
1

From Eiffel and Design by Contract
to

Trusted Components

Bertrand Meyer

ETH Zürich / Eiffel Software

Budapest, December 2003

2

My background

Since 1985: Founder (now Chief Architect) of Eiffel
Software, in Santa Barbara. Produces advanced tools and
services to improve software quality, based on Eiffel ideas

Since 2001: Professor of Software Engineering at ETH
Zürich

Also adjunct professor at Monash University in Australia
(since 1998)

3

Software engineering

The collection of processes, methods, techniques, tools
and languages for developing quality operational software.

4

The challenge

What does it take to bring software engineering to the next
level?

5

Today’s software is often good enough

Overall:
Works most of the time
Doesn’t kill too many people
Negative effects, esp. financial, are diffuse

Significant improvements since early years:
Better languages
Better tools
Better practices (configuration management)

6

Eiffel

Method, language and environment

Fully object-oriented; not a hybrid with other approaches

Focuses on quality, especially reliability, extendibility and
reusability

Emphasizes simplicity

Used for many mission-critical projects in industry

International standard in progress through ECMA

7

Large Eiffel projects in industry

AXA Rosenberg Chicago Board of Trade

Boeing

Lockheed MartinAMP Investments
EMC

Hewlett Packard Cap Gemini Ernst & YoungEnvironmental Protection Agency

Northrop GrummanENEASwedish National Health Board

8

Environment: the two offerings from Eiffel
Software

EiffelStudio (“Classic Eiffel”)
Windows, Unix, Linux, VMS, .NET ...

ENViSioN! for Visual Studio .NET

Projects are compatible

9

EiffelStudio

Serialization

EiffelStore

Executable
system

C compilation

Jitter
Eiffel compilation

Browsing, fast compiling
(Melting Ice™), debugging,
diagrams, metrics...

EiffelBuild

Multiplatform GUI library

User
classesEiffelBase GUI builder

Persistent
objects

General library

EiffelVision

WEL Ansi C
Win32 GUI

EiffelWeb EiffelStudio
Web scripting

IL
EiffelMath

Advanced numerics Eiffel
RuntimeEiffelNet

Databases
(Rel, OO)Networking

External
C/C++/Java

.NET
AssembliesEiffelCOM

10

EiffelStudio: Melting Ice™ Technology

Fast recompilation: time depends on size of change, not
size of program
“Freeze” once in a while
Optimized compilation: finalize.

11

Melting Ice Technology

YOUR SYSTEM

MELTED

FROZEN
Execution,
browsing,
debugging,

documentation ...

MELTING

FREEZING
Machine code
(from C code) EIFFELSTUDIO

12

Portability

Full source-code portability across:
Windows NT, 2000, XP
Windows 98, Me
Solaris, other commercial Unix variants
Linux
BSD (Berkeley System Distribution)
VMS

13

Portable graphics

EiffelVision 2 library:
Simple programming model
Produce impressive GUI simply and quickly
Easy to learn
Completely portable across supported platforms
Rich set of controls, matches users’ most demanding
needs
Adapts automatically to native look & feel

14

EiffelVision layers

EiffelVisionEiffelVision
WEL GEL etc.

15

Openness to other approaches

Extensive mechanisms to support C and C++ constructs

Java interface

On .NET, seamless integration with C#, Visual Basic etc.

16

Special syntax for C/C++ support

classclass
RECT_STRUCTRECT_STRUCT

feature feature ---- AccessAccess
x (x (a_structa_struct: POINTER): INTEGER: POINTER): INTEGER isis

externalexternal
"C "C structstruct RECT access x use <RECT access x use <windows.hwindows.h>">"

endend
feature feature ---- SettingsSettings

set_xset_x ((a_structa_struct: POINTER; : POINTER; a_xa_x: INTEGER): INTEGER) isis
externalexternal

"C "C structstruct RECT access x type RECT access x type intint use <use <windows.hwindows.h>">"
endend

endend

17

Performance

Optimizations are automatic: Inlining, dead code
removal…

Garbage collection takes care of memory issues

Performance matches the demand of the most critical
industry applications

18

Eiffel mechanisms

Classes, objects, ...
Single and multiple inheritance
Inheritance facilities: redefinition, undefinition, renaming
Genericity, constrained and unconstrained
Safe covariance
Disciplined exception handling, based on principles of Design by
Contract
Full GC
Agents (power of functional programming in O-O!)
Unrestricted streaming: files, databases, networks...

