
Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Verification of Functional Program
Components1

Zoltán Horváth Tamás Kozsik Máté Tejfel

{hz,kto,matej}@inf.elte.hu
http://people.inf.elte.hu/{hz,kto,matej}/

Dept. of Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

NJSZT Szoftvertechnológiai Fórum, 7th February, 2007

1
Supported by ELTE IKKK (GVOP-3.2.2-2004-07-0005/3.0) and Stiftung Aktion Österreich–Ungarn (66öu2).

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Outline

1 Introduction and motivation

2 Foundations

3 Temporal properties of functional programs
Object abstraction
Subtype marks expressing type invariants

4 CPPCC: Correctness of mobile components

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Why functional programming?

Clear program text – close to mathematical specification

No assignments

No side effects

Relatively easy to prove correctness

Ideal for trusted code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Motivation for using formal methods

Sound concepts needed for distributed and parallel
programs

Verification of safety critical applications

Safe usage of software components

Our focus: machine verifiable mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Need for trusted mobile code

Our programs often use code (applets, plug-ins etc.) written by
somebody else.

Dangers:
Viruses, attacks
Security holes in operating systems
Programming failures in safety critical software (embedded
systems, control software of medical instruments)
Incomplete specifications, side effects

We need components with proven properties
Resource consumption
Security
Functionality

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

The Certified Proved-Property-Carrying Code
architecture (CPPCC)

Safe mobile code exchange with minimal run-time overhead.

Three main parties involved in the scenario:
1 Producer of the mobile code: adds proofs of properties
2 Receiver: executes code only after safety checks which

ensure that the code satisfies the requirements specified in
the receiver’s code

3 Certifying authority: reduces the work-load of the receiver,
performs verification static-time

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Overview of CPPCC

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Our results in the FunVer project

Extending Sparkle (the dedicated theorem prover for
Clean) with support for temporal properties

Expressing and proving temporal properties of a set of
processes written in Clean

Extending Clean dynamics with proven properties (CPPCC
prototype)

D-Clean (Distributed Clean)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Using the results

Potential for FP in software industry
Embedded systems (Hume)
Telecommunication (Erlang)
FP components integrated into complex systems

Moving results to mainstream languages / methodologies
C++, Java, B-method

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Concepts

Temporal properties about the states of distributed
programs, for example: (subtype) invariants

Formal proofs, machine verifiable by theorem provers
Mobile components

Mobile expressions (functional code), in the FP language
Clean + dynamics (Mobile Haskell, JoCaml, etc.)
Java Virtual Machine code

Property/proof carrying code architecture, type and
semantical checks

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Foundations

A formal model of programming is required
The properties of the model impose constraints

What applications can be developed
What is possible to prove
Our model: interleaving, branching-time temporal logic

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Properties of the formal model

Specification of problems and developing the solutions of
problems in case of parallel and distributed systems.

An extension of a relational model of non-deterministic
sequential programs

Provide tools for stepwise refinement of problems in a FP
approach

Use the concept of iterative abstract program of UNITY

The concept of solution is based on the comparison of the
problem as a relation and the (static) behaviour relation of
the program

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

UNITY-like temporal logic

Convenient operators
Safety (invariant, unless)
Progress (ensures, leads-to)
Initial and final states (init, fixed points)

Support for component-oriented approach
(Composing specifications and programs)

Example: resource scheduling

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Dining philosophers

:: Philo = Thinking | Hungry | Eating

For all i and j ,

¬
(

neighbours(i, j) ∧ philoi = Eating ∧ philoj = Eating
)

∈ inv

philoi = Thinking unless philoi = Hungry

philoi = Eating ensures philoi = Thinking

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Composing specifications and programs

Certain properties of a system can be computed from
properties of its components

If a statement is invariant in all components, then it is
invariant in the whole application
Ability to reason about a system

even if certain components are not known
only their properties are known

Components received as mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

A concept of state in pure functional languages

No destructive assignments, variables are constants

Advantage: referential transparency, equational reasoning,
the occurrences of the same expression have the same
value

I/O: single reference to environment, referential
transparency cannot be violated, environment represented
as series of pure values

State: abstract objects corresponding to series of values

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Proving invariants

To prove an invariant

one needs to check the initial value of objects and
calculate the weakest precondition for all atomic actions

for all atomic actions we should calculate the substitution of
the invariant using the state-transition function of the action

we should prove that all these wp-s hold, if the invariant
holds (the truth of the invariant is reserved by each action)

An unless property can be proved in a similar way, using
weakest precondition calculation (rewriting).
A property “P unless(S) Q” holds if for all t atomic steps of S:
P ∧ Q ⇒ wp(t , P ∨ Q)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Proving properties of communicating programs

Example: dining philosophers
one server process (resource scheduler)
several clients (resource consumers)

State transition: a next_event function (state transitions
are controlled by the server, a monitor-like solution)

From the point of view of verification we simulate the
program with a process_events function.

