Scale-space and its applications

Dmitry Chetverikov

Eötvös Lóránd University, Hungarian Academy of Sciences

<mark>SSIP 2015</mark>

23rd Summer School on Image Processing 9 July - 18 July 2015 • Szeged, Hungary

Scale-space and its applications

Scale-space

- Scale-space and diffusion
- Image features in scale-space
 Scale selection
- 3
- Affine-invariant features
- Corner-like features
- Blob-like features

Outline

Scale-space

- Scale-space and diffusion
- Image features in scale-spaceScale selection
- 3
- Affine-invariant features
 Corner-like features
 - Blob-like features

< 回 > < 三 > < 三 >

Scale-space

 $g(\mathbf{x}, \sigma) = G(\mathbf{x}, \sigma) * f(\mathbf{x})$ f, g: input/output image

Gauss filter

$$G(\mathbf{x}, \sigma) = rac{1}{2\pi\sigma^2} \exp\left(-rac{|\mathbf{x}|^2}{2\sigma^2}
ight)$$

• $|\mathbf{x}| = \sqrt{x^2 + y^2}$: distance from filter center

く 同 ト く ヨ ト く ヨ ト -

- Larger $\sigma \Rightarrow$ stronger smoothing, fewer details
- Scale-space $g(\mathbf{x}, \sigma)$
 - image sequence parameterised by scale σ
 - image representation with controllable degree of detail
 - Witkin (1983), Koenderink (1984), Lindeberg (1994), ...

Scale-space

Example of scale-space

 $\sigma = 0$ (original image)

 $\sigma = 1$

 $\sigma=\mathbf{2}$

 $\sigma = 4$

 $\sigma = \mathbf{8}$

<ロ> <問> <問> < 回> < 回> 、

source: Wikipedia

Chetverikov (ELTE, SZTAKI)

э

Scale-space creation by diffusion

- Diffusion process: transfer of heat and matter
 - spatial differences decrease
 - matter concentration equalises
- Relation between scale-space and diffusion:
 - diffusion generates scale-space
- General diffusion equation:

$$\frac{\partial g}{\partial t} = \nabla (D\nabla g),$$

where $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ is the gradient operator

• $D = D(\mathbf{x}, t)$ is the diffusion coefficient, t time

A (10) A (10)

Homogeneous diffusion

- diffusion coefficient D
 - does not depend on co-ordinates x, y
 - but can depend on time t
- Homogeneous diffusion equation:

$$\begin{aligned} &\frac{\partial g}{\partial t} = D\Delta g,\\ &\text{where } \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} &\text{is the Laplace operator} \end{aligned}$$

• Solution of diffusion equation:

$$g(\mathbf{x}, t) = \frac{1}{2\pi\sigma^2(t)} \exp\left(-\frac{|\mathbf{x}|^2}{2\sigma^2(t)}\right) * g(\mathbf{x}, 0),$$

where $\sigma(t) = \sqrt{2Dt}$

< ロ > < 同 > < 回 > < 回 >

Gradual elimination of details

- Image details
 - lines, edges, corners, blobs
- As scale grows, new details do not appear
- Details disappear or merge
 - \rightarrow forming specific tree structure
- Information content of image gradually decreases

(4) (5) (4) (5)

4 A N

The minimum-maximum principle

- In principle, scale-space can be built by other filters, as well
- Minimum-maximum principle: basic theoretical requirement (axiom) for scale-space
 - local minima must not deepen
 - local maxima must not grow
- Gradual elimination of details in consequence of this principle
- Facilitates structural analysis of image
 - theoretical ground for analysis of details and their relations

< ロ > < 同 > < 回 > < 回 >

Significance of the Gaussian filter

- Why to prefer this filter?
- Min-max principle: natural result of diffusion
 - \rightarrow valid for Gaussian filter, as well
- Scale-invariance principle: the other basic theoretical requirement
 - to be discussed later
- In continuous case, only Gaussian filter conforms with the two principles
 - in discrete case, only polynomial filter

< 回 > < 回 > < 回 >

Discrete scale-space 1/2

• Use simple parameterisation of Gaussian filter:

$$G(\mathbf{x},\xi) = rac{1}{2\pi\xi} \exp\left(-rac{|\mathbf{x}|^2}{2\xi}
ight)$$

ID diffusion equation

$$\frac{\partial g(x,\xi)}{\partial \xi} = \frac{\partial^2 g(x,\xi)}{\partial x^2}$$

