Presentation at Software Technology Forum Von Neumann Computer Society

development think process

KIT

Kyushu

Institute

of

Technology

Continuous Stretching of your Software Engineering Capability

A System Thinking for SW Process

Yoshihiro Akiyama (y.akiyama@ieee.org) Graduate School, Systems & Computer Science, and Center for Information, Communication, and Technology Education May 23th,2008

Agenda

Software is technology and enabler

Current Software Practice

"Proper Process" for Software

Stretching Individual Capability by PSP

Stretching Team and Management Capability by TSP

Communicating with others

Establishing Global Project Management

Conclusion

Trademarks and Service Marks

- The following are service marks of Carnegie Mellon University.
 - CMMISM
 - Team Software ProcessSM
 - TSPSM
 - Personal Software ProcessSM
 - PSPSM
- The following are registered trademarks of Carnegie Mellon University.
 - Capability Maturity Model[®]
 - CMM[®]
 - Capability Maturity Model[®] Integration
 - CMMI[®]

Software is Technology and the enabler

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

©2008 Kyushu Institute of Technology

Today

- *ICT* is rapidly advancing.
- SOA for more applications is progressing.
- Global project management is demanded but thin and short.
- Software evolution & maintenance (legacy) are long tail.
- Software engineers need to work on many methods, many applications, and many platforms.
- *High quality* is demanded wherever software is used.

Current Software Industry Performance

• Compared to other industries,

КТ

software performance is sometimes disappointed:

- Overall architecture is not established in early phase and not clean.
- Many times of delay must be negotiated.
- Ship date is rarely met.
- There are no warranties.
- Customers must pay significantly for the bugs after shipment.
- Large-scale projects are mostly troubled.

KIT

Especially Software Industry wants to say the Quality Objective shoud be

1Defect/KLOC → 1 Defect/MLOC!

However current software quality performance is

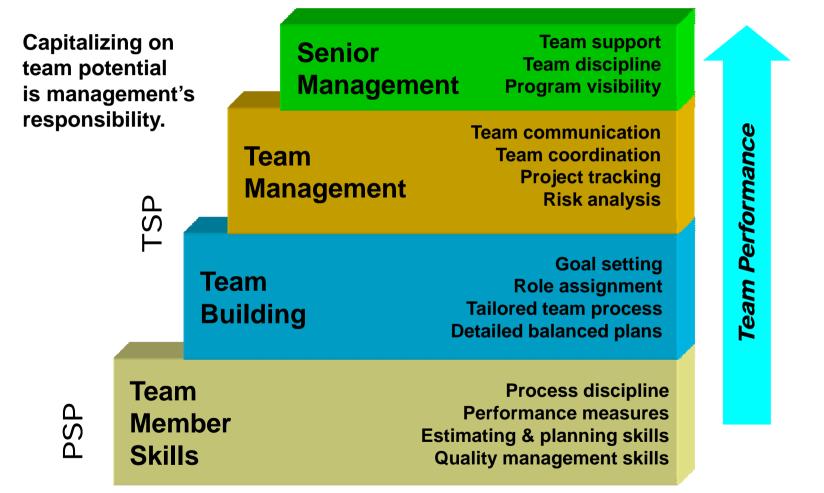
- More than 50% of total efforts is sometimes spent for testing.
- *Neither safe nor secure software* is produced.
- Unknown Quality of shipped software is usual.

"Desired" Proper Process for Software

A step by step to follow in order to produce high quality software <u>consistently</u> as planned:

- Framework for self managing individual,
- Framework for self directed team.
- How to Improve estimating and managing project work is included.

Optimizing


КТ

- Project resources, customer satisfaction, and quality
- Everywhere

Scalable

• Works, teams, and locations, users, and resources

Purpose of PSP and TSP: Building High-Performance Teams

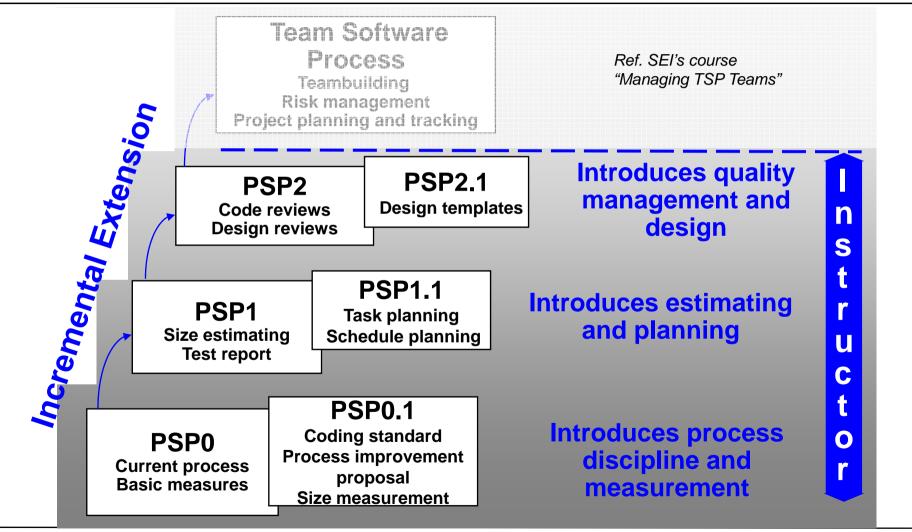
Reference: CMU/SEI's course "Managing TSP Teams"

Build High-Performance Individuals

٢	The TSP strateg is to improve performance fro the bottom up.	Tean	Team communication Team coordination Team coordination Project tracking Risk analysis			
		Team Buildin	Goal setting Role assignment Tailored team process Detailed and balanced plans	899		
•	This strategy starts with PSP training.	Team Member Skills	Process discipline Performance measures Estimating and planning skills Quality management skills	PSP		

Reference: CMU/SEI's course "Managing TSP Teams"