19

Genericity

Since 1986
(First time genericity & inheritance combined)

Unconstrained

LIST [G]
e.g. LIST [INTEGER], LIST [PROFESSOR]

Constrained

HASH_TABLE [G ―> HASHABLE]

VECTOR [G ―> NUMERIC]

20

Multiple inheritance

RESTAURANT_
CAR

RESTAURANTTRAIN_CAR

21

Development: the traditional model

Separate tools:
Programming environment
Analysis & design tools, e.g. UML

Consequences:
Hard to keep model, implementation, documentation
consistent
Constantly reconciling views
Inflexible, hard to maintain systems
Hard to accommodate bouts of late wisdom
Wastes efforts
Damages quality

22

Development: the Eiffel model

Seamless development:

Single set of notation, tools, concepts, principles throughout
Eiffel is as much for analysis & design as for implementation
& maintenance
Continuous, incremental development
Keep model, implementation and documentation consistent
Reversibility: can go back and forth
Saves money: invest in single set of tools
Boosts quality

23

Seamless development (1)

TRANSACTION, PLANE,
CUSTOMER, ENGINE...Specification

Example classes

24

Seamless development (2)

Design

Specification
TRANSACTION, PLANE,
CUSTOMER, ENGINE...

STATE, USER_COMMAND...

Example classes

25

Seamless development (3)

Implementation

Design

Specification
TRANSACTION, PLANE,
CUSTOMER, ENGINE...

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

Example classes

26

Seamless development (4)

Implementation

V & V

Design

Specification
TRANSACTION, PLANE,
CUSTOMER, ENGINE...

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

TEST_DRIVER, ...

Example classes

27

Seamless development (5)

Implementation

V & V

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

TEST_DRIVER, ...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

Genera-
lization

AIRCRAFT, ...

28

Eiffel for analysis

Precondition

-- Specified only.

-- not implemented.

Postcondition

deferred class VAT inherit
TANK

feature
in_valve, out_valve: VALVE
fill is

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Class
invariant

29

Seamless development

Implementation

V & V

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

TEST_DRIVER, ...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

Genera-
lization

AIRCRAFT, ...

30

Reversibility

S

V

D
I

S

G

31

Inheritance structure (in EiffelStudio)

32

Design by Contract™

Get things right in the first place
Automatic documentation
Self-debugging, self-testing code
Get inheritance right
Give managers the right control tools

33

Applications of contracts
Analysis, design, implementation:

Get the software right from
the start

Testing, debugging, quality assurance

Management, maintenance/evolution

Inheritance

Documentation

34

Design by Contract

A discipline of analysis, design, implementation,
management

35

A view of software construction

Constructing systems as structured collections of
cooperating software elements — suppliers and clients —
cooperating on the basis of clear definitions of obligations
and benefits.

These definitions are the contracts.

36

Design by Contract (cont’d)

Every software element is intended to satisfy a certain goal, for the
benefit of other software elements (and ultimately of human users).

This goal is the element’s contract.

The contract of any software element should be
• Explicit.
• Part of the software element itself.

37

A human contract

Client

Supplier

(Satisfy precondition:)
Bring package before
4 p.m.; pay fee.

(Satisfy postcondition:)
Deliver package by
10 a.m. next day.

OBLIGATIONS

(From postcondition:)
Get package delivered
by 10 a.m. next day.

(From precondition:)
Not required to do
anything if package
delivered after 4 p.m.,
or fee not paid.

BENEFITSdeliver

38

Properties of contracts

A contract:
• Binds two parties (or more): supplier, client.
• Is explicit (written).
• Specifies mutual obligations and benefits.
• Usually maps obligation for one of the parties into benefit for the

other, and conversely.
• Has no hidden clauses: obligations are those specified.
• Often relies, implicitly or explicitly, on general rules applicable to all

contracts (laws, regulations, standard practices).

39

A human contract

Client

Supplier

(Satisfy precondition:)
Bring package before
4 p.m.; pay fee.

(Satisfy postcondition:)
Deliver package by
10 a.m. next day.

OBLIGATIONS

(From postcondition:)
Get package delivered
by 10 a.m. next day.

(From precondition:)
Not required to do
anything if package
delivered after 4 p.m.,
or fee not paid.

