Offline Handwriting Recognition in Archive Documents

Image Processing Laboratory
Department of Electrical Engineering and Information Systems
University of Pannonia

Outline

- OCR (Optical Character Recognition)
- Handwriting recognition
- Document segmentation
- Signature recognition
- Handwriting recognition in archive documents
 - Introduction of the problem
 - Recognition by SIFT points
 - Pivot based search for faster recognition

Types of Text

Character coded texts
- Word editor files
- Web pages

Embedded texts
- Physical media
- Books
- Films
- Letters
- Still images
- Video

Digitization

Character (word) recognition

- OCR (Optical Character Recognition)
 - Widespread applications (books, journal papers, etc.)
 - Problems only in noisy/distorted/undersampled environments

- Handwritten text recognition
 - Online recognition (mobile devices, touchpads, bank signature verification systems), dynamic: uses pen’s speed, position, pressure, acceleration, etc.
 - Offline recognition: uses only static images

- Signature recognition: learn personal characteristics of handwriting (signature verification or writer identification)

History of Handwriting Recognition

- 1938 George Hansel, U.S. Patent 2,143,875, machine recognition of handwriting

- 1957 Tom L. Dimond: Stylator the first on-line handwriting recognizer prototype

T. L. DIMOND: Devices for Reading Handwritten Characters
Overview of HWR

- **Baseline**: fictitious line which follows and joins the lower part of the character bodies in a text line (Fig. 1).
- **Median line**: fictitious line which follows and joins the upper part of the character bodies in a text line.
- **Upper line**: fictitious line which joins the top of ascenders.
- **Lower line**: fictitious line which joins the bottom of descenders.
- **Overlapping components**: overlapping components are descenders and ascenders located in the region of an...

Problems in Document Segmentation for Text Recognition

Line level:
- Fragmentation
- Fluctuation
- Proximity

Word level
- Fragmentation of letters and words
- Fluctuation of shape
- Proximity of words
- Writing fragmentation

Sources of noise:
- Blotches
- Background intensity variations
- Transparency of paper
- Tears
- Scanning problems

Document Segmentation for Text Recognition

- **Projection-based methods**
- **Grouping methods**: aggregating units in a bottom up strategy
- **Smearing methods** (horizontal smearing then bounding box detection)
- **Hough transform based methods**
- etc.

Super Resolution (SR) Based Number Plate (NP) Recognition

Problem: low resolution number plates in security videos

Solution: apply statistical image processing with the knowledge of what we expect to see / "example-based" super resolution, image hallucination

1. Learn low res - high res resolution patch pairs by image examples
2. Retrieve high resolution patches from low resolution observation applying local constraints
3. Recognition - use reconstruction code statistics

Example-based SR

- Learn LR-HR image patch pairs by example images
- Build up a database from LR-HR pairs
- Replace LR patches with corresponding HR patterns also considering neighborhood fitting
Signature-based biometrics

- Scanning
- Analysis
- Matching
- Store

- extracted features
- outlier rejection
- signature template

- Match
- Decision
- No match

two-class pattern recognition problem

Signature recognition

- Alignment
- Feature extraction
 - Baseline Slant Angle
 - Aspect Ratio
 - Normalized area of the signature
 - Center of Gravity
 - Slope
 - Upper profile/lower profile
 - Etc.

- Comparison
 - Several types of metrics… (do not work alone) but
 - Dynamic Time Warping
 - Hidden Markov Models can help…

Dynamic Time Warping…

- To find local correspondence…
 - Horizontal non-linear stretching of objects to find the best matching
 - Local gradient algorithms work well

The amount of information in archive documents…

Consumed by an average person on an average day
- corresponds to 100,500 words
- and 34 gigabytes
- newspapers, books, portable computer games, satellite radio, and Internet video.
- Information at work is not included!

Estimated number of books:
- 129,864,880
- “at least until Sunday”
 - Google Books research, 2010
- What about old documents…?

What about archive paper documents?

- The number of archive pages (only in Hungary):
 - 3 500 000 000 – over 3 billion!
- The number of archive pages recommended for digitization: 200 000 000 (5.7%)

Aims of Digitization

- To preserve information for future generations
- To make them analyzable for researchers
- To make them searchable for the public

- Central European Virtual Archives Network of Medieval Charters Project: … Digitization of medieval charters within the stocks of the participating archives…

Handwriting styles

If does not want why you handwriting.

„Normal” cursive handwriting

A page of a book of census of a Central-European city from 1771 (Veszprém County Archives)

Typical Problems of Archive Cursive Handwriting

- The same letters have different appearances (e.g. „E” in Eva)
- The beginning and ending of letters cannot be easily recognized
- separation (segmentation) of letters is a (too) hard problem

Typical Written Problems

- Broken line transforms "m" into "n" and "r"

Typical Written Problems

- Different appearances of the same letter "z" in the same handwriting (beginning of "Özvegy")
Misspelling of the 7th letter which should look like the 8th letter.

Similarities of different letters in the same handwriting (beginning of "István", "János", "Sámuel").

Word overlapping.

Character-based recognition in several cases does not work.
Is it worth trying word-based recognition – word spotting?
What is the amount of word classes?