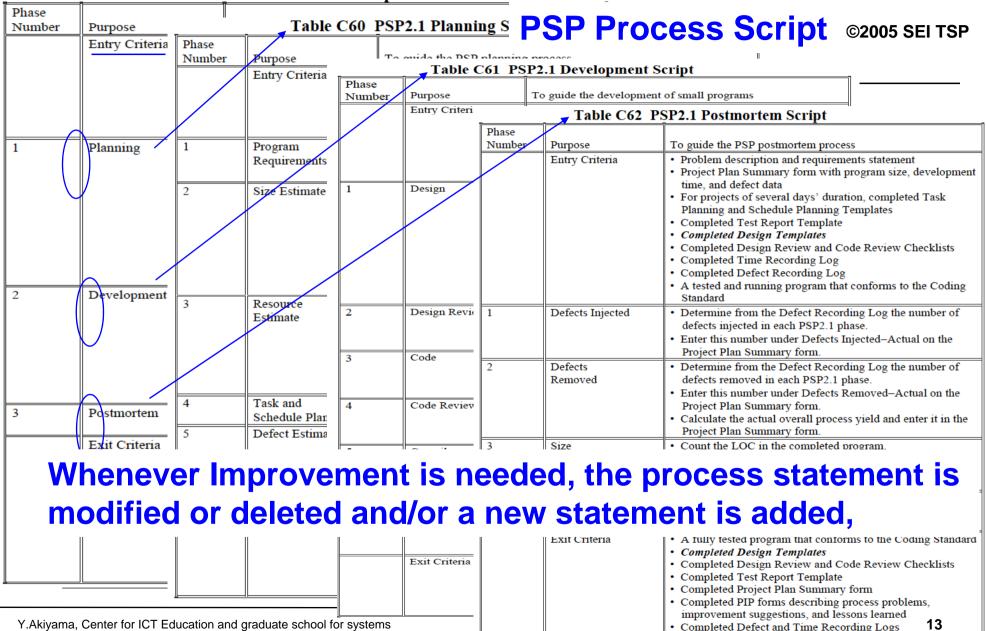
KT


The Process Elements

Particip Particip Tar weak was in deviability models level reservant Jamin Stephend Physe processing least sensitivity of the same p	Scripts	Document the process entry criteria, phases/ steps, and exit criteria. The purpose is to guide users of the process.
	Measures	Measure the process and the product. They provide insight into how the process is working and the status of the work.
	Forms	Provide a convenient and consistent framework for gathering and retaining data
	Standards	Provide <u>consistent definitions</u> that guide the work and gathering of data.
	Tools	Provide automated accepting, handling, processing, and visualizing process data
77	F	Ref. Don Burton, "Introduction to PSP and TSP, SEPG Conference March 2006

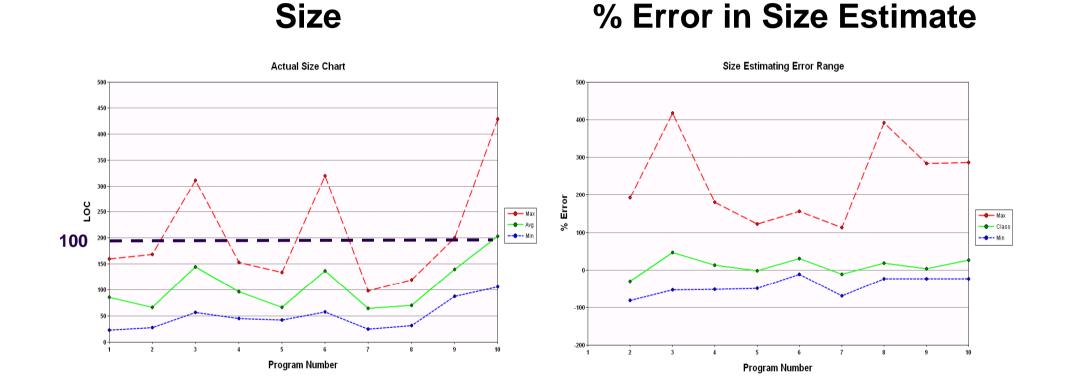
Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