• After discretisation, we obtain iterative solution

$$g_{n,\xi+1} = \Delta \xi g_{n+1,\xi} - (1 - 2\Delta \xi) g_{n,\xi} + \Delta \xi g_{n-1,\xi},$$

where
$$n + 1 \Rightarrow x + \Delta x$$
,
 $\xi + 1 \Rightarrow \xi + \Delta \xi$

A B F A B F

4 A N

Discrete scale-space 2/2

• The above iterative process satisfies the two basic conditions if

$$\Delta \xi \leq rac{1}{4}$$
 (Lindeberg, 1994)

- Usually, scale step $\Delta \xi = \frac{1}{4}$ is selected
- Then we have simple iterative solution

$$g_{n,\xi+1} = rac{1}{4}g_{n+1,\xi} + rac{1}{2}g_{n,\xi} + rac{1}{4}g_{n-1,\xi}$$

• i.e., application of filter $\frac{1}{4}[1,2,1]^T$

• Similar solution in 2D case

→ ∃ →

Outline

Scale-space

- Scale-space and diffusion
- Image features in scale-space
 Scale selection
- 3
- Affine-invariant features
- Corner-like features
- Blob-like features

< 回 > < 回 > < 回 >

Derivatives in scale-space

$$g_{x^m y^n} = (\partial x^m \partial y^n g) = (\partial x^m \partial y^n G) f$$

- Order of filtering and derivation is arbitrary
- Gaussian derivatives: derivatives of Gaussian filter

$$\partial x^m \partial y^n G(\mathbf{x},\xi) \doteq G_{x^m y^n}(\mathbf{x},\xi)$$

- Use rotational symmetry and separability of filter
- For example, Gaussian gradient vector:

$$abla G(\mathbf{x}) = ig(G(y)G_x(x),G(x)G_y(y)ig),$$

where $G_x(x) = -rac{x}{\xi}G(x)$

★ ∃ →

Edge detection in scale-space

• Edge detection by gradient operator $\nabla G = (G_x, G_y)$

$$|oldsymbol{
abla} g| = \sqrt{g_x^2 + g_y^2}$$
 edge magnitude

• search for locations of large $|\nabla g|$

• Edge detection by Laplacian-of-Gaussian (LoG) operator

$$\Delta G = G_{xx} + G_{yy}$$

• search for zero-crossings of Δg

Relations between edges and image derivatives

Signal

< ロ > < 同 > < 回 > < 回 >

- Edges
 - maxima of abs value of first derivative

or

 zero-crossings of second derivative

Zero-crossing edge detection at decreasing detail

Corner detection in scale-space

• Corner detection with local structure matrix (tensor) M

$$M = \begin{bmatrix} g_x g_x & g_x g_y \\ g_x g_y & g_y g_y \end{bmatrix}$$

• Search for locations where eigenvalues λ_1, λ_2 of matrix *M* are large

Blob detection in scale-space

• Blob detection using trace H or det H operators

$$H = \begin{bmatrix} g_{xx} & g_{xy} \\ g_{xy} & g_{yy} \end{bmatrix}$$
Hesse matrix
trace $H = g_{xx} + g_{yy} = \Delta g$
det $H = g_{xx}g_{yy} - g_{xy}^2$ Determinant-of-Hessian (DoH)

- Eigenvalues of H are proportional to main curvatures of $g(\mathbf{x})$
- Search for local extrema in image:

$$\begin{aligned} \mathbf{x}_b &= \arg\min_{\mathbf{x}} \Delta g & \text{for bright blobs} \\ \mathbf{x}_d &= \arg\max_{\mathbf{x}} \Delta g & \text{for dark blobs} \\ \mathbf{x}_a &= \arg\max_{\mathbf{x}} \det H & \text{for all blobs} \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

Image features in scale-space

Relations between blobs and derivatives

- Two close bright blobs of Gaussian shape
 - with some overlap
- Location of blob:
 - maximum of g

< ロ > < 同 > < 回 > < 回 >

- zero of g_x
- valley of g_{xx}

Scale-normalised co-ordinates

- What to do if blobs in image are of varying size?
 - Δg and det *H* are sensitive to blob size
 - ightarrow operators must be tuned to size
- Adaptive selection of scale parameter also needed when
 - size of objects is unknown
 - distance between object and camera varies
- Scale-normalised co-ordinates

$$\zeta = \frac{1}{\sqrt{\xi}} x = \frac{1}{\sigma} x$$
$$\eta = \frac{1}{\sqrt{\xi}} y = \frac{1}{\sigma} y$$

• Used for automatic scale selection

Automatic scale selection

Based on Gaussian operators

$$G_{\zeta^m\eta^n}(\mathbf{x},\xi) = \xi^{\frac{m+n}{2}} G_{\mathbf{x}^m \mathbf{y}^n}(\mathbf{x},\xi)$$

