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Scale-space and its applications

0 Scale-space
@ Scale-space and diffusion

@ Image features in scale-space
@ Scale selection

Q Affine-invariant features
@ Corner-like features
@ Blob-like features
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Outline

o Scale-space
@ Scale-space and diffusion
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Scale-space

g(x,0) = G(x, o) = f(x) f, g : input/output image

1.0
@ Gauss filter
0.8
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G(x,0) = ex S L 2°
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3o
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@ |x| = /x2 + y2: distance from ST | iy
filter center ookt ) A

RADIUS

@ Larger o = stronger smoothing, fewer details
@ Scale-space g(x, o)
@ image sequence parameterised by scale o

@ image representation with controllable degree of detalil
e Witkin (1983), Koenderink (1984), Lindeberg (1994), . ..
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Example of scale-space

o = 0 (original image)

oc=4 c=28

source: Wikipedia
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Scale-space creation by diffusion

@ Diffusion process: transfer of heat and matter

e spatial differences decrease
e matter concentration equalises

@ Relation between scale-space and diffusion:
e diffusion generates scale-space

@ General diffusion equation:

og
% _v(
5 =V (D),

o 0
here V= —, — | isthe gradient operator
" (8x’ ay) J P
e D= D(x,1) is the diffusion coefficient, t time
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Scale-space and difusion
Homogeneous diffusion

@ diffusion coefficient D

e does not depend on co-ordinates x, y
@ but can depend on time t

@ Homogeneous diffusion equation:

og
-~ = DA
ot 9,
2 2 ]
where A = Ix2 + ay2 is the Laplace operator

@ Solution of diffusion equation:

2
a(x,t) = zmjgu) exp (—ZLXJ(O) * 9(x,0),

where o(t) = v2Dt
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Gradual elimination of details

@ Image details
e lines, edges, corners, blobs

@ As scale grows, new details do not appear

@ Details disappear or merge
— forming specific tree structure

@ Information content of image gradually decreases
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Scale-space and diffusion
The minimum-maximum principle

@ In principle, scale-space can be built by other filters, as well

@ Minimum-maximum principle: basic theoretical requirement
(axiom) for scale-space

@ local minima must not deepen
e local maxima must not grow

@ Gradual elimination of details in consequence of this principle

@ Facilitates structural analysis of image
e theoretical ground for analysis of details and their relations
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Significance of the Gaussian filter

@ Why to prefer this filter?

@ Min-max principle: natural result of diffusion
— valid for Gaussian filter, as well

@ Scale-invariance principle: the other basic theoretical
requirement

o to be discussed later
@ In continuous case, only Gaussian filter conforms with the two

principles
e in discrete case, only polynomial filter
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Scale-space and diffusion
Discrete scale-space 1/2

@ Use simple parameterisation of Gaussian filter:
G(x,¢) = L exp < x 2)
2r¢ 2¢
@ 1D diffusion equation

dg(x, &) _ 9%g(x,¢)
G

@ After discretisation, we obtain iterative solution

One1 = DEGny1e — (1 —2A8)Gne + A&Gn—1¢,

where n+1= x+ Ax,
E+1=E6+AC
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Scale-space and diffusion
Discrete scale-space 2/2

@ The above iterative process satisfies the two basic conditions if

AE < (Lindeberg, 1994)

SN

@ Usually, scale step A¢ = % is selected

@ Then we have simple iterative solution

1 1 1
Gnet1 = g9n+1g + 59n¢ + 29n-1¢
e i.e., application of filter 1[1,2,1]7

@ Similar solution in 2D case
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Outline

@ Image features in scale-space
@ Scale selection

Chetverikov (ELTE, SZTAKI) Scale-space 13/46



Derivatives in scale-space

Gxmyn = (0xM0y"g) = (0x"Oy"G) f
@ Order of filtering and derivation is arbitrary
@ Gaussian derivatives: derivatives of Gaussian filter
OxMOy"G(X, &) = Gxmyn(X, €)
@ Use rotational symmetry and separability of filter
@ For example, Gaussian gradient vector:

VG(x) = (G(y)Gx(x), G(x)Gy(y)).
where Gy(x) = _)f(G(X)
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Edge detection in scale-space

@ Edge detection by gradient operator VG = (Gy, Gy)
Vgl =1/92+9g7  edge magnitude
e search for locations of large |V g

@ Edge detection by Laplacian-of-Gaussian (LoG) operator
AG == GXX + ny

e search for zero-crossings of Ag

Chetverikov (ELTE, SZTAKI) Scale-space 15/46



Relations between edges and image derivatives

@ Signal

@ Edges

@ maxima of abs value
of first derivative

or
@ zero-crossings
of second derivative
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Zero-crossing edge detection at decreasing detail
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Corner detection in scale-space