May 23rd, 2008 ©2008 Kyushu Institute of Technology


The PSP Process Training Structure

KT

Table C59 PSP2.1 Process Script


Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

PSP Basic Input

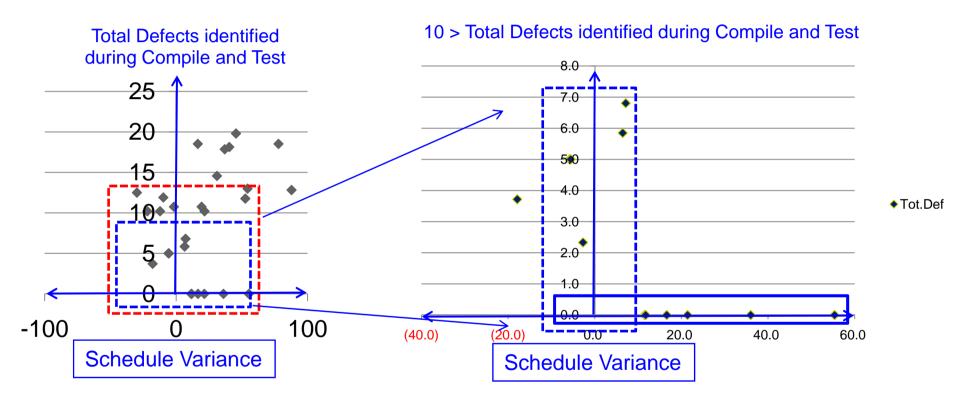
								Т	ime Log 🗧			
1	Project	Phase	Dat	e	Start Ir	it.	Stop	Delta		Comm	nents	
2	1	PLAN	06/	/20/05	16:11:28		16:16:4	9 <u>5.3</u> リス	トはすぐ前の演習で作	乍成経験がある	るので短め	に見積もる
3		DLD	06/		16:21:18	3.0	16:32:0		断)講師に対する質問	罰を一緒に聞く		
4	1	CODE	06/	/20/05	16:32:54	13.0	17:28:0	0 42.1 (中	断)講師に対する質問	昂を一緒に聞く	、同僚の質	間に答える
5		COMPILE			17:28:34	15.0	18:13:3		断)講師に対する質問			1問に答える
6		TEST	06/	/20/05	18:14:09		18:25:2	3 11.3 (途	中だが、指導員との面	言談があるため	り中断)	-
7		TEST		Â	B	Ĉ	DI	E	F	G	H	Defect Log
8		PM	_						-	Ŭ		
9		PLAN										
10		DLD	1	Project	Date	Num		Injected	Removed	FixTime		Description
11		CODE	2	1	2000/0/20	1	• =	DLD	CODE	1.0		メソッドbegin0, end0 を誤ったクラスに対して実装することを設計して
12			3	1	2005/6/20	2		CODE	COMPILE	1.0		ファイルのインクルードなしに using namespace std; 宣言をしていた
13 14		TEST	4	1	2000/0/20	3		CODE	COMPILE	1.0		lterator クラスのデフォルトコンストラクタを用意していなかった。
14		PM	5	1	2000/0/20	4		DLD	COMPILE	1.0		lterator クラスに operator ==() を定義していなかった。
15	-	PLAN	6	1	2000/0/20	5		DLD	COMPILE	0.5		lterator クラスに operator ⊨() を定義していなかった。
17			7	1	2000/0/20	6		CODE	COMPILE	0.5		;の挿入忘れ。
17	-		8	1	200010120	7		CODE	COMPILE	1.0		begin() でのIteratorコンストラクタへの不正な値渡し。
19		TEST	9	1	2005/6/20	8	50	CODE	COMPILE	0.5		end() でのIteratorコンストラクタへの不正な値渡し。
20		TEST	- 10	1	2005/6/20	9	20	COMPILE	COMPILE	0.5	8	end() 修正における) の削除忘れ。
20	-	TEST	- 11	1	2005/6/20	10	70	CODE	COMPILE	20.0		friend class に対して誤解していた。(維承されないこと。) * 時間見
22	-	PM	- 12	1	2005/6/20	11	70	CODE	COMPILE	1.0		Node の next を書き換えるつもりが、Iterator 自体の next を書き換
23		PM	- 13	1	2005/6/20	12	20	COMPILE	COMPILE	1.0	10	friend class 修正時に (を忘れた。
24		PLAN	14	1	2005/6/20	13	20	CODE	COMPILE	1.0		LinkedList の add で値を返すのを忘れた
25		DLD	15	1	2005/6/20	14	80	CODE	TEST	2.5		リストヘッダーにダミーノードを用意していたのにbegin()でそのnext?
26		CODE	16	1	2005/6/21	15	80	DLD	TEST	10.0		リストの末尾に置いた番兵法の適用の間違い。
27	4	COMPILE	17	1	2005/6/21	16	20	TEST	TEST	0.5	15	15修正時のNodeとIteratorの混同
	► N / :	Summary/Size	∍E 18	1	2005/6/21	17	80	TEST	TEST	1.0	15	末尾ノード書き換えの修正忘れ。
			19	2	2005/6/22	18	20	CODE	COMPILE	0.5		:の挿入忘れ。
			20	2	2005/6/22	19	40	CODE	COMPILE	1.0		修正時、<<をオーバーロードしたのに iostream を includeしていない
			21	2	2005/6/22	20		DLD	COMPILE	3.0		クラス自身とそれが保持するインスタンスとの混同
			22	2	2005/6/22	21	40	DLD	COMPILE	1.0		constインスタンスに対する関数をconstメンバ関数に指定せず
			23	2	2005/6/22	22		CODE	COMPILE	0.5		変数のスペルミス
			24	2		23	40	CODE	COMPILE	1.0		Iterator 宣言時のスコープ忘れ
			24 25	2		24		CODE	COMPILE	0.5		operator = の値返し忘れ
			26		0005/6/00		20	CODE	TEST	20		
				• • • /	(Summary,	(SizeB	Estima	te / TimeLog	<u>/PROBE \De</u>	fectLog/	<u> (R3 (</u> R	4 / Pareto / DefectAnalys <

PSP Estimate Accuracy

KT

PSP – Quality Improvement

KT

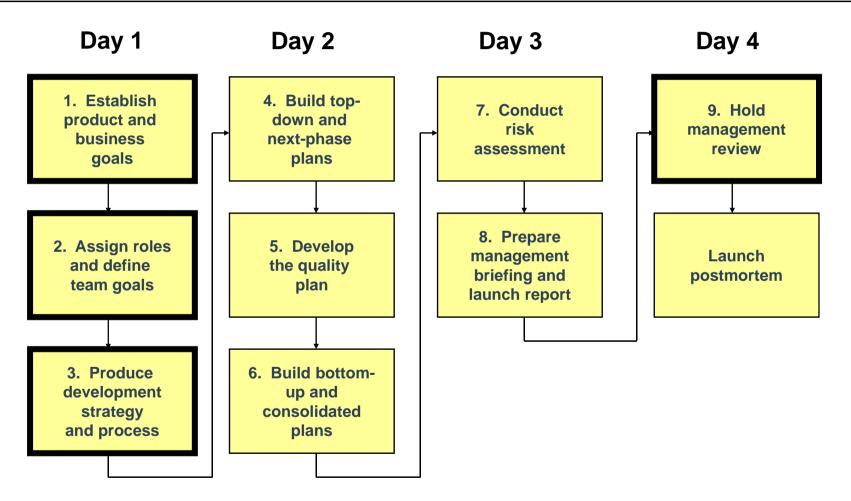

Test defects found 1/5 of the original defect amount

140 120 100 Defects/KLOC 80 🔶 — Max Avg 60 --- Min 40 30 20 6 0 9 10 Program Number

