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* Shape

» Shape features

+ Skeleton

» Skeleton-like shape features
 Skeletonization

+ Applications

Shape

Shape is a fundamental concept in computer
vision.

It can be regarded as the basis for high-level
image processing stages concentrating on
scene analysis and interpretation.
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G.W. Awcock, R. Thomas (1996)

Shape representation techniques

+ to apply a transform in order to represent
an object in terms of the transform
coefficients,

* to describe the boundary that surrounds an
object,

* to describe the region that is occupied by
an object.
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ES Skeleton
3.% * result of the Medial Axis Transform: object

points having at least two closest boundary
points
* praire-fire analogy: the boundary is set on
fire and skeleton is formed by the loci where
the fire fronts meet and quench each other
« the locus of the centers of all the maximal
inscribed hyper-spheres
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Skeleton in 2D Skeleton in 3D

3D skeletons generally contain 2D segments
(i.e., surface patches)

SZEGEDI TUDOMANYEGYETEM
epartment of Iniage Processing and Computer Graphics
SZEGEDI TUDOMANYEGYETEM
\partment of Iniage Processing and Computer Graphics

S%)
)

Skeleton Skeleton-like shape features in 2D
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* represents
—the general form of an object,
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— the topological structure of an object, and centerline
— local object symmetries.
* invariant to
— translation, J\ ﬂ
@ — rotation, and @ topological
— (uniform) scale change. kernel

 simplified and thin.
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Skeleton-like shape features in 3D Skeleton-like shape features in 3D
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Skeleton-like shape features in 3D
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Skeleton-like shape features in 3D

centerline

branch-point

Skeleton-like shape features in 3D
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Skeletonization techniques

« distance transform
» Voronoi diagram

* thinning

Distance transform

Input:
Binary array A containing feature elements

(1’s) and non-feature elements (0’s).
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Output:
Distance map B: non-binary array containing
the distance to the closest feature element.
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Distance transform

.'

distance map

feature mask
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Distance transform
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distance mapping

Input:

Binary array A=[a (i,j)]of
size n1xn2 containing
feature elements (1’s) and
non-feature elements (0’s)

Output:

Distance map B =[b (i, j)]
is a non-binary array
containing the distance to
the closest feature element

G. Borgefors (1984)

for j=1 to n2 do
if a(i,j)=1 then b(i,j)=0
else b(i,j)=00
remark forward scan
for i=1 to nl do
for j=1 to n2 do
b(i,j)=min{
b(i-1,j-1)+d2,
bli-1,j )+di,
b(i-1,j+1)+d2,
b(i ,j-1)+d1,
LICOE I

remark backward scan
for i=nl downto 1 do
for j=n2 downto 1 do
b(i,j)=min{
bi ,j )
b(i ,j+1)+di,
b(i+1,j-1)+d2,
b(i+1,j )+di,
b(i+1,j+1)+d2
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Linear time distance mapping

forward scan

backward scan
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Linear time distance mapping

forward scan

uE

backward scan

best choice: d1=3, d2=4
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Linear time distance mapping Linear time distance mapping
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Distance-based skeletonization Distance-based skeletonization
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1. Calculate the distance map from
the background
(i.e., all zeroes in the input binary
image are feature points)

e Processing a
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2. Detect ridges (i.e., local maxima)

original binary image distance map
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Distance-based skeletonization

sing and Computer Graphics
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detected ridges

Voronoi diagram

Input:
Set of points (generating poins)

+ Output:

the partition of the space into
cells so that each cell contains
exactly one generating point
and the locus of all points
which are closer to this
generating point than to others.
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Voronoi diagram
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a cell (convex polyhedron) of a 3D Voronoi diagram
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incremental construction O(n)

Voronoi diagram
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merging'

divide and conquer O(n logn)

Voronoi diagram — skeleton

rocessing and Computer Graphics
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Voronoi diagram — skeleton
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If the density of boundary points goes to infinity,
then the corresponding Voronoi diagram converges
to the skeleton.
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Voronoi skeleton

original 3D object Voronoi skeleton

M. Styner (UNC, Chapel Hill)
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Thinning algorithms

repeat

remove ,deletable” points
from the actual binary image

until no points are deleted

]» one iteration step
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degrees of freedom:
— which points are regarded as ,deletable”?
— how to organize one iteration step?
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Topology preservation in 2D

L object
counter
example
—_ ~
original
boundary
| cavity a i(:f;éz)the
\ background

Topology preservation in 3D
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created
counter
example merged
—_—
@ destroyed
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Shape preservation

yes
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"If you would know what the
Lord God thinks of money,
you have only to look at
those to whom he gives it."
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Some concepts

pis aline-end point
if it is adjacent to just one object point

o
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Some concepts

p is a border point ifitis (4/6-)adjacent to at
least one non-object point

don't care (either O or 1)

border point of type N

border point of type U
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Some concepts

An object-point is simple if its deletion preserves
the topology of the picture.

