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ENERGY-MINIMIZATION METHODS REGULARIZED ENERGY FUNCTION

Denoising example

Regularized energy function
w A o
Eu) = [lAu — b7 + L(u)

/ \

data fitting term regularization term

x Global
\Opn'mum

\

A > () - balancing parameter, A - linear operator
b - observed data

* Model design: min F{(w)
U Applications: denoising, deblurring, discrete tomography,

classification, zooming, inpainting...
* Minimization process

REGULARIZED ENERGY FUNCTION REGULARIZED ENERGY FUNCTION
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fx) = 514z - b]f*
i A
Eflu) = 5

Au— b+ Ur(u)
Quadratic function, convex, but often not strictly convex.

Example. Rudin et al. (1992) introduce the Total variation

{ Sae ™ . . based regularization for denoising problem, where
! S N
RN Vi) = 3 IVl
s : e —
REGULARIZED ENERGY FUNCTION IMAGE DENOISING

Discrete gradient

¥ )l = ¥ {ul

Noise clearly visible in an image from a digital camera.
Wikipedia
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IMAGE DENOISING AND DEBLURRING

Image noise is random (not present in the object imaged)
variation of brightness or color information in images.

Random variation in the number of photons reaching the
surface of the image sensor at same exposure level

may cause noise (photon noise).

Incorrect lens adjustment or motion during the image

acquisition may cause blur.

b - observed image,

Degradation model: & = Au* + o where

#”- original image,
A - linear operator (blur) and - noise.

IMAGE DENOSING AND DEBLURRING

The restoration problem can be formulated as a regularized problem:

N
(A 2 7
min (guf’lu— bll* + E ‘P(HVWH)) .

i=1
Minimization has several challenges:
large-scale problem, the objective function is non-differentiable
at points where || V(x;)|| = 0, and it is convex only when ¢ is convex.
Several algorithms have proposed:

« Projection algorithm (PRO), Chambolle (2004), for TV only,

« Primal-Dual Hybrid Gradient (PDHG), Zhu and Chan (2008),
for TV only,

« Fast Total Variation de-convolution (FTVd), Wang et al. (2008),
for TV only,

« Spectral Gradient Based Optimization, Lukic et al. (2011).

POTENTIAL FUNCTIONS
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IMAGE DENOISING

Restoration problem: denoising.

The degradation model is given by

b=u"+w

Regularized energy-minimization model:

by N
min | =8+ (|| Vil

i=1

IMAGE DENOISING
Reconstructions by the SCG based method.

10dB 15.68d0
‘ n0isy image ‘ w1 (TV) | od ‘ @7
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Signal to Noise Ratio (dB): SNR — 10 ¥ log, W .
lu™ — o
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DISCRETE TOMOGRAPHY

DISCRETE TOMOGRAPHY
Tomography deals with the reconstruction of images, or slices of Tomography deals with the reconstruction of images from a number
3D volumes, from a number of projections obtained by of projections.
penetrating waves through the considered object.
Applications in radiology, industry, materials science etc. vy 2 u3 u‘a ,-”'
14
7. /aw‘a
wp | U
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Reconstruction problem: A1t = b, where the projection
matrix A € RM*Y and vector b € RM are given.

CT scanner

DISCRETE TOMOGRAPHY DISCRETE TOMOGRAPHY

For binary tomography, Schile et al. (2005) introduce

DT deals with reconstructions of images that contain a small
the convex-concave regularization:

number of gray levels from a number of projections:

w€ {p, po, ..., ,uk}“: k> 2. 1{(1)11% (Epr(w; A) +plu, 7 —wu)), p>0
uel0,1]V )

Main issue in DT: how to provide good quality reconstructions where 7 = [LL....1J".

from as small number of projections as possible.

In general case:

DT reconstruction problem can be formulated as a constrained i

minimization problem: min Eprw(w; A, p) = Epp(u; A) + p Z Wiu), Xp>0
u

P 1
Aw— 0% | 5 Z 1V (u;)
T

where A = {p, po... ., I},

2

. il
min Epp(u; A) == =
wEAN 2

where [}/ is a multi-well potential function. The proposed energy,
Eprw s differentiable and quadratic.

DISCRETE TOMOGRAPHY DISCRETE TOMOGRAPHY

Experimental results

Construction of the multi-well potential function. o

i riz s

Phantom (original) images, N=256x256. 5

Reconstructions by the proposed method
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DISCRETE TOMOGRAPHY DISCRETE TOMOGRAPHY ON TRIANGULAR GRID

Minimization strategies

Stochastic approach Deterministic approach
(Simulated Annealing) (gradient based)

Reconstructions from

3 projections and
6 projections.

DISCRETE TOMOGRAPHY DEFUZZIFICATION

DT ON TRIANGULAR GRID The optimal defuzzification by feature distance minimization:

3 projections 6 projections

D(S) = urg { min {/1’<’(D\:’AX'>_(I)\/\IS”’):\}‘
XeP(H)

An example for feature-vector representation of the fuzzy set S:

D(S) — |wn

DEFUZZIFICATION
Fuzzy segmented image of Crisp
bone (close to an implant), —_— image
obtained by light microscopy.

Loy \; wp P(S), wy A(S). weC
N
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reconstructions

DEFUZZIFICATION LITERATURE
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