A continuously learning system seems to be reasonable, the amount of necessary annotation decreases exponentially from page to page in the archive document to be processed.
Global word shape based classification

- Tested descriptors of length 329:
 - horizontal and vertical size and their ratio;
 - minimum, maximum, and average intensity;
 - average intensity derivatives;
 - upper profile; lower profile;
 - right profile; left profile;
 - center of gravity;
 - black-white transitions; black-white ratio;
 - black count;
 - black density;
 - image moments
- Tested classifiers: k-NN, Random Tree, Random Forest, Naive Bayes etc.
- Average performance is around (only) 50% recognition rate

Global word shape based classification

- Global word feature descriptors are:
 - Sensitive to the individual (inter class) variations of word shape
 - Sensitive to extreme decorations
 - Sensitive to dirt and noise
 - are „ad-hoc”
- What about local feature descriptors in word spotting?
 - SIFT, SURF, FAST, … successfully applied to complex images
 - Invariant to transformations (rotation, scaling)

Local features for word spotting

- Has it been already applied?
- Is scale invariance of descriptors important to be considered?
- Is rotation invariance of descriptors important to be considered?
- Is word structure (i.e. skeleton) itself proper to extract local features?

Existing solutions

 - “SIFT-like” descriptor
 - Applied to Chinese symbols
 - Not scale and rotation invariant
 - Gradient histogram descriptor in a moving window
 - DTW or HMM for classification
 - 80%-hit rate for a low number of classes
 - No information selection
 - Tested and applied only for the 10 digits
 - SURF points without positions (not real localization)
 - Feature point votes for character class
- More comprehensive overview is available in Czúni et al., CBMI2013

SIFT local descriptor

- Scale Invariant Feature Transform:
 - Difference of Gaussian pyramid
 - Finding local extreme points (position, scale)
 - Leaving out low contrast and edge points
 - Finding the maximal gradient (for orientation invariance)
 - Setting the local coordinate system
 - Generating the descriptor vector

- Properties:
 - Invariant to affine transformations (scaling, rotation, etc.)
 - Computationally expensive

1. Localize SIFT points and generate SIFT descriptors both in the query (q) and in the candidate words (c).
2. Normalize SIFT point positions by the physical size of the words.
3. Define a disk shape area around each feature point of the query (q); only candidate points (c) within this area will be compared.
4. Find the best two matching points
5. Apply a threshold to orientation difference
6. Constrain the uniqueness of the best matching point
7. Calculate the similarity value for the query and candidate words with the use of the matching points, rank candidates according to this similarity value:
Advantages

- Scale and rotation invariance (in some degree)
- No need for preprocessing (e.g. binarization, slant correction, noise removal, morphology, etc.)
- No need for precise segmentation of words.
- The searching area is symmetrical around query points, contrary to most methods using DTW, where matching cannot go backwards.
- Stable in noisy environments: the algorithm can neglect most noisy points.
- Only extrema points in scale–space are considered: there is no need to correlate points with small information content.

Example for matching points

Experimental setup

- 22 manually annotated pages of the 177 with 1638 word images.
- 103 random query image compared to the remaining 1637 images
- 111 word classes
- most frequent word: 116 occurrence
- 68 words with only 1 occurrence
- SIFT (OpenSIFT, Lowe), SURF

Preprocessing

- Segmentation - manually
- Noise-filtering ✓
- Slant correction ✗
- Word image resizing ✓
- Binarization ✗
- Skeletonization ✗

methods caused new problems… gave no real improvement

Effect of searching distance

Effect of orientation constraint

- Relative stable performance of SIFT
- SURF is much behind
Effect of uniqueness constraint

- Relatively stable performance of SIFT
- SURF is much behind

Effect of fixing the Scale

Scale information has relatively low importance in recognition

Effect of fixing the orientation

Constantly low performance tells us that, while written text is basically horizontal, but rotation invariance can't be neglected!

Analysis of results

The list and images of mistaken recognitions from 101 random queries. Yellow words indicate classes of almost the same names.

Recognition error (in the test database) could be halved by grapheme processing

Sequential search

1. local feature extraction (SIFT)
2. calculating similarity value with the images of the database
3. searching the word with maximal similarity value

- the similarity calculation is slow
- long running time
Bag of Words (typical for SIFT)

1. local feature extraction (SIFT)
2. create feature cluster histograms
3. calculating similarity values between histograms (eg. correlation)

- features are too sparse/similar
- poor recognition rate

Pivot based searching

1. local feature extraction (SIFT)
2. create similarity values with the **pivot images**
3. correlation calculation between the pivot similarity values (‘junction’) and the images of the database

Pivot based searching results

- hit rate is about 70-75%
- 2-3 times faster searching depending on the size of the database
- pivot selection problem (SVM, FSTAT)

Conclusion

- Not localized feature descriptors are not proper for noisy archive handwriting recognition
- SIFT based retrieval can reach around 85% hit-rate in case of cursive handwritten text with limited vocabulary
- Around 100% in the first 10 of the **result list** (manual correction is possible)
- **No need** for:
 - Preprocessing (e.g. binarization, slant correction, morphology)
 - Noise filtering
 - Precise segmentation
- **Rotation invariance** is more important than scale invariance
- Pivot based search can increase speed 2-3 times with small loss in retrieval rate
- Not all popular descriptors are adequate (SURF is faster but has significantly lower performance)

Thank you for your attention!