23th SSIP Summer School on Image Processing 14 July, 2015, Szeged, Hungary

Continuous and Discrete Image Reconstruction

Péter Balázs

Department of Image Processing and Computer Graphics University of Szeged, HUNGARY

Steps of Machine Vision

- Image acquisition
- Preprocessing
- Segmentation
- Feature extraction
- Classification, interpretation
- Actuation

X-rays

- 1895 Wilhelm Conrad Röntgen describes the properties of X-rays
- Kind of electromagnetic radiation (similar to light but having more energy)
- Attenuation of X-rays depends on tissue → "Shadow" of the object from one direction

X-rays are Useful in Radiology (in some cases)

Computerized Tomography

- A technique for imaging the 2D cross-sections of 3D objects (human organs) without seriously damaging them
- Take X-ray images from many angles and combine them in a clever way

Projection-Slice Theorem

The 1D Fourier-transform of the projection taken from angle θ describes the values of the 2D Fourier-transform of the original image along a line passing through the origo with angle θ .

Fourier Reconstruction Method Take the 1D FT of all the projections Place them into the proper position in the frequency-domain Take the inverse 2D FT of the result Image: A structure of the structur

Filtered Backprojection

- High frequencies (small details + noise) are undersampled → blur
- Give higher weights to higher frequencies

An FBP Movie

- Movie showing the FBP reconstruction process
 - 2D sinogram (projections)
 - high pass filtered for all angles
 - sinogram is backprojected into the image domain.
- Source: http://hendrix.ei.dtu.dk/movies/moviehome.html

ART – Algebraic Reconstruction Technique The interaction of the projection rays and the image pixels can be written as a system of equations Direct inverse methods are not applicable: big system underdetermined (#equations << #unknowns) possibly no solution (if there is noise) Solve it iteratively satisfying just one

projection in each step

Discrete/Binary Tomography

- FBP and ART need several hundreds of projections
 - time consuming
 - expensive
 - may damage the object
 - not possible
- In certain applications the range of the function to be reconstructed is discrete and known → DT (only few (2-10) projections are needed)
- Binary Tomography: the range of the function is {0,1} (absence or presence of material)

Reconstruction

Ryser, 1957 – from row sums R and column sums S

Order the elements of *S* in a non-increasing way by $\pi \rightarrow S'$ Fill the rows from left to right $\rightarrow B$ (canonical matrix) Shift elements from the rightmost columns of *B* to the columns where S(B) < S'

Reorder the colums by applying the inverse of π

- Annealing: a thermodinamical process in which a metal cools and freezes.
- Due to the thermical noise the energy of the liquid in some cases grows during the annealing.
- By carefully controlling the cooling temperature the fluid freezes into a minimum energy crystalline.
- Simulated annealing: a random-search technique based on the above observation.

60

SA in Geometry Based Reconstruction

- The binary image is described by parameters of geometrical objects, e.g. (*x*,*y*,*r*)
- Randomly modify parameter(s) of object(s)

QUANTITEM: a method which provides quantitative information for the number of atoms lying in a single atomic column from HRTEM images Possible to detect crystal defects (e.g. missing atoms)