BENEFITSdeliver

40

A class without contracts

class

ACCOUNT

feature -- Access

balance: INTEGER
-- Balance

Minimum_balance: INTEGER is 1000
-- Minimum balance

feature {NONE} -- Implementation of deposit and withdrawal

add (sum: INTEGER) is
-- Add sum to the balance (secret procedure).

do
balance := balance + sum

end

41

Without contracts (cont’d)

feature -- Deposit and withdrawal operations

deposit (sum: INTEGER) is
-- Deposit sum into the account.

do
add (sum)

end

withdraw (sum: INTEGER) is
-- Withdraw sum from the account.

do
add (– sum)

end

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum from the account?

do
Result := (balance - sum >= Minimum_balance)

end
end

42

Introducing contracts

class ACCOUNT

create

make

feature {NONE} -- Initialization

make (initial_amount: INTEGER) is
-- Set up account with initial_amount.

require
large_enough: initial_amount >= Minimum_balance

do
balance := initial_amount

ensure
balance_set: balance = initial_amount

end

43

Introducing contracts (cont’d)

feature -- Access

balance: INTEGER
-- Balance

Minimum_balance: INTEGER is 1000
-- Minimum balance

feature {NONE} -- Implementation of deposit and withdrawal

add (sum: INTEGER) is
-- Add sum to the balance (secret procedure).

do
balance := balance + sum

ensure
increased: balance = old balance + sum

end

44

With contracts (cont’d)

feature -- Deposit and withdrawal operations

deposit (sum: INTEGER) is
-- Deposit sum into the account.

require
not_too_small: sum >= 0

do
add (sum)

ensure
increased: balance = old balance + sum

end

45

With contracts (cont’d)

withdraw (sum: INTEGER) is
-- Withdraw sum from the account.

require
not_too_small: sum >= 0
not_too_big:

sum <= balance – Minimum_balance
do

add (– sum)
-- i.e. balance := balance – sum

ensure
decreased: balance = old balance - sum

end

46

The contract

Client

Supplier

(Satisfy precondition:)
Make sure sum is
neither too small nor
too big.

(Satisfy postcondition:)
Update account for
withdrawal of sum.

OBLIGATIONS

(From postcondition:)
Get account updated
with sum withdrawn.

(From precondition:)
Simpler processing:
may assume sum is
within allowable
bounds.

BENEFITSwithdraw

47

The imperative and the applicative

do

balance := balance - sum

ensure

balance = old balance - sum

PRESCRIPTIVE DESCRIPTIVE

How?

Operational

Implementation

Command

Instruction

Imperative

What?

Denotational

Specification

Query

Expression

Applicative

48

With contracts (end)

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum from the
-- account?

do
Result := (balance - sum >= Minimum_balance)

end

invariant

not_under_minimum: balance >= Minimum_balance

end

49

The class invariant

Consistency constraint applicable to all instances of a
class.

Must be satisfied:
• After creation.
• After execution of any feature by any client.

(Qualified calls only: a.f (...))

50

Lists with cursors

before after

count+1

Valid cursor positions

item

0 1 count

51

From the invariant of class LIST

Valid cursor
positions

52

Applications of contracts

Analysis, design, implementation:
Get the software right from
the start

Testing, debugging, quality assurance

Management, maintenance/evolution

Inheritance

Documentation

53

Contracts and documentation

Rich documentation produced automatically from class text

Available in text, HTML, Postscript, RTF, FrameMaker and
many other formats

Numerous views, textual and graphical

54

Contracts as automatic
documentation

Demo

LINKED_LIST Documentation,
generated by EiffelStudio

55

Contracts for analysis

Precondition

-- Specified only.

-- not implemented.

Postcondition

deferred class VAT inherit
TANK

feature
in_valve, out_valve: VALVE
fill is

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Class
invariant

56

Contracts for testing and debugging

Contracts express implicit assumptions behind code
A bug is a discrepancy between intent and code
Contracts state the intent!
In EiffelStudio: select compilation option for run-time
contract monitoring. Can be set a system, cluster, class
level.
May disable monitoring when releasing software
A revolutionary form of quality assurance

57

Contract monitoring

A contract violation always signals a bug:
Precondition violation: bug in client
Postcondition violation: bug in routine

58

Contracts and inheritance: invariants

Invariant Inheritance rule:
• The invariant of a class automatically includes the invariant

clauses from all its parents,
“and”-ed.

Accumulated result visible in flat and interface forms.

59

Contracts and inheritance

r is
require

α
ensure

β

C A
a1: A

a1.r (…)
…

D
Correct call:

if a1.α then
a1.r (...)

-- Here a1.β holds.
end

B r is
require

γ
ensure

δ

60

Assertion redeclaration rule

When redeclaring a routine:
• Precondition may only be kept or weakened.
• Postcondition may only be kept or strengthened.

