

OUTLINE		

ENERGY-MINIMIZATION METHODS

REGULARIZED PROBLEMS

IMAGE DENOISING

DISCRETE TOMOGRAPHY

DEFUZZIFICATION

Degradation model:
$$b=Au^{+}+\omega$$
 where

- b observed image, $\quad u^*\text{-}$ original image,
- A linear operator (blur) and $\,\omega$ noise.

$$\min_{u} \left(\frac{\lambda}{2} ||Au - b||^2 + \sum_{i=1}^{N} \varphi(||\nabla u_i||) \right) \,.$$

Minimization has several challenges:

large-scale problem, the objective function is non-differentiable at points where $||\nabla(u_i)|| = 0$, and it is convex only when φ is convex. Several algorithms have proposed:

- Projection algorithm (PRO), Chambolle (2004), for TV only,
 Primal-Dual Hybrid Gradient (PDHG), Zhu and Chan (2008),
- for TV only,
- Fast Total Variation de-convolution (FTVd), Wang et al. (2008), for TV only,
- Spectral Gradient Based Optimization, Lukic et al. (2011).

Restoration problem: denoising.

The degradation model is given by

$$b = u^* + \omega$$
 .

Regularized energy-minimization model:

$$\min_{u} \left(\frac{\lambda}{2} ||u - b||^2 + \sum_{i=1}^{N} \varphi(||\nabla u_i||) \right)$$

DISCRETE TOMOGRAPHY

Tomography deals with the reconstruction of images, or slices of 3D volumes, from a number of projections obtained by penetrating waves through the considered object.

Applications in radiology, industry, materials science etc.

2015.07.15.

THANK YOU FOR YOUR ATTENTION!