Defects Found in Test - Range

PSP Predictability on Schedule

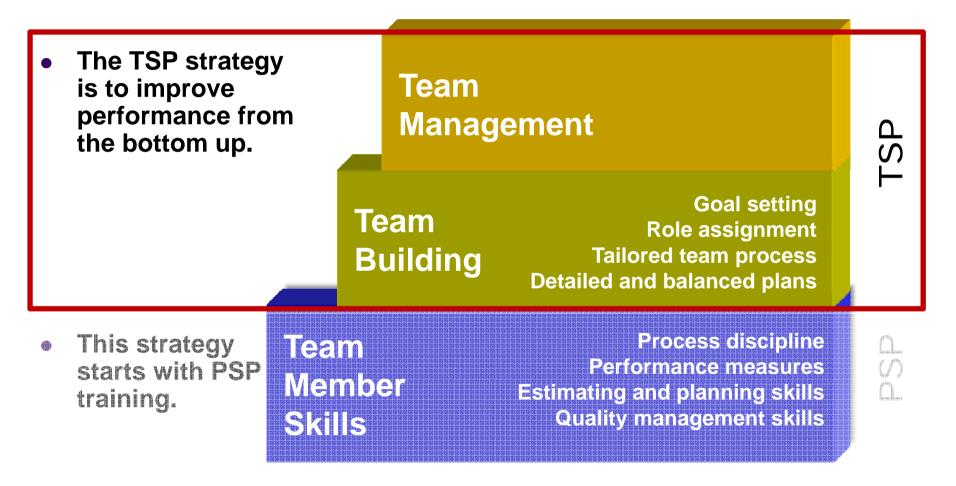
Quality is the major control parameter for the variance



About 10% variation identified for 0 < # of defects identified for compile and test <10. Large (60%) variation allowed for 0 = zero compile and test defects

Ref.: Yoshihiro Akiyama, Who could be Teacher for High Quality Software in Special Session: Preparing Students for Industry's Software Engineering needs, organized by Watts Humphrey, CSEE&T 2008

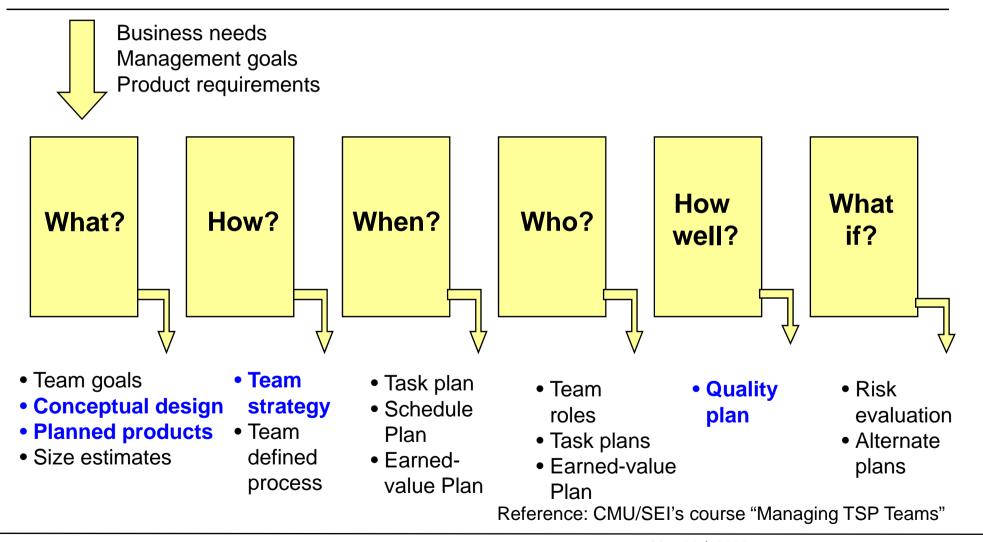
KΤ


The Launch Process Meetings

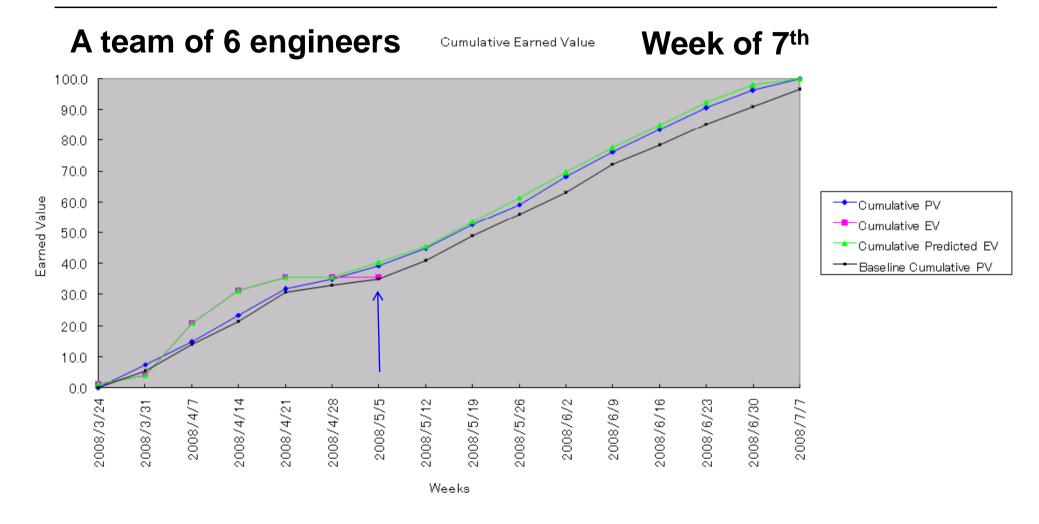
Reference: CMU/SEI's course "Managing TSP Teams"

