
Scale-space and its applications

Dmitry Chetverikov

Eötvös Lóránd University, Hungarian Academy of Sciences

Chetverikov (ELTE, SZTAKI) Scale-space 1 / 46



Scale-space and its applications

1 Scale-space
Scale-space and diffusion

2 Image features in scale-space
Scale selection

3 Affine-invariant features
Corner-like features
Blob-like features

Chetverikov (ELTE, SZTAKI) Scale-space 2 / 46



Scale-space

Outline

1 Scale-space
Scale-space and diffusion

2 Image features in scale-space
Scale selection

3 Affine-invariant features
Corner-like features
Blob-like features

Chetverikov (ELTE, SZTAKI) Scale-space 3 / 46



Scale-space

Scale-space

g(x, σ) = G(x, σ) ∗ f (x) f ,g : input/output image

Gauss filter

G(x, σ) =
1

2πσ2 exp
(
−|x|

2

2σ2

)
|x| =

√
x2 + y2: distance from
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Larger σ ⇒ stronger smoothing, fewer details
Scale-space g(x, σ)

image sequence parameterised by scale σ
image representation with controllable degree of detail
Witkin (1983), Koenderink (1984), Lindeberg (1994), . . .
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Scale-space

Example of scale-space

σ = 0 (original image) σ = 1 σ = 2

σ = 4 σ = 8 σ = 16

source: Wikipedia
Chetverikov (ELTE, SZTAKI) Scale-space 5 / 46



Scale-space Scale-space and diffusion

Scale-space creation by diffusion

Diffusion process: transfer of heat and matter
spatial differences decrease
matter concentration equalises

Relation between scale-space and diffusion:
diffusion generates scale-space

General diffusion equation:

∂g
∂t

= ∇ (D∇g) ,

where ∇ =

(
∂

∂x
,
∂

∂y

)
is the gradient operator

D = D(x, t) is the diffusion coefficient, t time
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Scale-space Scale-space and diffusion

Homogeneous diffusion

diffusion coefficient D
does not depend on co-ordinates x , y
but can depend on time t

Homogeneous diffusion equation:

∂g
∂t

= D∆g,

where ∆ =
∂2

∂x2 +
∂2

∂y2 is the Laplace operator

Solution of diffusion equation:

g(x, t) =
1

2πσ2(t)
exp

(
− |x|

2

2σ2(t)

)
∗ g(x,0),

where σ(t) =
√

2Dt
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Scale-space Scale-space and diffusion

Gradual elimination of details

Image details
lines, edges, corners, blobs

As scale grows, new details do not appear

Details disappear or merge
→ forming specific tree structure

Information content of image gradually decreases
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Scale-space Scale-space and diffusion

The minimum-maximum principle

In principle, scale-space can be built by other filters, as well

Minimum-maximum principle: basic theoretical requirement
(axiom) for scale-space

local minima must not deepen
local maxima must not grow

Gradual elimination of details in consequence of this principle

Facilitates structural analysis of image
theoretical ground for analysis of details and their relations
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Scale-space Scale-space and diffusion

Significance of the Gaussian filter

Why to prefer this filter?

Min-max principle: natural result of diffusion
→ valid for Gaussian filter, as well

Scale-invariance principle: the other basic theoretical
requirement

to be discussed later

In continuous case, only Gaussian filter conforms with the two
principles

in discrete case, only polynomial filter
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Scale-space Scale-space and diffusion

Discrete scale-space 1/2

Use simple parameterisation of Gaussian filter:

G(x, ξ) =
1

2πξ
exp

(
−|x|

2

2ξ

)
1D diffusion equation

∂g(x , ξ)

∂ξ
=
∂2g(x , ξ)

∂x2

After discretisation, we obtain iterative solution

gn,ξ+1 = ∆ξgn+1,ξ − (1− 2∆ξ)gn,ξ + ∆ξgn−1,ξ,

where n + 1⇒ x + ∆x ,
ξ + 1⇒ ξ + ∆ξ
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Scale-space Scale-space and diffusion

Discrete scale-space 2/2

The above iterative process satisfies the two basic conditions if

∆ξ ≤ 1
4

(Lindeberg, 1994)

Usually, scale step ∆ξ = 1
4 is selected

Then we have simple iterative solution

gn,ξ+1 =
1
4

gn+1,ξ +
1
2

gn,ξ +
1
4

gn−1,ξ

i.e., application of filter 1
4 [1,2,1]T

Similar solution in 2D case
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Image features in scale-space

Derivatives in scale-space

gxmyn = (∂xm∂yng) = (∂xm∂ynG) f

Order of filtering and derivation is arbitrary

Gaussian derivatives: derivatives of Gaussian filter

∂xm∂ynG(x, ξ)
.

