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Where…? What…? How many…?
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How fast can you count?
# Human Computer

9 4 sec 0.1 sec

18 7 sec 0.15 sec

51 17 sec 0.25 sec

210 60 sec 1 sec

3610 ☺ 13 sec

Human:

- Imprecise

- Slow

- Intelligent

Computer:

- Precise

- Fast

- Dummy

Throughput vs. human knowledge
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o Video

Research activities
� Image segmentation and tracking

� Cell segmentation

� Label free reconstruction

� Tracking (2-3D and phase contrast)

� Image quality improvement

� Flat field, photo bleaching

� Machine learning

� Phenotypic profiling

� Regression models

� CL2M (correlative light-light microscopy)

� High-throughput single cell isolation
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SCREENING

Needle meet haystack
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The question
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�Systematic test of the effect of one or 

more parameters in a complex system

�Aim: 

� local or global optimum

�Network/correlation/connection between 

different parameter values

�Further challenges:

�Multiple knock-out

�Knock-in

What is screening?
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Human Genome Project (HGP)

�Analysis of the whole human genome up 

to nucleotides (approx 3 billion base pairs) 

�1990-2006

�Identification of all human genes

(~22.000 different)
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Challenge in cell biology

�Approx. 22.000 human genes

�These ~22.000 genes encodes 

~100.000 proteins

�Deeper knowledge ~1.500 proteins

�How to analyze unknown proteins?

�Animal models are expensive

�Possible solution: RNAi technology
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RNAi and the  siRNA technology

�RNAi = RNA interference

�siRNA = small interfering RNA

�RNA molecule consists of 20-25 

nucleotides

�Interferes with the expression of a 

specific gene

�siRNA against the whole human 

genome is available
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Fluorescence microscopy
� Optical microscopy technique to study 

properties of substances using the 

phenomena of fluorescence

� Specifically labeled specimen with a 

fluorophore molecule

�GFP (green fluorescent protein, Jellyfish, 

1996; 2008 Nobel Prize)

�DAPI

1. Specimen illuminated with a specific 

wavelength→ absorbed by the fluorophore

2. Emit light of longer wavelength

12
Source: Wikipedia
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Single Cell-Based fluorescent microscopic screening

�The newest acquisition technologies:

�fast imaging

�high-resolution

�Possible to analyze single cells, or 

intracellular structures

�Computer aided data analysis:

�accurate

�fast

�intelligent and reliable
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The data processing pipeline

Assay development

Data 

management 
Quality control 

Liquid handling, image acquisition

Image correction and processing

Statistical analysis, classification

Bioinformatics

Human interpretation 

Vignetting
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Illumination correction
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K. Smith, F. Piccinini, C. Balazs, G. Csucs, A. Bevilacqua, P. Horvath; CIDRE: A general 

illumination correction method for optical microscopy, Nature Methods 2015

Flat field correction

K. Smith, F. Piccinini, C. Balazs, G. Csucs, A. Bevilacqua, P. Horvath; CIDRE: A general 

illumination correction method for optical microscopy, Nature Methods 2015

Data courtesy of  Prof. G. Tamas

The CIDRE model

o Super resolution relation
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Tested on 12 different microscopy techniques and largely outperforms 
the state of the art , highly dominates over calibration techniques.

Usable: Epi Fluo, Bright filed, DIC, PC, STED, Confocal, Outdoor cameras
Applications: HCS, Neurology, Histology, Standard microscopy,…

Implemented in Java (ImageJ), MalLab, CellProfiler, Python
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Image processing
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3 main steps:
-Cell detection (segmentation)
-Cellular compartment identification
-Feature extraction

Image processing I. – cell detection
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Image processing II. – compartments
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Image processing II. – compartments
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Image processing III. – feature extraction

�Morphology

�Intensity-based

�Texture
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Image processing - Summary

24
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IMAGE SEGMENTATION

The challenge
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Image segmentation with shape priors

�Complex images

�Classical methods does not separate 

cells with proper topology

�Rigid object detection does not give 

morphological information

�Combine the two:

�Circular, elliptical objects, slight overlaps

�Slight variation in shape, surface, size

�Variational methods
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Data courtesy: Precision medicine; prostate cancer
Päivi Östling, Taija af Hällström, Vilja Pietiäinen, Piia Mikkonen FIMM Helsinki

Horvath, Jermyn, Kato, Zerubia; Gas of Circles model - Pattern Recognition

Molnar, Kato, Jermyn. A Multi-Layer Phase Field Model for Extracting Multiple Near-Circular Objects (ICPR)

Image segmentation with priors
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Examples for overlapping objects

28In collaboration with Molnar, Kato, Jermyn. Data curtsey Cs Molnar.