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

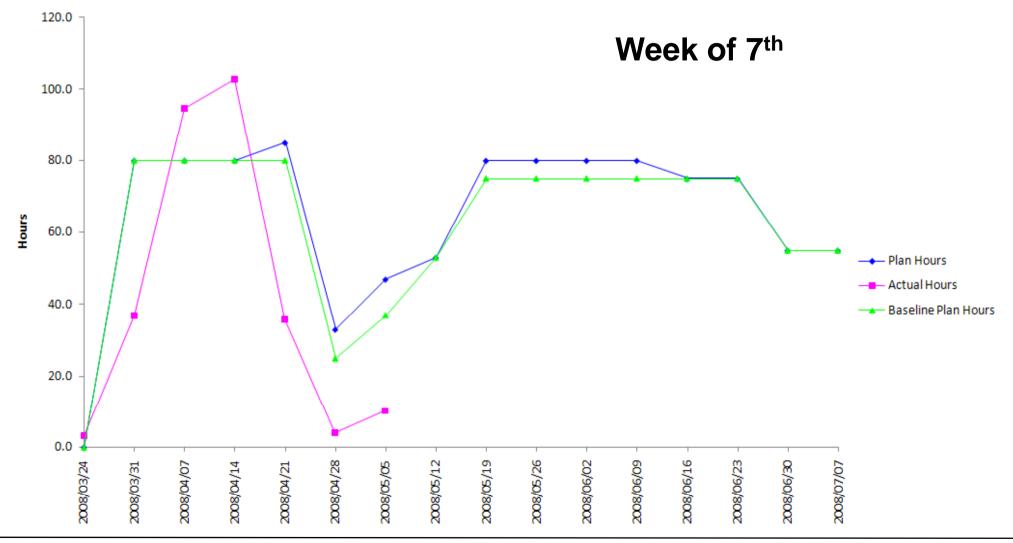
Build and Maintain High-Performance Teams



Reference: CMU/SEI's course "Managing TSP Teams"


May 23rd, 2008 ©2008 Kyushu Institute of Technology

The TSP Launch Products



Progress – Accumulated Earned Value

KT

Week Task Hours - Plan vs. Actual

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

KT

May 23rd, 2008 ©2008 Kyushu Institute of Technology

Team Communication

Plan / estimation accuracy

			VCCN (
			Plan /	Plan -		
Weekly Data	Plan	Actual	Actual	Actual	Project E	nd Dates
Schedule hours for this week	47.0	10.0	4.71	37.0	Baseline	2008/7/14
Schedule hours this cycle to date	405.0	287.2	1.41	117.8	Plan	2008/7/7
Earned value for this week	4.4	0.0		4.4	Predicted	2008/7/7
Earned value this cycle to date	39.4	35.6	1.10	3.7		
To-date hours for tasks completed	363.9	229.5	1.59			
To-date average hours per week	57.9	41.0	1.41			
EV per completed task hour to date	0.098	0.155				

- To-date EV is 3.8% below plan (39.4 vs. 35.6).
- Effort has been overestimated by 59%. Is this a trend?
- 57.7 hours (287.2 229.5) have been spent on incomplete tasks.

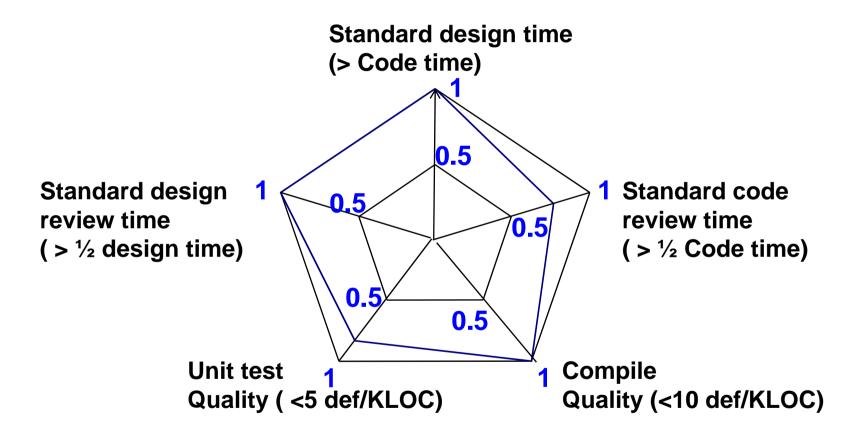
The estimation is not accurate (59% over estimate). The progress is on track.

Wook of 7th

Acquisition of Task Hours

KT

Date	Week	Plan Hours				Cumulative Plan Hours	Actual Hours	Cumulative Actual Hours	Planned Value	Cumulative PV	
2008/3/24	1		0.0	0.0	3.1	3.1	0.0	0.0			
2008/3/31	2		80.0	80.0	36.9	40.0	7.6	7.6			
2008/4/7	3		80.0	160.0	94.7	134.7	7.1	14.7			
2008/4/14	4		80.0	240.0	102.8	237.5	8.7	23.5			
2008/4/21	5		85.0	325.0	35.7	273.2	8.3	31.8			
2008/4/28	6		33.0	358.0	4.0	277.2	3.1	35.0			
2008/5/5	7		47.0	405.0	10.0	287.2	4.4	39.4			
2008/5/12	8		53.0	458.0	1		5.5	44.9			
2008/5/19	9		80.0	538.0			7.8	52.7			
2008/5/26	10		80.0	618.0			6.5	59.2			
2008/6/2	11		80.0	698.0			9.1	68.3			
2008/6/9	12		80.0	778.0			7.9	76.2			
	ge 68 ho erage 11					-		week/tea s/week/pe			