Examples of non-simple points in 2D pictures:

e 1

deleting splitting creating
an object an object a cavity
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Some concepts

Examples of non-simple points in 3D pictures:
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splitting an object creating a cavity  creating a hole
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Some concepts

Simpleness is a local property:
It depends on the 3x3 / 3x3x3 neighborhood
of the point in question.

|

It can be decided by using a precalculated
LUT (look-up table) of size 128 bit / 8 Mbyte.
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A 2D parallel
thinning algorithm

repeat
for each directions N,E,S, and W do
an object point is deletable if itis
- a border point according to the actual direction,
- not a line-end point, and
- simple
delete all deletable points simultaneously
until no points are deleted
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A. Rosenfeld (1975)

A 2D parallel
thinning algorithm
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A. Rosenfeld (1975)

A 2D parallel
thinning algorithm
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A. Rosenfeld (1975)
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A 3D sequential
curve-thinning algorithm

repeat
for each direction U,N,E,S,W, and D do
mark object point p if it is
- a border point according to the actual direction,
- not a line-end point, and
- a simple point
for each marked point q do
delete qifitis
- not a line-end point, and
- a simple point in the actual picture
until no points are deleted
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Palagyi et al. (2001)
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g4 A 3D sequential
=% curve-thinning algorithm
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Paléagyi et al. (2001)
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Thinning
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« allows centerline extraction in 3D

age Processin,
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» makes easy implementation possible

takes the least computational costs
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can be executed in parallel
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Medical applications

Tubular structures (e.g.,
blood vessels, airways)
are frequently found in
living organs.

They can be represented
by their centerlines
(extracted by 3D curve-
thinning algorithms).
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Cooperation with
Medical University Graz

assessment of laryngotracheal stenosis
assessment of infrarenal aortic aneurysm
unravelling the colon

SZEGEDI TUDOMANYEGYETEM

ipartment of Tnage Processing and Computer Graphics

)

E. Sorantin et al.

Assessment of laryngotracheal
stenosis

» Data from multirow
detector spiral CT

» Laryngo-Tracheal Tract
(LTT) segmentation
based on based on fuzzy
connectedness

* LTT centerline extraction

by 3D curve-thinning

Diameter estimation

based on the LTT cross-

sectional profile along

the centerline
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Assessment of laryngotracheal
stenosis
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Virtual colonoscopy
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Cooperation with
The University of lowa

Quantitative analysis of pulmonary airway trees
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Quantitative analysis of
pulmonary airway trees

Multi-detector
Row Spiral CT

512 x 512 voxels
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500 — 600 slices
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0.65 x 0.65 x 0.6 mm3
(almost isotropic)

Quantitative analysis of
pulmonary airway trees

lung
segmentation
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Quantitative analysis of
pulmonary airway trees
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centerline

identified branch-points

Quantitative analysis of
pulmonary airway trees
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branch partitioning

Quantitative analysis of
pulmonary airway trees
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centerline labeling

label propagation
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http://www.uiowa.edu/be-remarkable/index.html
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5 Quantitative analysis of
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52 pulmonary airway trees
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labeled tree

formal tree (in XML)
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Quantitative analysis of
pulmonary airway trees

Quantitative indices for tree branches

« length (Euclidean distance between the
parent and the child branch points)

< volume (volume of all voxels belonging to
the branch)

« surface area (surface area of all boundary
voxels belonging to the branch)

< average diameter (assuming cylindric
segments)

Quantitative analysis of
pulmonary airway trees

* The automated method for skeletonization, branch-
point identification and quantitative analysis of
tubular tree structures is robust, efficient, and highly
reproducible

* The method was validated in computer and
physical phantoms and in vivo CT scans of human
lungs.

 The validation studies demonstrated high
reproducibility of derived quantitative indices of the
tubular structures (p<<0.001).
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Tree matching
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functional residual capacity (FLC) total lung capacity (TLC)
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Tree matching

It is based on identified branch-points in the centerline.
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