• Operators are formed by normalised derivatives

$$\partial_{\zeta} = \sqrt{\xi} \partial_{x} = \sigma \partial_{x}$$
$$\partial_{\eta} = \sqrt{\xi} \partial_{y} = \sigma \partial_{y}$$

 In scale-space, search for extrema of features expressed by normalised derivatives

< 回 > < 三 > < 三 >

Normalised derivatives and image features

- For image features expressed by normalised derivatives:
 - if feature attains local maximum at scale ξ_0
 - then in image resized by factor s maximum will be at scale $s^2\xi_0$

$$\xi_0 \longrightarrow s^2 \xi_0$$
, that is $\sigma_0 \longrightarrow s \sigma_0$

- this property is called scale-invariance
- Scale-invariant and -adaptive features can be expressed by normalised derivatives
 - blob, corner, edge
 - extension to affine-invariant features
 - affine-invariant region descriptors

< ロ > < 同 > < 回 > < 回 >

Detection of blobs of varying size

• Use scale-normalised operators

$$\Delta g_{norm} = \xi \left(g_{xx} + g_{yy}
ight)$$

det $H_{norm} = \xi^2 \left(g_{xx} g_{yy} - g_{xy}^2
ight)$

Search for local extrema in scale-space*

$$\begin{split} \mathbf{x}_{d} &= \arg\min_{\mathbf{x},\xi} \Delta g_{norm} & \text{for dark blobs} \\ \mathbf{x}_{b} &= \arg\max_{\mathbf{x},\xi} \Delta g_{norm} & \text{for bright blobs} \\ \mathbf{x}_{a} &= \arg\max_{\mathbf{x},\xi} \det H_{norm} & \text{for all blobs} \end{split}$$

* Note that sign of Δg_{norm} has changed!

< 回 > < 三 > < 三 >

Blood cell detection: scale-variant version

- Left video: all blobs detected by now
- Right video: LoG scale-space with current maxima
- 24 scales used \rightarrow larger blobs detected at larger scales
- Some blobs detected several times
 - ightarrow post-processing needed (non-maxima suppression)

Another example of scale-variant blob detection

- 25 scales examined
- Two or more close blobs can merge at greater scale
- Again, post-processing needed to handle multiple detections

Scale selection

Two results of scale-invariant algorithm

- Only 6 scales examined in narrow range
 - \rightarrow fine scale tuning still necessary
- In discrete case, invariance not perfect
 - \rightarrow scale-variant results are probably slightly better

A D b 4 A b

Outline

Scale-space

- Scale-space and diffusion
- Image features in scale-spaceScale selection
- 3
 - Affine-invariant features
 - Corner-like features
 - Blob-like features

A D A D A D A

Invariant features in 3D reconstruction

- Point correspondence across views: (multiview) stereo, video
- Invariant local feature points
 - detection: points, regions
 - description: region \longrightarrow point (neighbourhood)
 - robust point/region matching
- Invariance
 - scale (near-far)
 - perspective distortion
 - illumination
- Local approximation of perspective distortion
 - small region, locally flat surface patch
 - \rightarrow affine distortion \longrightarrow affine invariance

< 回 > < 三 > < 三 >

Covariant or invariant?

- Covariant: changing in the same way
 - function f(x) covariant with transformation A: f(Ax) = Af(x)
 - ightarrow axis of inertia of 2D shape 'rotates' with shape
- Invariant: not changing
 - function f(x) invariant to transformation A: f(Ax) = f(x)
 - ightarrow area of 2D shape is invariant to shape rotation
- Regions covariant with affine distortion
 - \rightarrow undergo affine distortion
- Descriptions invariant (insensitive) to affine distortion
 - description of affine-normalised region
 - or inherently affine-invariant, e.g, affine-invariant moments
- For simplicity, the two terms are often used in same sense
 - e.g., invariant regions

Operation of Harris corner detector

- Here, g is the Gaussian filter (G)
- Source: Tuytelaars, Mikolajczyk (2007)

イロト イヨト イヨト イヨト

Corner-like features

Rotation invariance of Harris operator

Under rotation, great majority of features are preserved
 → result of Harris operator is stable

Steps of Harris-Laplace operator

Corner detection by multiscale Harris operator

 \rightarrow corners at varying degree of detail

Calculating characteristic scale for every corner

- by rotation-symmetric Laplace operator
- maximum similarity between local image structure and operator
- ightarrow characteristic scale and size (radius) of region
- Oharacteristic scale can be selected in different ways
 - rotation-symmetric Laplace operator gives best result
 - conclusion of experimental studies