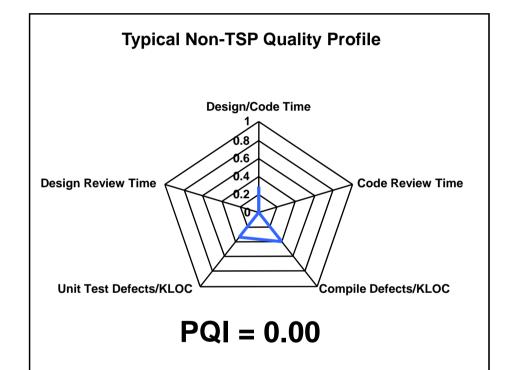

Week of 7th

Quality Management

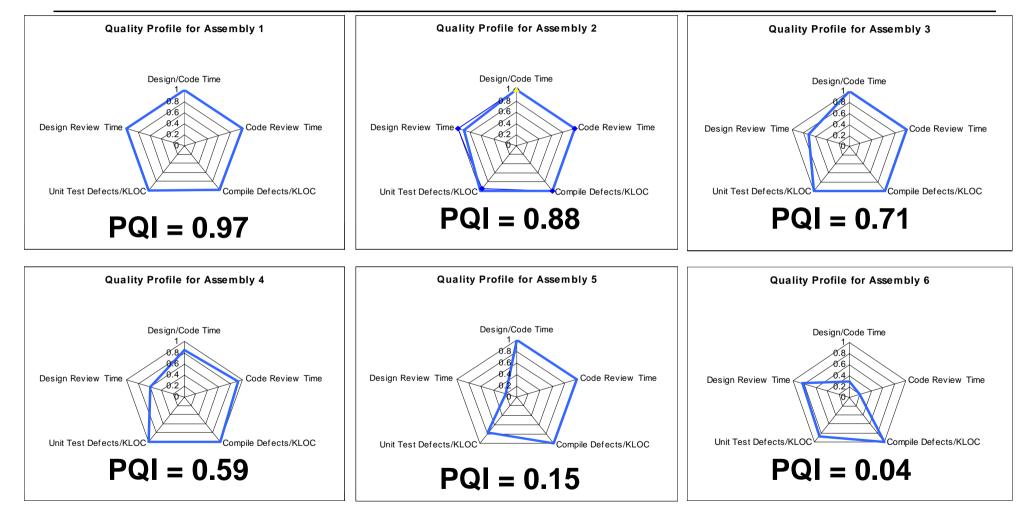
- With the TSP, the developers
 - record all of their defects
 - use process data to analyze product quality
 - strive to fix all defects before test
- In managing quality, TSP teams use the
 - process quality profile
 - process quality index (PQI)

KIT

Component Quality Profile



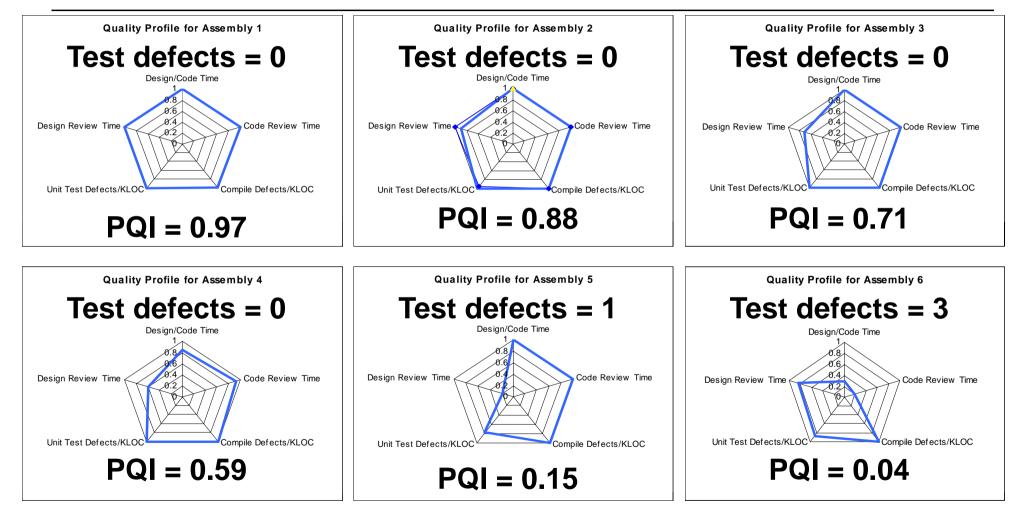
Note: LOC is the measure of Modified and Added Code.


Reference: Watts Humphrey, PSP – A Self-Improvement Process for Software Engineers, Addison Wesley, 2005

A Traditional Quality Profile

- With current typical software practice, PQI is at or near 0.
- With TSP, PQI is measured and can be managed with control charts.
- No defects have been found when PQI is above 0.4.

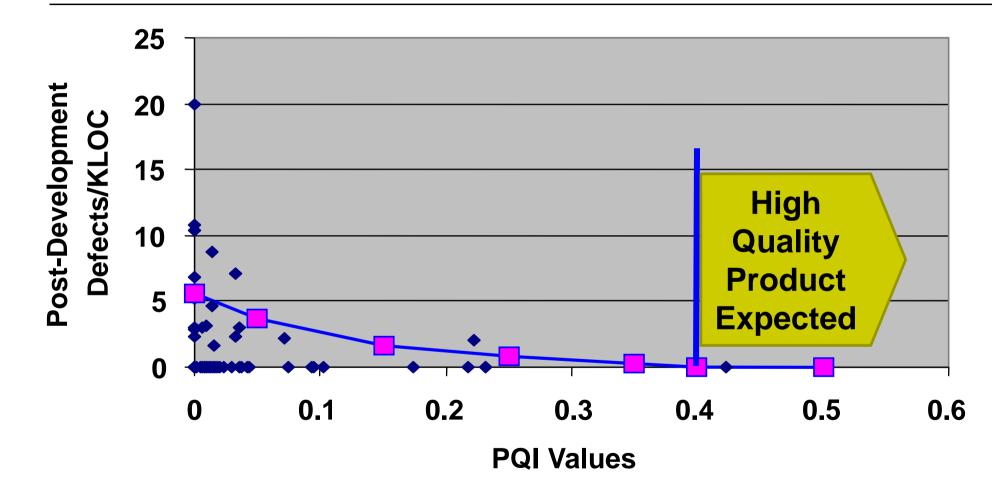
Selected TSP Quality Profiles – before test


