

POZNAN

UNIVERSITY OF

VOLOGY



## Methods for 3D Reconstruction

# Remigiusz LABUDZKI

remigiusz.labudzki@put.poznan.pl

SZEGED - SSIP 2015

## Introduction

- Increasing need for geometric 3D models
   Movie industry, games, virtual environments...
- Existing solutions are not fully satisfying
   User-driven modeling: long and error-prone
   3D scanners: costly and cumbersome

Alternative: analyzing image sequences
 Cameras are cheap and lightweight
 Cameras are precise (several megapixels)

## Outline

- Context and Basic Ideas
- Consistency and Related Techniques
- Regularized Methods
- Conclusions



- Context and Basic Ideas
- Consistency and Related Techniques
- Regularized Methods
- Conclusions

## Scenario

- A scene to reconstruct (unknown a priori)
- Several viewpoints
   from 4 views up to several hundreds
   20~50 on average
- "Over water"
   \$\over non-participating medium



## **Sample Image Sequence**





#### How to retrieve the 3D shape?



## **First Step: Camera Calibration**

 Associate a pixel to a ray in space
 Camera position, orientation, focal length...

Complex problem
 \$\$ solutions exist
 \$\$ toolboxes on the web
 \$\$ commercial software available



2D pixel  $\Leftrightarrow$  3D ray

#### Outline

- Context and Basic Ideas
- Consistency and Related Techniques
- Regularized Methods
- Conclusions

## **General Strategy: Triangulation**



Matching a feature in at least 2 views 3D position



## **Matching First**

#### Which points are the same?





Impossible to match all points  $\Rightarrow$  holes. Not suitable for dense reconstruction.

## **Sampling 3D Space**

Pick a 3D point
 Project in images
 Is it a good match?



YES

## **Sampling 3D Space**



**Consistency Function** "Is this 3D model consistent with the input images?"

No binary answer
 hoise, imperfect calibration...

- Scalar function
  - ♥ low values: good match
  - ♦ high values: poor match

#### **Examples of Consistency Functions**

#### • Color: variance

So the cameras see the same color?

Valid for matte (Lambertian) objects only.

#### Texture: correlation

- ♥ Is the texture around the points the same?
- ♥ Robust to glossy materials.
- ♥ Problems with shiny objects and grazing angles.

#### More advanced models

Shiny and transparent materials.

#### **Reconstruction from Consistency Only**

# Gather the good points requires many views otherwise holes appear





#### **Reconstruction from Consistency Only**

#### Remove the bad points

- 1. start from bounding volume
- 2. carve away inconsistent points
- ♥ requires texture
  - otherwise incorrect geometry





## Summary of "Consistency Only Strategy"

With high resolution data
 \$\overline\$ mostly ok (except textureless areas)
 \$\overline\$ sufficient in many cases



- Advice: try a simple technique first
- More sophisticated approach
   fill holes
   more robust (noise, few images...)



### Outline

- Context and Basic Ideas
- Consistency and Related Techniques
- Regularized Methods
- Conclusions

## **Consistency is not Enough**





Textureless regions
 Everything matches.
 No salient points.

## **An Ill-posed Problem**

There are several different 3D models consistent with an image sequence.

- More information is needed.
  User provides a priori knowledge.
  Classical assumption: Objects are "smooth."
  Also know as regularizing the problem.
- Optimization problem:
   Spind the "best" smooth consistent object.

## **Minimal Surfaces with Level Sets**

Smooth surfaces have small areas.
 "smoothest" translates into "minimal area."

Level Sets to search for minimal area solution.
 Surface represented by its "distance" function



Each grid node stores its distance to the surface.

# **Minimal Surfaces with Level Sets**

- Distance function evolves towards best tradeoff consistency vs area.
- Advantages
   \$\overline\$ match arbitrary topology
   \$\overline\$ exact visibility

#### Limitations

No edges, no corners
Convergence unclear (ok in practice)





## **Snakes**

- Explicit surface representation
   triangle mesh
- Controlled setup
- Robust matching scheme
   precise
   handles very glossy material
   computationally expensive



# A Quick Intro to Min Cut (Graph Cut)



 Given a graph with valued edges
 § find min cut between source and sink nodes.

• Change connectivity and edge values to minimize energy.

• Global minimum or very good solution.

# **Minimal Surfaces with Graph Cut**

- Graphs can be used to compute min surfaces
- Visibility must be known
   Specifies version in the second sec
- Advantages
   high accuracy
   capture edges, corners
   convergence guaranteed





# **Exploiting Silhouettes**

Traditional techniques
 3D model only inside silhouettes

- Exact silhouettes
  - ♥ coherent framework
  - high accuracy at silhouettes
  - ♥ robust
  - but computationally expensive
    - (4D graph)
  - lacks detail (can be improved)



input



# **Exploiting Silhouettes**

• Exact silhouettes 🔄 more detail slightly less robust silhouettes handled separately better tradeoff but computationally expensive (2 hours +)



input

## **Multi-scale Approach**

- Optimizing only a narrow band
- Progressive refinement

input

About 10 to 30 minutes (and no exact silhouettes)

#### intermediate scales

result



# **Patchwork Approach**

 Build model piece by piece  $\clubsuit$  save memory and time belps with visibility  $\triangleleft$  scale up easily ♦ about 15 to 40 minutes can be improved by no exact silhouette by more complex implementation

patches





## **Challenges for the Future**

- Shinny materials: metal, porcelain...
- Choice of the parameters
   Controlled setup is ok.
   Difficulties: handheld camera, outdoor,...
- Visibility and graph cut
   Restricted setup
   Only at "large scale"
   Promising direction: iterative graph cuts

## Outline

- Context and Basic Ideas
- Consistency and Related Techniques
- Regularized Methods
- Conclusions

## **Going Underwater**

Main point to adapt: consistency function
 More robust matching
 "Inverting" perturbations

• Thin features (plants, seaweed...)

Objects in motion

## Conclusions

- 3D reconstruction is a hard problem.
- Solutions exist.
   Need to be adapted to specific environment.
- Consistency carries information and adds detail.
   Segularization removes noise and fills holes.
- Start with a simple solution.
   A complete failure is not a good sign.

# Thank you



Presentation based on Sylvain Paris work