@ Corner detection with local structure matrix (tensor) M

M — [ngx gxgy}
9x9y 9y9y

e Search for locations where eigenvalues A1, \» of matrix M are large

1

~

2

C’l

uniform image  ideal step edge ideal corner
AM=A=0 AM>0,2,=0 A >Ay>0
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Blob detection in scale-space

@ Blob detection using trace H or det H operators

H= [gxx gxy} Hesse matrix
9xy Gy

detH = gwgyy — g5,  Determinant-of-Hessian (DoH)

@ Eigenvalues of H are proportional to main curvatures of g(x)
@ Search for local extrema in image:

Xp = arg mxin Ag for bright blobs
Xg = arg max Ag for dark blobs

Xa = argmax detH  for all blobs
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Image features in scale-space

Relations between blobs and derivatives

Sum of Two Gaussians

N

1st Derivative

2nd Derivative

/)

7
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Scale-space

@ Two close bright blobs of

Gaussian shape
e with some overlap

@ Location of blob:

e maximum of g
e zero of gy
o valley of gxx

20/ 46



Scale-normalised co-ordinates

@ What to do if blobs in image are of varying size?

e Ag and det H are sensitive to blob size
— operators must be tuned to size

@ Adaptive selection of scale parameter also needed when

e size of objects is unknown
e distance between object and camera varies

@ Scale-normalised co-ordinates

1
VT
1
=T

@ Used for automatic scale selection
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Scale selection
Automatic scale selection

@ Based on Gaussian operators
m+n
Gcmnn(x,f) = f 2 meyn(x,f)
@ Operators are formed by normalised derivatives

Or = \/€dx = adx
Oy = /€0y = 00y

@ In scale-space, search for extrema of features expressed by
normalised derivatives
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Scale selection
Normalised derivatives and image features

@ For image features expressed by normalised derivatives:

o if feature attains local maximum at scale &
e then in image resized by factor s maximum will be at scale s2¢,

fo — S%&y, thatis
og — Sog

e this property is called scale-invariance

@ Scale-invariant and -adaptive features can be expressed by
normalised derivatives
e blob, corner, edge
e extension to affine-invariant features
e affine-invariant region descriptors
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Secle sallesilon
Detection of blobs of varying size

@ Use scale-normalised operators
Agnorm = & (9xx + Gyy)
_e2 2
det Hporm = & (gxxgyy - gxy>

@ Search for local extrema in scale-space*

Xy = arg mign AGnorm for dark blobs
X,

Xp = arg maﬁx AGnorm for bright blobs
X,

X5 = arg me}éx det Hhorm  for all blobs
X

)

* Note that sign of Agnorm has changed!
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Scale selection
Blood cell detection: scale-variant version

1© ‘0200 of -
5 % 90%°
%’%" %
50 020 .
P %e o.
*@@ (5]
p © e @
() %
| @ 0 ©

@ Left video: all blobs detected by now
@ Right video: LoG scale-space with current maxima
@ 24 scales used — larger blobs detected at larger scales

@ Some blobs detected several times
— post-processing needed (non-maxima suppression)
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Image features in scale-space Scale selection

Another example of scale-variant blob detection

@ 25 scales examined
@ Two or more close blobs can merge at greater scale
@ Again, post-processing needed to handle multiple detections
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Secle sallesilon
Two results of scale-invariant algorithm

@ Only 6 scales examined in narrow range
— fine scale tuning still necessary
@ In discrete case, invariance not perfect
— scale-variant results are probably slightly better
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Outline

Q Affine-invariant features
@ Corner-like features
@ Blob-like features
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Invariant features in 3D reconstruction

@ Point correspondence across views: (multiview) stereo, video
@ Invariant local feature points

e detection: points, regions
e description: region — point (neighbourhood)
@ robust point/region matching

@ Invariance
e scale (near-far)
@ perspective distortion
@ illumination
@ Local approximation of perspective distortion

e small region, locally flat surface patch
— affine distortion — affine invariance
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Covariant or invariant?