61

Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by default), or

require else new_pre
ensure then new_post

Resulting assertions are:
• original_precondition or new_pre
• original_postcondition and new_post

62

Principles in the Eiffel method

Design by Contract
Abstraction
Information hiding
Seamlessness
Reversibility
Open-Closed principle
Single choice principle
Single model principle
Uniform access principle
Command-query separation principle
Option-operand separation principle
Style matters

63

Single-model principle

All the information about a system
should be in the system‘s text

Automatic tools extract various views:

• Interface
• Implementation
• Inheritance structure
• Client-supplier structure
• Operations (features)
• etc.

64

From Eiffel and Design by Contract...

... to Trusted Components

65

Today’s software is often good enough

Overall:
Works most of the time
Doesn’t kill too many people
Negative effects, esp. financial, are diffuse

Significant improvements since early years:
Better languages
Better tools
Better practices (configuration management)

66

From “good enough” to good?

Beyond “good enough”, quality is economically bad
He who perfects, dies

Actual

Optimal

Quality

1
2 3 4

Time

Release

67

From “good enough” to good?

Beyond “good enough”, quality is economically bad
He who perfects, dies

Actual

Optimal

Quality

1
2

3
4

Release

Time

68

The economic argument

Stable system:
• Sum of individual optima = Global optimum

Non-component-based development:
• Individual optimum = “Good Enough Software”
• Improvements: I am responsible!

Component-based development:
• Interest of both consumer and producer: Better components
• Improvements: Producer does the job

69

Quality through reuse

The good news:

Reuse scales up everything

70

Quality through reuse

The good news:

Reuse scales up everything

The bad news:

Reuse scales up everything

71

Software design in the future

Component-based for
• Guaranteed quality
• Faster time to market
• Ease of maintenance
• Standardization of software practices
• Preservation of know-how

72

Trusted components

Confluence of

• Quality engineering
• Reuse

73

Hennessy (Stanford)

“Most of the improvement in the reliability of computer
systems has come from improvement in the basic
components”

“You’ll see ever increasing portions of the effort devoted to
design and verification”

74

Component quality: the inevitable issue

The key issue
• Bad-quality components are major risk

Deficiencies scale up, too

• High-quality components could transform the state of the
software industry (if it wanted to — currently doesn’t)

75

Where to focus effort?

Compilers, operating systems

Basic components

Applications

Specialized components

76

Perfectionism

Component design should be Formula-1 racing of
software “engineering”.

In component development, perfectionism is good.

77

Our experience: Eiffelbase

Collection classes (“Knuthware”)

Consistency principle

Strict design principles: command-query separation,
operand-option separation, taxonomy, uniform access...

Strict interface and style rules

78

Eiffelbase hierarchy

CONTAINER

BOX

FINITE INFINITE

BOUNDED UNBOUNDED

FIXED RESIZABLE

COLLECTION

BAG SET

TABLE ACTIVE SUBSET

DISPENSERINDEXABLE CURSOR_
STRUCTURE SEQUENCE

TRAVERSABLE

HIERAR_
CHICAL LINEAR

BILINEAR

*

* * *

*

*

*

*

* *

* * * * * *

* * * * * *

COUNTABLE
*

79

Trusted Components:
how to get there

Low road:
• Component Certification

Component Certification Center
• Component Quality Model

High road:
• Proofs of correctness

80

A Component Certification Center

Principles

Methods and processes

Standards: Component Quality Model

Services for component providers and component
consumers

81

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

82

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

A.1 Some reuse attested
A.2 Producer reputation
A.3 Published evaluations

83

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

B.1 Examples
B.2 Usage documentation
B.3 Preconditioned
B.4 Some postconditions
B.5 Full postconditions
B.6 Observable invariants

84

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

C.1 Platform spec
C.2 Ease of use
C.3 Response time
C.4 Memory occupation
C.5 Bandwidth
C.6 Availability
C.7 Security

85

Contract levels

1. Type

2. Functional specification

3. Performance specification

4. Quality of Service

(Source: Jézéquel, Mingins et al.)

86

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

E.1 Portable across platforms
E.2 Mechanisms for addition
E.3 Mechanisms for redefinition
E.4 User action pluggability

87

Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

D.1 Precise dependency doc
D.2 Consistent API rules
D.3 Strict design rules
D.4 Extensive test cases
D.5 Some proved properties
D.6 Proofs of preconditions,

postconditions & invariants

88

Proof technology and formal methods

Constant advances in recent years

Most applications: life-critical systems in transportation,
defense etc. Example: security system of Paris Metro
METEOR line, using the B method

89

Formal methods and reuse

Components should be good

Proofs should be economical!