Reference: Watts Humphrey, PSP – A Self-Improvement Process for Software Engineers, Addison Wesley, 2005

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

KT

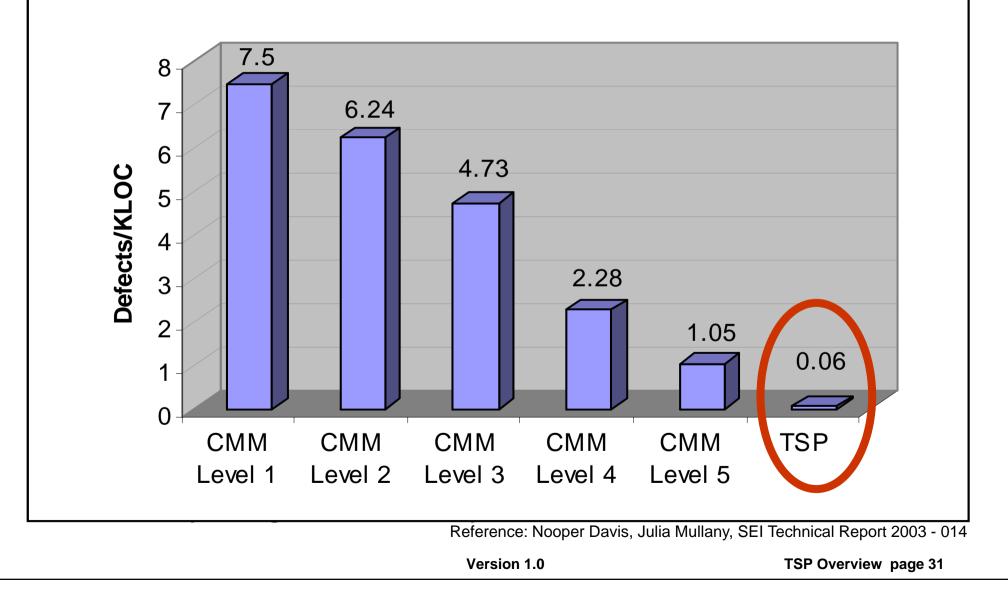
May 23rd, 2008 **28** ©2008 Kyushu Institute of Technology


Selected TSP Quality Profiles – after test

Reference: Watts Humphrey, PSP – A Self-Improvement Process for Software Engineers, Addison Wesley, 2005

KT

PQI vs. Post-development Defects


Reference: Watts Humphrey, PSP – A Self-Improvement Process for Software Engineers, Addison Wesley, 2005

KT

Carnegie Mellon Software Engineering Institute

Defect Density of Delivered Software

Total Cost of Ownership (1/4):

Project Performance Study (see Ref.)

Project of

4 members,

About 4.2KLOC size.

Characterized by

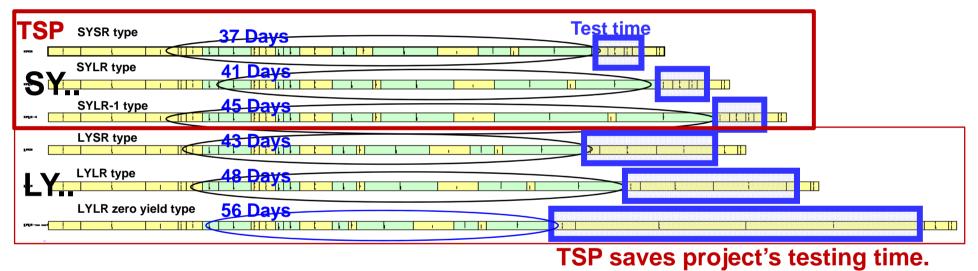
Phase Yields (Y), Phase Rates of Defect (R).

Yes – TSP value followed,

No – lower yield, or higher inject. rate, or lower removal rate

(*1) One member had a half of the removal rate of the others.

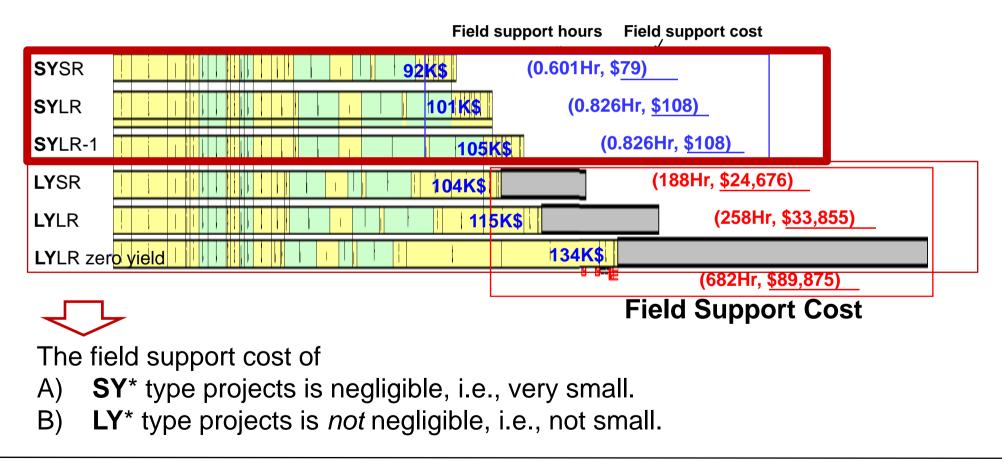
(*2) No yield achieved for Design and Code.