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

State space

:: Philo = Thinking | Hungry | Eating

Local state of a client: a value of type Philo

Local state of the server: a list of Philos,

State transition: if a philosopher changes its local state, the
server calculates the new local state values with the
next_event function

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

State transition

next_event:: [Philo] Int -> ([Int],[Philo])

Arguments:

the local state of the server

the id of the client that changes its state

The result:

the ids of the clients that can start eating

the new local state of the server

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

The process_events function

Recursively calls the next_event function

process_events:: [Philo] [Int] -> [Philo]

process_events philos [] = philos

process_events philos [id]
| (id < 0) || (id >= length philos) = philos
= snd (next_event philos id)

process_events philos [id : ids]
philos = process_events philos [id]
= process_events philos ids

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Object abstraction

We can consider the values of the different philos
variables as different states of the same abstract object
(global state).

For this abstract object we can formalize and prove
temporal properties

Example property: a safety property (unless) in the
process_events function: if a client is hungry and its
right neighbour is eating, then these two philos do not
change state unless the neighbour starts thinking

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Formalisation of an “unless” property

eval philos -> eval ids ->
(i >= 0) -> (i < length philos) ->
[
(philos!!i == Hungry) /\

(philos!!(rightneighbour philos i) == Eating)
UNLESS(process_events philos ids)
(philos!!(rightneighbour philos i) == Thinking)
]

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Type system with subtype marks
Formal reasoning about properties

Combining lightweight and heavyweight tools

Lightweight: type system

Heavyweight: proof system

Programming language (SENYV)

Type system supporting subtype marks

Proof system adapted to subtype marks

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Subtype marks

Annotations attached to types

Denote type invariants

E.g. let S denote “sorted”

Expressing pre- and postconditions etc.

Insert :: Int -> List{S} -> List{S!}
Insert e Nil = Cons e Nil
Insert e (Cons x xs) =

if (e <= x)
(Cons e (Cons x xs))
(Cons x (Insert e xs))

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Semantics of subtype marks

Typing rules for subtype mark propagation
used by the type system
very simple typing rules: easy to use for an average
programmer

Bool-functions – used by the proof system

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Semantics of subtype marks (cont’d)

Each subtype mark corresponds to a predicate

Sparkle: Bool functions written in Clean

S :: !List -> Bool
S Nil = True
S (Cons x Nil) = True
S (Cons x xs=:(Cons y ys)) =

(x <= y) && (S xs)

S : List → L

S(list) = (S list = True)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Division of labour

Believe-me mark

Insert :: Int -> List{S} -> List{S!}
Insert e Nil = Cons e Nil
Insert e (Cons x xs) =

IfL (LessEq e x)
(Cons e (Cons x xs))
(Cons x (Insert e xs))

Sort :: List -> List{S}
Sort Nil = Nil
Sort (Cons x xs) = Insert x (Sort xs)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Sparkle theorem

Partial correctness of Insert

Insert :: Int -> List{S} -> List{S!}

∀e :: Int. ∀xs :: List.
(

xs = ⊥∨ S(xs)
)

→
(

Insert e xs = ⊥ ∨ S(Insert e xs)
)

[e::Int][xs::List]
(xs = _|_ \/ S xs)
-> (Insert e xs = _|_ \/ S (Insert e xs))

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Object abstraction
Subtype marks expressing type invariants

Current work

Subtype marks in C++ STL

Implement subtype marks with C++ TMP

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Correctness of mobile components

Dynamically download, link and execute code

Ensure the correctness of mobile code

Formal reasoning is preferred

Minimal client-side / run-time overhead

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Requirements on mobile code

It does not use too much resources

It does not read or modify data unauthorised

It implements the desired functionality

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Solutions

Full dynamic-time code verification just before the
application of the code (static, structural and type
correctness verification: well-formedness, data-flow
analysis for illegal memory access, type of instruction
arguments etc.)

Trusting in the code producer unconditionally (with using a
certificate mechanism, to check identity)

Trusting in code integrity and performing run-time
pattern-match for types (Clean dynamic)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

The Certified Proved-Property-Carrying Code
architecture (CPPCC)

Safe mobile code exchange with minimal run-time overhead.

Three main parties involved in the scenario:

1 Producer of the mobile code: adds proofs of properties
2 Receiver: executes code only after safety checks which

ensure that the code satisfies the requirements specified in
the receiver’s code

3 Certifying authority: reduces the work-load of the receiver,
performs verification static-time

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

CPPCC overview

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Example

Receiver: an application using resources

Mobile code: resource scheduler (dining philosophers)

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Transmission of verified mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Producing verified mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Certification of verified mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Executing the verified mobile code

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

CPPCC: B-method and Java bytecode

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Summary

We have extended an existing proof tool for Clean with
support for temporal properties and designed the proof
tactics necessary to manipulate them.

Subtype marks provide a way to annotate types with
invariants, and establish a co-operation between a type
checker and a proof system.

Certified Proved Property Carrying Code framework:
efficient verification of the correctness of mobile
components.

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

Introduction and motivation
Foundations

Temporal properties of functional programs
CPPCC: Correctness of mobile components

Summary

Related projects

Expressing and proving temporal properties of Clean
programs

Annotations for expressing subtype invariants

Design of Distributed Clean

Safe transformations: refactoring (Clean, Erlang)

Safe destructive update of data structures

Zoltán Horváth, Tamás Kozsik, Máté Tejfel Verification of Functional Program Components

	Introduction and motivation
	Foundations
	Temporal properties of functional programs
	Object abstraction
	Subtype marks expressing type invariants

	CPPCC: Correctness of mobile components
	Summary