Describing more general shapes

�Simplest size/shape priors

�Area fixed, or

�Perimeter fixed, or

�Area/perimeter fix

�Curvature

Large circular

Small circular

Small elliptical

29
Jozsef Molnar, Adam Szucs, Peter Horvath : Active contours for selective object 

segmentation (work in progress)

Energy minimizing functional

�The usual structure of energy 

minimizing functional for object 

segmentation:

�We propose composite prior term with

�Size and

�Shape priors

data smoothness priorE E E E= + +

prior size shapeE E E= +
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Size priors

�Two basic types considered

�Preferred perimeter-length:

�Preferred internal area:

�The function f should have inflection at 

zero

�eg. Cubic function is a simple choice

( ) ( )0f L ds− ∫r&  F

( ) ( )0, f A dA− ∫r r&  F

Shape priors

�One of the simplest prior is the perimeter-
area ratio:

�Describes “Amoeba”-invariant shapes 

�Note that the same terms were used to 
define size and shape priors

� Fast and capable to describe a family of 
objects

( )2ds
q

dA
=
∫
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DIC image reconstruction

Krisztian Koos, Jozsef Molnar, Peter Horvath : DIC microscopy image reconstruction using a 

novel variational framework

Data fit Smoothness

DIC microscopy:

DIC is label free and low phototoxic +

DIC is not quantitative but qualitative
Difficult:

-Measurements
-Large imaging scenarios

Goal: 

Automated image reconstruction 
(+GPU and 3D):

CellTracker

o Video
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SINGLE CELL-BASED 
CLASSIFICATION FOR HCA

Multi-parametric non-linear – Follow the fashion!

35 36

www.cellclassifier.org

Banerjee, etal.; Science 2014
Smith etal.: Nature Meth. 2014
Balistreri, Horvath etal.: Cell H&M 2014.
Boutter etal.: Oncotarget 2014
Marino etal.: Meth. Cell Biol. 2014
Meier etal.: J. Virology 2014
Kiss etal.:  PLoS One 2014
Smith etal.: J. of Biomol Screening 2014
Banerjee, etal.; PLoS One 2013
Palazzolo, Horvath Wong; PLoS One 2012
Misselwitz, Horvath etal.; PLoS Pathogens 2012
Huotari, Horvath etal.; PNAS 2012
Yamauchi, Horvath etal.; PLoS Pathogens 2011
Horvath, Wild etal.; J. of Biomol Screening 2011
Laurell, Beck etal.; Cell 2011
Wild, Horvath etal.; PLoS Biol 2010
Turgay, Ungricht etal.; EMBO journal 2010
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37

mature 40S subunit

mature 60S subunit

80S ribosome

80S ribosome

ribosomal proteins

Nucleolus Nucleoplasm Cytoplasm

Ribosome Biogenesis 
human genome-wide screen

Kutay lab; ETH Zurich
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mature 40S subunit

mature 60S subunit

80S ribosome

80S ribosome

ribosomal proteins

Nucleolus Nucleoplasm Cytoplasm

The RPS2YFP readout
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The rps2YFP readout

mature 40S subunit

mature 60S subunit

80S ribosome

80S ribosome

ribosomal proteins

Nucleolus Nucleoplasm Cytoplasm
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The rps2YFP readout

mature 40S subunit

mature 60S subunit

80S ribosome

80S ribosome

ribosomal proteins

Nucleolus Nucleoplasm Cytoplasm
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Advanced Cell Classifier I.

