can we segment more complex images?
Yes, but then you need a more complex MRF model
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Color Textured Segmentation

segmentation

segmentation
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Color & Motion Segmentation
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Summary
Design your model carefully

Optimization is just a tool, do not expect a good 
segmentation from a rong modelsegmentation from a wrong model

What about other than graylevel features
Extension to color is relativelyy

Can we segment images without user interaction?
Yes, but you need to estimate model parameters 
automatically (EM algorithm)y ( g )

Can we segment more complex images?
Yes, but then you need a more complex MRF model

What if we do not know |Λ|? 
Fully automatic segmentation requires

Modeling of the parameters ANDModeling of the parameters AND
a more sophisticated sampling algorithm (Reversible jump MCMC)
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MRF+RJMCMC vs. JSEG
R

JMM
C

M
C
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JSEG (Y. Deng, B.S.Manjunath: PAMI’01):
1. color quantization: colors are 

quantized to several representing

E
G

 (1.5 m

quantized to several representing 
classes that can be used to 
differentiate regions in the image. 

2. spatial segmentation: A region m
in)

2. spatial segmentation: A region 
growing method is then used to 
segment the image.



Zoltan Kato: Markov Random Fields in Image SegmentationZoltan Kato: Markov Random Fields in Image Segmentation 40

Benchmark results using theBenchmark results using the 
Berkeley Segmentation Datasety g

RJMCMCJSEG
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