Corner-like features

Characteristic scales at different zooms

• Change of (abs) Laplacian values in selected points

- \rightarrow characteristic scales: 10.1 (left) and 3.9 (right)
- \rightarrow ratio of scales: 2.5 = degree of magnification
- ightarrow radius of circle: characteristic scale imes 3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Corner-like features

Scale and rotation invariance of Harris-Laplace

- Circles indicate characteristic scales of features
- For better visibility, some features are not shown

・ロト ・ 同ト ・ ヨト ・ ヨト

Main steps of Harris-affine operator

- Detection of initial point and region by Laplace-Harris → initial scale, feature point, circular region
- Stimation of affine region using structure matrix M
 - \rightarrow feature point with elliptic region
- Normalisation of elliptic affine region to circular shape → normalised image
- Calculation of new position and scale in normalised image → modified scale and position
- Calculation of eigenvalues of new matrix M
 - if eigenvalues are different, go to step 2
 - otherwise, output final scale, position and circular region

Corner-like features

Iterative detection of affine-invariant features

- First column: points used for initialisation
- Further columns: points and regions after iterations 1, 2, 3
 - $\rightarrow\,$ after third iteration, shapes converge to corresponding regions

< ∃ ►

Affine normalisation of Harris operator 1/2

- Eigenvalues of matrix *M* define affine region (ellipse)
- Search for transformation when two eigenvalues become equal
 → ellipse becomes circle when iterations stop
- This can be achieved by square root of *M*:

$$\mathbf{x}'_L = M_L^{1/2} \mathbf{x}_L$$
 left image
 $\mathbf{x}'_R = M_R^{1/2} \mathbf{x}_R$ right image

 Since transformed images are analysed, inverse matrices are often used and iterated

$$\mathbf{x}_L = M_L^{-1/2} \mathbf{x}'_L,$$
$$\mathbf{x}_R = M_R^{-1/2} \mathbf{x}'_R$$

< 回 > < 三 > < 三 >

Affine normalisation of Harris operator 2/2

• Normalised images are identical up to rotation:

$$\mathbf{x}'_L = R\mathbf{x}'_R$$

• rotation of region does not affect ration of eigenvalues \rightarrow affine distortion can only be determined up to rotation

- In normalised images M'_L and M'_R are rotation matrices
- Affine normalisation procedure works if
 - det $M > 0 \longrightarrow M^{-1/2}$ exists
 - signal-noise ratio is sufficiently large
 - ightarrow e.g., for initial points detected by Harris-Laplace

Affine-invariant features

Corner-like features

Example of affine normalisation for stereo images

$$\mathbf{x}_L \longrightarrow M_L^{-1/2} \mathbf{x}'_L$$

 $\mathbf{x}_R \longrightarrow M_R^{-1/2} \mathbf{x}'_R$

- Image co-ordinates x are transformed by matrix M^{1/2}
- Normalised images are identical up to rotation (R)

Corner-like features

Example and summary of Harris-affine operator

- Regions correspond despite affine distortion
- Versions of Harris operator are often used
 - single or multiscale, scale-invariant, affine-invariant
 - efficient, stable; controllable number of points, can be large
- Image corners are well detected in locally flat surface areas
 - poor performance where surface variation is strong

Blob-like features

Operation of Determinant-of-Hessian (DoH)

- Components of Laplacian enhance lines, as well
- DoH enhances blobs, corners and ends of lines

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blob-like features

Rotation invariance of DoH blob detector

Under rotation, great majority of features are preserved
 → result of DoH operator is stable

Hesse-Laplace and Hesse-affine operators

- Similar to correspondent corner detectors
 - $\bullet \ \ \text{Hesse-Laplace} \rightarrow \text{Harris-Laplace}$
 - $\bullet \ \ \text{Hesse-affine} \rightarrow \text{Harris-affine}$
- Essential, natural difference:
 - initial points are DoH features rather than Harris corners
- The rest is similar, e.g., iterative affine normalisation:
 - estimation of affine region using structure matrix M
 - affine region normalisation to circular shape
 - calculation of new position and scale in normalised image
 - calculation of eigenvalues of new matrix M

Zoom invariance of Hesse-Laplace

- Circles indicate characteristic scales of features
- For better visibility, some features are not shown

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blob-like features

Example and summary of Hesse-affine operator

• • • • • • • • • • • •

- Versions of Hesse operator are often used
 - yield many points, can cover image
 - number of points controllable by DoH and Laplace thresholds
- Can detect corners, as well
 - better scale estimation than by Harris
 - ightarrow second-order derivatives for all operations
 - \rightarrow Harris: mixed, first and second order