= Gxmyn (x, ξ)

Use rotational symmetry and separability of filter

For example, Gaussian gradient vector:

∇G(x) =
(
G(y)Gx (x),G(x)Gy (y)

)
,

where Gx (x) = −x
ξ

G(x)
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Image features in scale-space

Edge detection in scale-space

Edge detection by gradient operator ∇G = (Gx ,Gy )

|∇g| =
√

g2
x + g2

y edge magnitude

search for locations of large |∇g|

Edge detection by Laplacian-of-Gaussian (LoG) operator

∆G = Gxx + Gyy

search for zero-crossings of ∆g
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Image features in scale-space

Relations between edges and image derivatives

Signal

Edges
maxima of abs value
of first derivative

or
zero-crossings
of second derivative

g(x)

∣∣∣∂g
∂x

∣∣∣ 0

∂2g
∂x2

0
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Image features in scale-space

Zero-crossing edge detection at decreasing detail
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Image features in scale-space

Corner detection in scale-space

Corner detection with local structure matrix (tensor) M

M =

[
gxgx gxgy
gxgy gygy

]
Search for locations where eigenvalues λ1, λ2 of matrix M are large

1λ  > 0, λ  = 02

ideal step edge
1λ  > λ  > 02_

uniform image
1 2

ideal corner

1

2

1

2

λ  = λ  = 0
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Image features in scale-space

Blob detection in scale-space

Blob detection using trace H or det H operators

H =

[
gxx gxy
gxy gyy

]
Hesse matrix

trace H = gxx + gyy = ∆g

det H = gxxgyy − g2
xy Determinant-of-Hessian (DoH)

Eigenvalues of H are proportional to main curvatures of g(x)

Search for local extrema in image:

xb = arg min
x

∆g for bright blobs

xd = arg max
x

∆g for dark blobs

xa = arg max
x

det H for all blobs
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Image features in scale-space

Relations between blobs and derivatives

Sum of Two Gaussians

1st Derivative

2nd Derivative

Source: Earl F. Glynn, Stowers Inst. for Med. Res.

Two close bright blobs of
Gaussian shape

with some overlap

Location of blob:
maximum of g
zero of gx
valley of gxx
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Image features in scale-space Scale selection

Scale-normalised co-ordinates

What to do if blobs in image are of varying size?
∆g and det H are sensitive to blob size

→ operators must be tuned to size

Adaptive selection of scale parameter also needed when
size of objects is unknown
distance between object and camera varies

Scale-normalised co-ordinates

ζ =
1√
ξ

x =
1
σ

x

η =
1√
ξ

y =
1
σ

y

Used for automatic scale selection
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Image features in scale-space Scale selection

Automatic scale selection

Based on Gaussian operators

Gζmηn (x, ξ) = ξ
m+n

2 Gxmyn (x, ξ)

Operators are formed by normalised derivatives

∂ζ =
√
ξ∂x = σ∂x

∂η =
√
ξ∂y = σ∂y

In scale-space, search for extrema of features expressed by
normalised derivatives
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Image features in scale-space Scale selection

Normalised derivatives and image features

For image features expressed by normalised derivatives:
if feature attains local maximum at scale ξ0
then in image resized by factor s maximum will be at scale s2ξ0

ξ0 −→ s2ξ0, that is
σ0 −→ sσ0

this property is called scale-invariance

Scale-invariant and -adaptive features can be expressed by
normalised derivatives

blob, corner, edge
extension to affine-invariant features
affine-invariant region descriptors
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Image features in scale-space Scale selection

Detection of blobs of varying size

Use scale-normalised operators

∆gnorm = ξ (gxx + gyy )

det Hnorm = ξ2
(

gxxgyy − g2
xy

)
Search for local extrema in scale-space∗

xd = arg min
x,ξ

∆gnorm for dark blobs

xb = arg max
x,ξ

∆gnorm for bright blobs

xa = arg max
x,ξ

det Hnorm for all blobs

∗ Note that sign of ∆gnorm has changed!
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Image features in scale-space Scale selection

Blood cell detection: scale-variant version

Left video: all blobs detected by now
Right video: LoG scale-space with current maxima
24 scales used→ larger blobs detected at larger scales
Some blobs detected several times
→ post-processing needed (non-maxima suppression)
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Image features in scale-space Scale selection

Another example of scale-variant blob detection

25 scales examined
Two or more close blobs can merge at greater scale
Again, post-processing needed to handle multiple detections
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Image features in scale-space Scale selection

Two results of scale-invariant algorithm

Only 6 scales examined in narrow range
→ fine scale tuning still necessary

In discrete case, invariance not perfect
→ scale-variant results are probably slightly better
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Affine-invariant features

Invariant features in 3D reconstruction

Point correspondence across views: (multiview) stereo, video
Invariant local feature points

detection: points, regions
description: region −→ point (neighbourhood)
robust point/region matching

Invariance
scale (near-far)
perspective distortion
illumination

Local approximation of perspective distortion
small region, locally flat surface patch

→ affine distortion −→ affine invariance
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Affine-invariant features

Covariant or invariant?