Normal cells (1-4) Hit cells (1, 2)

Mitotic cells

No YFP signal

Thomas Wild, Peter Horvath, et.al. A protein inventory of human ribosome biogenesis reveals an essential 

function of Exportin 5 in 60S subunit export. PLoS Biol (2010). 42

Training, classificationAdvanced Cell Classifier

www.cellclassifier.org

�Custom written software

�Easy training by clicking

�Predefined phenotypes and 
subtypes

�Quick prediction

�Machine learning and 
simple feature-based statistics

�Prediction of the entire 

screen and quick report (pdf, 
html, xml, csv)

�Available learning methods:

�Neural network

�Support vector machine

�Random forest

�Logistic

20+ more

1 2

1 11
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Further results – Vaccinia genome-wide screen

Primary infection – mCherry

Secondary infection - EGFP 

Readout: % of primary and secondary infected cells
Jason Mercer, ETH Zurich

Further results – Vaccinia genome-wide screen

44Jason Mercer, ETH Zurich

Active learning for HCS

Aim

�More precise and faster analysis 

�Using less human resources

�Asking more intelligent questions
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Results

46
Smith K, Horvath P: Active Learning Strategies for Phenotypic Profiling of High-Content 
Screens, Journal of Biomolecular Screening, 2014.

REGRESSION MODELS FOR HCA

Beyond single cell-based discrete decisions

47

Localization of Late Endosome/Lysosomes
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Helenius lab; ETH Zurich

Dynactin kd

PACKED

Control

SCATTERED

Nuc

Normal

Dynein/Dynactin kd

Lack of retrograde motility

+

+

-

Yamauchi, Boukari, Banerjee, Sbalzarini, Horvath, Helenius. Histone Deacetylase 8 is Required for Centrosome Cohesion 
and Influenza A Virus Entry. PLoS Pathogens. 2011.
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Regression models for HCA

�Problem: Discrete decisions

�Solution: Comparison

49

Type A Type B A or B ?

21 3 4<

?

>

2 13 4

< < <

Regression plane concept

50

0 1
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Further results - Semliki Forest virus genome-wide screen

Balistreri, Horvath, etal.
Cell  Host and Microbe 2014. 

Results

53

Balistreri, Horvath, etal.
Cell Host and Microbe 2014. 

MORE COMPLEX DECISIONS

Lipid droplet phenotype analysis

54
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Lipid droplet phenotype analysis

55

Data curtsey: Surakka, ..., S. Timonen, V. Pietiäinen,… etal; The impact of low-frequency 
and rare variants on lipid levels. Nature Genetics in Revision

Using supervised classification
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2D regression plane concept

�Can we predict/learn more than 

one property of the cells?

�Yes, we can!

�I do not want to talk/analyze in 
terms of image processing 

quantities (jargon) but based on 

visual observations
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A. Szkalisity, etal: A novel concept for high-content screen analysis using multi-
parametric regression models to predict continuous cellular processes; KEPAF15

Example of an annotated plane
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A. Szkalisity, etal: A novel concept for high-content screen analysis using multi-
parametric regression models to predict continuous cellular processes; KEPAF15

Results

59

Active regression

60
A. Szkalisity, J. Peltonen, P. Horvath – Work in progress
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Sequential assays

� Consecutive HCS assays to more precisely localize genetic or 

drug effects and determine timing

� Reverse subsets
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Event1 -> Event2…-> EventN

Detected actors N

Detected actors 2

Detected actors 1

Banerjee, …, Horvath, Yamauchi, Helenius; Science 2014.
Banerjee, Yamauchi, Helenius, Horvath; PLoS One 2013.

High-content analysis of sequential events during 
influenza A virus infection

62
Banerjee, …, Horvath, Yamauchi, Helenius; Science 2014.
Banerjee, Yamauchi, Helenius, Horvath; PLoS One 2013.

Results using time course data

63
Banerjee, …, Horvath, Yamauchi, Helenius; Science 2014.
Banerjee, Yamauchi, Helenius, Horvath; PLoS One 2013.

Personalized and translational medicine
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Patient

Oncology

Primary drug testing
- 306 oncology drugs

- Cell lines
- Patient samples

Bioinformatics

Childhood acute lymphoblastic leukemia

Personalized precision medicine

Imaging

Microscopy screening

Cell model

Boutter Jeannette, Prof. med. Bourquin; Children's Hospital Zurich
Prof. Heckman; FIMM Helsinki

Acute myeloid leukemia: drug testing using live cell microscopy
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In collaboration with Prof. Caroline Heckman’s group (FIMM Helsinki)

Based on: Boutter, Horvath, Bourquin; Oncotarget 2014.
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Results: image segmentation and machine learning
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SINGLE CELLS

Can we learn more? How?
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The CL2M system (correlative light-light microscopy)
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Current work, National Brain Program

Thank you!
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www.brc.hu/sysbiol

We are hiring

PhD and PostDoc positions in:

�Image analysis using shape priors

�Machine learning for image-based 
phenotypic discovery
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