Project Type	Description					
Q - Quality R - Rate S - Followed L – devidated	Focus on Phase Yields	Focus on Phase Rates				
SY SR	Yes	Yes				
SYLR	Yes	No				
SY LR-1(*1)	Yes	No				
LYSR	No	Yes				
LYLR	No	No				
LYLR-zero yield (*2)	Zero yield	No				

Ref.: Y.Akiyama, J. Over, Jim McHale, Anita Carton, Impact of Individual Performance to Organization, TSP Symposium 2006

KIT

Total Cost Ownership (2/4): Project Management Tradeoff


- Green segments show review and inspection.
- Blue box show the time duration from the unit test through the system test.

- 1) If the review & inspection time is longer, the test time becomes shorter.
- 2) Project length of the SY.. type is almost same or similar to that of LY types.

Total Cost Ownership(3/4): Project's Field Support Cost

The grey boxes below show the cost needed to fix field defects.

Total Cost Ownership(4/4): Field Cost

- SYxx type project Solid profit
 - Almost zero cost needs for the field support.
 - Most of the resources used for the project should be assigned to another project when completed.
- LYxx type project Risky or may be Red profit
 - 20 100% of the development cost must be planned for the field support.
 - Long tail maintenance must be expected.

Ref.: Y.Akiyama, J. Over, Jim McHale, Anita Carton, Impact of Individual Performance to Organization, TSP Symposium 2006

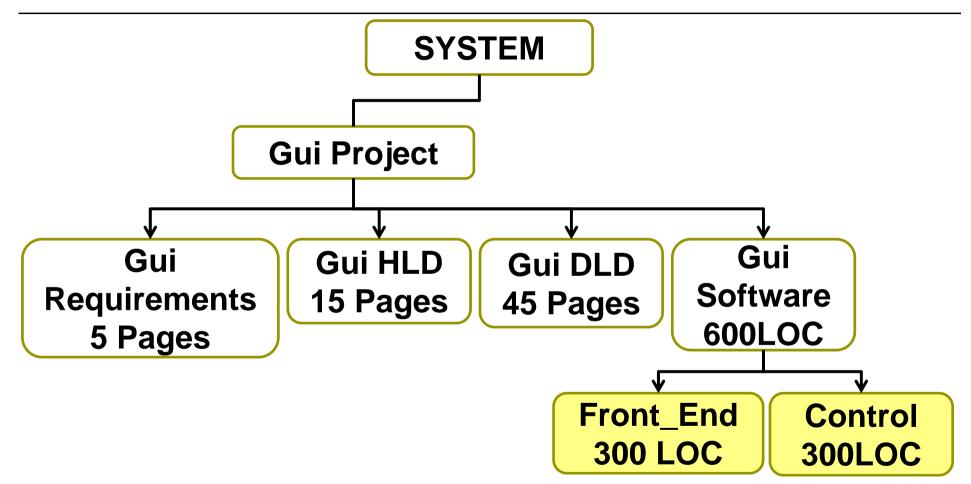
Further Remarks – 1

Communicating with other engineers

Process information is updated with experiences & knowledge:

- Experiences and knowledge on requirement soliciting, design approach, implementation code, etc. are carried over to another project or another engineer
- Base data used for estimating and planning are continued and consistency is improved.

КΤ


Further Remark - 2

Establishing Global Project Management

- Active users are living in active markets.
- Such active markets are located over the world.
- Effective process tool support to realize the SOA based development is necessary.

Here is a simple example by TSP.

TSP/SUMS defines a WBS for project.

KΤ

TSP generates **TASK** list (below is partial)

7	A 11						
	Assembly	Phase	Task				
1/ From	nt_End	DLD	Front_End Detailed Design <		ya3		
18 From	nt_End	DLDR	Front_End DLD Review		ya3		
19 From	nt_End	TD	Front_End Test Development		ya3		
20 From	nt_End	DLDINSP	Front_End DLD Inspection		ya1,ya2,ya3		
21 From	ont_End CODE		Front_End Code		ya3		
C	bject	Phase	Object Process		Resource (who)		
()	what) (s	equence)	<u>(how)</u>				
7	Assembly	Phase	Task		Ř ř		
26 Con	troi	DLD	Control Detailed Design		ya2		
27 Con	trol	DLDR	Control DLD Review		ya2		
28 Con	trol	TD	Control Test Development	\mathbf{N}	ya2		
29 Con	trol	DLDINSP	Control DLD Inspection		ya1,ya2,ya3		
30 Con							

Unique Process

KT

TSP/TASK Global Assignments

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science

May 23rd, 2008 **40** ©2008 Kyushu Institute of Technology

KIT

Conclusion - 1

- A desired "proper process" is such as TSP/PSP and provides
 - Framework to manage individual activities,
 - Framework to manage team work.
- The PSP based training enables professional engineers who can show desirable high quality results as industry expects.
- The TSP establishes the effective team and realistic plan to be produced through the launch process.
- TSP process data are used to assess the plan accuracy and the quality of the project product before integration test or system test begins.
- The TSP can supports SOA based development.

Conclusion - 2

- Good Process transforms software engineer to professional who enriches its own process.
- *PSP instructors* and *TSP coaches* are effective supports for the transformation.
- Process transfers experiences and knowledge of software activities to other software activities and other engineers for better effectiveness and more efficiency.
- Every engineer uses process to communicate and negotiate on, and standardizes, and produces a new process to meet needs of your project and your organization.
- For SOA era, proper process is mandatory to become professional and to receive key inheritance.

Thank you for your attention,

and

Now for Q&A

Y.Akiyama, Center for ICT Education and graduate school for systems engineering and computer science