Covariant: changing in the same way
function f (x) covariant with transformation A: f (Ax) = Af (x)

→ axis of inertia of 2D shape ‘rotates’ with shape

Invariant: not changing
function f (x) invariant to transformation A: f (Ax) = f (x)

→ area of 2D shape is invariant to shape rotation

Regions covariant with affine distortion
→ undergo affine distortion

Descriptions invariant (insensitive) to affine distortion
description of affine-normalised region
or inherently affine-invariant, e.g, affine-invariant moments

For simplicity, the two terms are often used in same sense
e.g., invariant regions

Chetverikov (ELTE, SZTAKI) Scale-space 30 / 46



Affine-invariant features Corner-like features

Operation of Harris corner detector

Here, g is the Gaussian filter (G)

Source: Tuytelaars, Mikolajczyk (2007)
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Affine-invariant features Corner-like features

Rotation invariance of Harris operator

Under rotation, great majority of features are preserved
→ result of Harris operator is stable
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Affine-invariant features Corner-like features

Steps of Harris-Laplace operator

1 Corner detection by multiscale Harris operator
→ corners at varying degree of detail

2 Calculating characteristic scale for every corner
by rotation-symmetric Laplace operator
maximum similarity between local image structure and operator

→ characteristic scale and size (radius) of region

3 Characteristic scale can be selected in different ways
rotation-symmetric Laplace operator gives best result
conclusion of experimental studies
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Affine-invariant features Corner-like features

Characteristic scales at different zooms

Change of (abs) Laplacian values in selected points
→ characteristic scales: 10.1 (left) and 3.9 (right)
→ ratio of scales: 2.5 = degree of magnification
→ radius of circle: characteristic scale × 3
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Affine-invariant features Corner-like features

Scale and rotation invariance of Harris-Laplace

Circles indicate characteristic scales of features
For better visibility, some features are not shown
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Affine-invariant features Corner-like features

Main steps of Harris-affine operator

1 Detection of initial point and region by Laplace-Harris
→ initial scale, feature point, circular region

2 Estimation of affine region using structure matrix M
→ feature point with elliptic region

3 Normalisation of elliptic affine region to circular shape
→ normalised image

4 Calculation of new position and scale in normalised image
→ modified scale and position

5 Calculation of eigenvalues of new matrix M
if eigenvalues are different, go to step 2
otherwise, output final scale, position and circular region
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Affine-invariant features Corner-like features

Iterative detection of affine-invariant features

First column: points used for initialisation
Further columns: points and regions after iterations 1,2,3
→ after third iteration, shapes converge to corresponding regions
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Affine-invariant features Corner-like features

Affine normalisation of Harris operator 1/2

Eigenvalues of matrix M define affine region (ellipse)

Search for transformation when two eigenvalues become equal
→ ellipse becomes circle when iterations stop

This can be achieved by square root of M:

x′L = M1/2
L xL left image

x′R = M1/2
R xR right image

Since transformed images are analysed, inverse matrices are
often used and iterated

xL = M−1/2
L x′L,

xR = M−1/2
R x′R
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Affine-invariant features Corner-like features

Affine normalisation of Harris operator 2/2

Normalised images are identical up to rotation:

x′L = Rx′R

rotation of region does not affect ration of eigenvalues
→ affine distortion can only be determined up to rotation

In normalised images M ′L and M ′R are rotation matrices

Affine normalisation procedure works if
det M > 0 −→ M−1/2 exists
signal-noise ratio is sufficiently large

→ e.g., for initial points detected by Harris-Laplace
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Affine-invariant features Corner-like features

Example of affine normalisation for stereo images

Image co-ordinates x are transformed by matrix M1/2

Normalised images are identical up to rotation (R)
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Affine-invariant features Corner-like features

Example and summary of Harris-affine operator

Regions correspond despite affine distortion
Versions of Harris operator are often used

single or multiscale, scale-invariant, affine-invariant
efficient, stable; controllable number of points, can be large

Image corners are well detected in locally flat surface areas
poor performance where surface variation is strong
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Affine-invariant features Blob-like features

Operation of Determinant-of-Hessian (DoH)

Components of Laplacian enhance lines, as well
DoH enhances blobs, corners and ends of lines
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Affine-invariant features Blob-like features

Rotation invariance of DoH blob detector

Under rotation, great majority of features are preserved
→ result of DoH operator is stable
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Affine-invariant features Blob-like features

Hesse-Laplace and Hesse-affine operators

Similar to correspondent corner detectors
Hesse-Laplace→ Harris-Laplace
Hesse-affine→ Harris-affine

Essential, natural difference:
initial points are DoH features rather than Harris corners

The rest is similar, e.g., iterative affine normalisation:
estimation of affine region using structure matrix M
affine region normalisation to circular shape
calculation of new position and scale in normalised image
calculation of eigenvalues of new matrix M
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Affine-invariant features Blob-like features

Zoom invariance of Hesse-Laplace

Circles indicate characteristic scales of features
For better visibility, some features are not shown
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Affine-invariant features Blob-like features

Example and summary of Hesse-affine operator

Versions of Hesse operator are often used
yield many points, can cover image
number of points controllable by DoH and Laplace thresholds

Can detect corners, as well
better scale estimation than by Harris

→ second-order derivatives for all operations
→ Harris: mixed, first and second order
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