@ Covariant: changing in the same way

e function f(x) covariant with transformation A: f(Ax) = Af(x)
— axis of inertia of 2D shape ‘rotates’ with shape

@ Invariant: not changing

e function f(x) invariant to transformation A: f(Ax) = f(x)
— area of 2D shape is invariant to shape rotation

@ Regions covariant with affine distortion
— undergo affine distortion

@ Descriptions invariant (insensitive) to affine distortion

e description of affine-normalised region
e or inherently affine-invariant, e.g, affine-invariant moments

@ For simplicity, the two terms are often used in same sense
e e.g., invariant regions
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Affine-invariant features Corner-like features

Operation of Harris corner detector

det}(M)F A trace(M) =

g7 g d)

*, ;‘:2
g¥(hy) g‘l.\,

@ Here, g is the Gaussian filter (G)
@ Source: Tuytelaars, Mikolajczyk (2007)
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Cira e el
Rotation invariance of Harris operator

@ Under rotation, great majority of features are preserved
— result of Harris operator is stable
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Steps of Harris-Laplace operator

@ Corner detection by multiscale Harris operator
— corners at varying degree of detalil

© Calculating characteristic scale for every corner

e by rotation-symmetric Laplace operator
e maximum similarity between local image structure and operator
— characteristic scale and size (radius) of region

© Characteristic scale can be selected in different ways

e rotation-symmetric Laplace operator gives best result
e conclusion of experimental studies
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Characteristic scales at different zooms

2.0 slga} 19. ‘ 42.”0”3‘8’9‘ T scale 19
@ Change of (abs) Laplacian values in selected points

— characteristic scales: 10.1 (left) and 3.9 (right)

— ratio of scales: 2.5 = degree of magnification

— radius of circle: characteristic scale x 3
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Scale and rotation invariance of Harris-Laplace

@ Circles indicate characteristic scales of features

@ For better visibility, some features are not shown
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Comer-like features
Main steps of Harris-affine operator

@ Detection of initial point and region by Laplace-Harris
— initial scale, feature point, circular region

© Estimation of affine region using structure matrix M
— feature point with elliptic region

© Normalisation of elliptic affine region to circular shape
— normalised image

© Calculation of new position and scale in normalised image
— modified scale and position

© Calculation of eigenvalues of new matrix M

e if eigenvalues are different, go to step 2
e otherwise, output final scale, position and circular region
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Corner-like features
lterative detection of affine-invariant features

@ First column: points used for initialisation
@ Further columns: points and regions after iterations 1,2, 3
— after third iteration, shapes converge to corresponding regions
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Comer-like features
Affine normalisation of Harris operator 1/2

@ Eigenvalues of matrix M define affine region (ellipse)

@ Search for transformation when two eigenvalues become equal
— ellipse becomes circle when iterations stop

@ This can be achieved by square root of M:

X, = MZ/ZXL left image

'R = M;/Qx,q right image

@ Since transformed images are analysed, inverse matrices are
often used and iterated

XL—M 1/XL,

1/2
XR:MR/X/R
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Comer-like features
Affine normalisation of Harris operator 2/2

@ Normalised images are identical up to rotation:
X/L = RX/H

e rotation of region does not affect ration of eigenvalues
— affine distortion can only be determined up to rotation

@ In normalised images M; and My, are rotation matrices

@ Affine normalisation procedure works if

o detM >0 — M~1/2 exists
e signal-noise ratio is sufficiently large
— e.g., forinitial points detected by Harris-Laplace
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Cira e el
Example of affine normalisation for stereo images

@ Image co-ordinates x are transformed by matrix M'/2
@ Normalised images are identical up to rotation (R)
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Affine-invariant features Corner-like features

Example and summary of Harris-affine operator

@ Regions correspond despite affine distortion
@ Versions of Harris operator are often used

e single or multiscale, scale-invariant, affine-invariant
o efficient, stable; controllable number of points, can be large

@ Image corners are well detected in locally flat surface areas
e poor performance where surface variation is strong
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Affine-invariant features Blob-like features

Operation of Determinant-of-Hessian (DoH)

@ Components of Laplacian enhance lines, as well
@ DoH enhances blobs, corners and ends of lines
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Affine-invariant features Blob-like features

Rotation invariance of DoH blob detector

@ Under rotation, great majority of features are preserved
— result of DoH operator is stable
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Blob-like foatures
Hesse-Laplace and Hesse-affine operators

@ Similar to correspondent corner detectors

e Hesse-Laplace — Harris-Laplace
o Hesse-affine — Harris-affine

@ Essential, natural difference:
e initial points are DoH features rather than Harris corners

@ The restis similar, e.g., iterative affine normalisation:
e estimation of affine region using structure matrix M
affine region normalisation to circular shape
calculation of new position and scale in normalised image
calculation of eigenvalues of new matrix M
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Bloblike features
Zoom invariance of Hesse-Laplace

@ Circles indicate characteristic scales of features
@ For better visibility, some features are not shown
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Affine-invariant features Blob-like features

Example and summary of Hesse-affine operator

7

@ Versions of Hesse operator are often used

e yield many points, can cover image

e number of points controllable by DoH and Laplace thresholds
@ Can detect corners, as well

o better scale estimation than by Harris
— second-order derivatives for all operations
— Harris: mixed, first and second order
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