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Research activities

» Image segmentation and tracking
» Cell segmentation
> Label free reconstruction

» Tracking (2-3D and phase contrast) =
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» Image quality improvement
> Flat field, photo bleaching

» Machine learning
» Phenotypic profiling @ o
» Regression models

» CL2M (correlative light-light microscopy)
» High-throughput single cellisolation
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Throughput vs. human knowledge

SCREENING



The gquestion

Human Genome Project (HGP)

» Analysis of the whole human genome up
to nucleotides (approx 3 billion base pairs)

> 1990-2006

»ldentification of all human genes

(~22.000 different)

RNAI and the siRNA technology

»RNAi = RNA interference
»siRNA = small interfering RNA

»RNA molecule consists of 20-25
nucleotides

> Interferes with the expression of a
specific gene

> siRNA against the whole human
genome is available

What is screening?

» Systematic test of the effect of one or
more parameters in a complex system
» Aim:
» local or global optimum

» Network/correlation/connection between
different parameter values

» Further challenges:
» Multiple knock-out

» Knock-in q .. 3

L hdllenge in Cell bioloay

» Approx. 22.000 human genes

» These ~22.000 genes encodes
~100.000 proteins

» Deeper knowledge ~1.500 proteins

»How to analyze unknown proteins?
»Animal models are expensive
»>Possible solution: RNAIi technology

Fluorescence microscopy

» Optical microscopy technique to study
properties of substances using the
phenomena of fluorescence

» Specifically labeled specimen with a

fluorophore molecule

» GFP (green fluorescent protein, Jellyfish,
1996; 2008 Nobel Prize)

> DAPI

1. Specimen illuminated with a specific
wavelength— absorbed by the fluorophore

2. Emit light of longer wavelength

Source: Wikipedia



Single Cell-Based fluorescent microscopic screening

» The newest acquisition technologies:
»fast imaging
»high-resolution

» Possible to analyze single cells, or
intracellular structures

» Computer aided data analysis:

»accurate

»>fast

»>intelligent and reliable
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K. Smith, F. Piccinini, C. Balazs, G. Csucs, A. Bevilacqua, P. Horvath; CIDRE: A general
illumination correction method for optical microscopy, Nature Methods 2015
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Assay deve/opménr

Liquid handling, image acquisition
Image correction and proces:
Statistical analysis, classificati

Bioinformatics

Human interpretation

7. Are you familiar with the term flat-field correction?

Never heard of it 64 38% — I
Vaguely familiar 34 20%
I know what it is, but | am not an expert 52 31%
Expert on the subject 20 12%

8. Flat-field correction is a technique used to remove

artifacts and noise in the image caused by distortions

in the optical path and/or variations in pixel-to-pixel

sensitivity. Do you believe such image distortions

affect quantitative analyses in your laboratory?
Not significantly 24 14%
To some extent 73 43%
Left uncorrected, the distortions significantly alter the results 51 30%
I never considered the possibility 22 13%

K. Smith, F. Piccinini, C. Balazs, G. Csucs, A. Bevilacqua, P. Horvath; CIDRE: A general
illumination correction method for optical microscopy, Nature Methods 2015
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Tested on a}ﬂerer;f ;m'croscopy techniques and largely outperforms
the state of the art, highly dominates over calibration techniques.

Usable: Epi Fluo, Bright filed, DIC, PC, STED, Confocal, Outdoor cameras
Applications: HCS, Neurology, Histology, Standard microscopy....

Impl: ted in Java (I J), MalLab, CellProfiler, Python
Dt )
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Image processing

3 main steps:

-Cell detection (segmentation)
-Cellular compartment identification
-Feature extraction

Image processing lll. — feature extraction

»Morphology
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> Texture

Image processing |. — cell detection

rocessing Il. — compartments

Image processing - Summary
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The challenge

IMAGE SEGMENTATION

Image segmenta

Describing more general shapes

> Simplest size/shape priors
> Area fixed, or
»Perimeter fixed, or
> Area/perimeter fix
»Curvature

Large circular
Small circular

Jozsef Molnar, Adam Szucs, Peter Horvath : Active contours for selective object

seamentation (work in proaress)

Image segmentation with shape priors
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> Variational methods

Data courtesy: Precision medicine; prostate cancer
Paiivi Ostling, Taija af Héllstrém, Vilja Pietidinen, Piia Mikkonen FIMM Helsinki

Examples for overlapping objects

In collaboration with Molnar, Kato, Jermyn. Data curtsey Cs Molnar.