90

“Proving classes”

EiffelBase libraries (fundamental data structures and
algorithms):

Classes are equipped with contracts

“Proving a class” means proving that the implementation
satisfies the contracts

91

Scope of our work at ETH: basics

Help move software technology to the next level through
• Trusted Components
• Advanced O-O techniques
• Teaching (including introductory)

Approaches of special interest
• Eiffel
• .NET
• B

92

Scope of our work at ETH: other

Journal of Object Technology JOT
www.jot.fm

Numerous workshops and conferences

LASER (Laboratory for Applied Software Engineering
Research); summer school starting September 2004

93

Teaching introductory programming today

Long, prestigious tradition of teaching programming at ETH
Ups and downs of high-tech economy
Widely diverse student motivations, skills
Some have considerable operational knowledge

• New forms of development: “Google-and-Paste” programming

Short-term pressures (e.g. families), IT industry fads

The “Bologna process”

94

The objectives

Educate students so that they will:

Understand today’s software engineering.
Become competent professionals.
Find work and have a successful career.

95

“Outside-in”

The key skill that we should convey: abstraction

Teach, don’t preach.

Start from libraries
“Progressive opening of the black boxes”, “Inverted Curriculum”
From programmer to producer
Not bottom-up or top-down; outside-in.

Students are able, right from the start, to “program” impressive and
significant applications.

96

My first program

class TOUR inherit
TRANSPORT

feature

explore is
-- Prepare
-- and animate
-- route

do
Paris.display
Louvre.spotlight
Line8.highlight
Route1.animate

end
end

Text to input

97

Summary

● Bring every one of your developers to the level of your
best developers

● Bring every one of your development days to the level of
your best days

● Open, portable, reusable, flexible, efficient

98

For info

“Object-Oriented Software Construction”, 2nd edition
Prentice Hall

http://www.eiffel.com

http://se.inf.ethz.ch

http://www.inf.ethz.ch/~meyer

	From Eiffel and Design by ContracttoTrusted Components
	My background
	Software engineering
	The challenge
	Today’s software is often good enough
	Eiffel
	Large Eiffel projects in industry
	Environment: the two offerings from Eiffel Software
	EiffelStudio
	EiffelStudio: Melting Ice™ Technology
	Melting Ice Technology
	Portability
	Portable graphics
	EiffelVision layers
	Openness to other approaches
	Special syntax for C/C++ support
	Performance
	Eiffel mechanisms
	Genericity
	Multiple inheritance
	Development: the traditional model
	Development: the Eiffel model
	Seamless development (1)
	Seamless development (2)
	Seamless development (3)
	Seamless development (4)
	Seamless development (5)
	Eiffel for analysis
	Seamless development
	Reversibility
	Inheritance structure (in EiffelStudio)
	Design by Contract™
	Applications of contracts
	Design by Contract
	A view of software construction
	Design by Contract (cont’d)
	A human contract
	Properties of contracts
	A human contract
	A class without contracts
	Without contracts (cont’d)
	Introducing contracts
	Introducing contracts (cont’d)
	With contracts (cont’d)
	With contracts (cont’d)
	The contract
	The imperative and the applicative
	With contracts (end)
	The class invariant
	Lists with cursors
	From the invariant of class LIST
	Applications of contracts
	Contracts and documentation
	Contracts as automatic documentation
	Contracts for analysis
	Contracts for testing and debugging
	Contract monitoring
	Contracts and inheritance: invariants
	Contracts and inheritance
	Assertion redeclaration rule
	Assertion redeclaration rule in Eiffel
	Principles in the Eiffel method
	Single-model principle
	From Eiffel and Design by Contract...
	Today’s software is often good enough
	From “good enough” to good?
	From “good enough” to good?
	The economic argument
	Quality through reuse
	Quality through reuse
	Software design in the future
	Trusted components
	Hennessy (Stanford)
	Component quality: the inevitable issue
	Where to focus effort?
	Perfectionism
	Our experience: Eiffelbase
	Eiffelbase hierarchy
	Trusted Components:how to get there
	A Component Certification Center
	Component Quality Model
	Component Quality Model
	Component Quality Model
	Component Quality Model
	Contract levels
	Component Quality Model
	Component Quality Model
	Proof technology and formal methods
	Formal methods and reuse
	“Proving classes”
	Scope of our work at ETH: basics
	Scope of our work at ETH: other
	Teaching introductory programming today
	The objectives
	“Outside-in”
	My first program
	Summary
	For info