Energy minimizing functional

»The usual structure of energy
minimizing functional for object
segmentation:

VAN

data

+F

smoothness i E
»We propose composite prior term with
»>Size and

»>Shape priors
E =E_+E

prior size shape

prior




Size priors

»Two basic types considered
>Preferred perimeter-length:F (¥)[ f(Lo —mds
>Preferred intemnal area: F (r,£)0 f (4, ~[fjd4

»The function f should have inflection at
zero
»eg. Cubic function is a simple choice

2. 09 e

DIC microscopy:
DIC is label free and low phototoxic +

DIC is not quantitative but qualitative
Difficult:

-Measurements

-Large imaging scenarios

Goal:

Automated image reconstruction
(+GPU and 3D):
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results of the proposed algorithm

Krisztian Koos, Jozsef Molnar, Peter Horvath : DIC microscopy image reconstruction usihg a

novel variational framework i

parametric non linear Follow the fashion!

SINGLE CELL-BASED
CLASSIFICATION FOR HCA

Shape priors

» One of the simplest prior is the perimeter-
area rafio: (mds)z

N\ s

» Describes “Amoeba’-invariant shapes

> Note that the same terms were used to
define size and shape priors

» Fast and capable to describe a family of
objects

CellTracker
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www.cellclassifier.org
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RI bosome Biogenesis Kutay lab; ETH Zurich
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Advanced Cell Classifier TrOInlng: ClOSSlfICOhO

www.cellclassifier.org
>Custom written software
»>Easy fraining by clicking
»Predefined phenotypes and
subtypes

»Quick prediction

»Machine learning and
simple feature-based statistics
»Prediction of the entire

screen and quick report (pdf,
html, xml, csv)
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»Available learning methods:
>Neural network
>Support vector machine

20+ more




Further results — Vaccinia genome-wide screen

Primary infection - mCherry|

Secondary infection - EGFP

G Readout: % of primary and secondary infected cells

Active learning for HCS

unlabeled pool
query strategy
r ) it
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REGRESSION MODELS FOR HCA

Further results — Vaccinia genome-wide screen
(0) g

Jason Mercer, ETH Zurich

- Negative cell 1 - Non infected

- Nucleoplasmic acc. . 2. Infected (early)

3- Nucleolar acc 3 Infected (mid)

4- Wit 4 Infected (late)
5-Notet 5 Infected (collapsed)

O aaaas| bis P A sass s e ey
epatEEEEEET i prertt cabibbe e

Screens, Journal of Biomolecular.
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ius lab; ETH Zi




Regression models for HCA
> Problem: Discrete decisions

ks

» Solution: Comparison

AorB?

Regression plane concept
D
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Balistreri, Horvath, efal.
Cell Host and Microbe 2014.

Plate bEZ01-3A

Balistreri, Horvatn, etal.
CellHost and Microbe 2014,

Scrambled

Lipid droplet phenotype analysis

MORE COMPLEX DECISIONS




Lipid droplet phenotype analysis Using supervised classification
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2D regression plane concept Example of an annotated plane

»Can we predict/learn more than
one property of the cells?
»Yes, we can!

o]

»| do not want to talk/analyze in
terms of image processing
quantities (jargon) but

ntent screen an nulti- F A. Szkali etal: A novel concept for hi
parametric models fo predii nuous cellular p parame ession models to predict confinuous e pr 51

Acftive regression
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Sequential assays
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» Consecutive HCS assays to more precisely localize genetic or
drug effects and determine timing

» Reverse subsets

Early endosome Late endosome
pH6.5-6.0 pH 6.0-5.0

s; Science 2014.
; PLoS One 2013.

Results using time course data
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Childhood acute lymphoblastic leukemia
Personalized precision medicine

Cell model

LN

v I Primary drug testing \
i I \ - 306 oncology drugs |
I - Cell lines K
|‘ ] \ - Patient samples o
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Bioinformatics 3 Imaging

Microscopy screening

Boutter Jeannette, Prof. me
Prof. Heckman; FIMM Helsi

High-content analysis of sequential events during

influenza A virus infection
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Science 2014.
PLoS One 2013.
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Personalized and translational medicine

Research plan: Next generation image analysis solutions
— towards image-based diagnostics

High content imaging
cell lines, patient cells,
30 cultures, tissue

ﬂ cell-based tissue
assays pathology -
4
Lg - A

Research focus

I

Algorithms

o 2 Multi- i
Image quality Image Wiconnil'S Bioinformatics|
enhancement processing !
analysis
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Acute myeloid leukemia: drug festing using live cell microscopy
In collaboration with Prof. Caroline Heckman's group (FIMM Helsinki)

Based on: Boutter, H
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www.brc.hu/sysbiol

MARIE CURIE Acnoﬁ

Can we learn more? How?

SINGLE CELLS

Current work, National Brain Program
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(Semi) automated experime
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PhD and PostDoc positions in:

>Iihoge analysis using shape priors
»Machine learning for image-based
phenotypic discovery
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