
1

Institute for Software Research

The Challenge of

Pervasive Software

and the Web to

the Conventional Wisdom

of Software Engineering

Mary Shaw
Carnegie Mellon University

http://www.cs.cmu.edu/~shaw/

http://www.cs.cmu.edu/~shaw/

2

Institute for Software Research

“Computer science is the study of the
phenomena surrounding computers”

-- Perlis, Newell, Simon

3

Institute for Software Research

Most software creators are not software professionals.

Ultra-Large-Scale systems represent a qualitative shift.

What new types of research does this suggest?

4

Institute for Software Research

Most software creators are not software professionals.
 End users are participants and developers,

not passive consumers

 They do not reason about software like professionals

 “Software” is much more than just code

Ultra-Large-Scale systems represent a qualitative shift.

What new types of research does this suggest?

5

Institute for Software Research

There are lots of end users

C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and End User Programmers.
VL/HCC'05: Proc 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 207-214, 2005.

Using data from the Bureau of
Labor Statistics, we estimate
that over 90M Americans will
use computers at work in 2012.
Of these, only about 2.5M will
be professional programmers;
40.5M will be managers and
(non-software) professionals.

This does not include home
users or non-US users, so there
will be many more than 90M
total end users. Most of them
will “program” in some way.

6

Institute for Software Research

They are not all alike

C. Scaffidi, Andrew Ko, B. Myers, and M. Shaw. Dimensions Characterizing Programming Feature Usage by Information Workers. VL/HCC'06: Proc2006 IEEE Symposium on

Visual Languages and Human-Centric Computing, pp. 59-62, 2006.

Analysis of
web-based
survey of
Information
Week
readers

7

Institute for Software Research

Their skills differ, even within clusters

 “Programming” can mean anything from editing
spam filters to writing complex code
Copying the html for a web page hit counter

vs creating that html yourself

 There is not a sharp criterion that says where
“programming” starts

Undermines common assumptions:

 Software is mostly created by professionals

 End users “only” need good user interfaces

8

Institute for Software Research

End users are normal people

 End users lack rich and robust mental models of
their computing systems
 they fail to do backups

 they can not safely configure a network

 they do not understand storage models

 especially local vs network storage

 End users put themselves at risk
 they execute malware and open attachments

 they do not understand privacy issues

 they trust information without validating sources

 and also software downloads

 they innocently engage in other risky behavior.

9

Institute for Software Research

End users are not software engineers

 The responses of SE to the mismatch between real
computing systems and end users’ models has been
to seek ways to “fix” the users.

 But there is plenty of evidence that most people do
not reason in the linear, rational form that
computer scientists prefer.

Undermines common assumptions:

 Users can be trained to act “rationally”

 Usability is “screen deep”

 Validation is based on a few definitive analyses

10

Institute for Software Research

Internet resources

 Information: unstructured text, formatted text,
databases, live data feeds, images, maps, current status
(e.g., inventory, location)

 Calculation: reusable software components,
applications that can be invoked remotely (e.g., services)

 Communication: messages, social networking,
streaming media, synchronous communication, agent
systems, alert/notification services

 Control: coordination for use of resources, access to
registration and subscription services

 Services: simulation, editorial selection, evaluation,
secondary (derived) information, responsive experts,
markets

11

Institute for Software Research

Properties of internet resources

 Autonomous
 Independently created and managed

May change structure or format without notice

 Heterogeneous
Different packagings, output often for viewing only

Different business objectives, conditions of use

 Open affordances
 Independent systems, not dependent components

 Incidental effects may be useful

Humans integral to some resources

Undermines common assumptions:

 It’s all about programs

 Someone is “in charge” or “in control”

12

Institute for Software Research

Most software creators are not software professionals.

Ultra-Large-Scale systems represent a qualitative shift.
 They are large along many dimensions

More important, they are more complex and more open-
ended than normal systems

 Scale and complexity make them qualitatively different

What new types of research does this suggest?

13

Institute for Software Research

Ultra-Large-Scale Systems

 It’s not just about size !!!

 Some societal problems don’t have clean specs,
well-defined boundaries, objective tests of success

 Characteristics
Multiple stakeholders with different objectives

No problem statement that satisfies all stakeholders

Different success criteria for different stakeholders

 Evolving understanding of problem as solution grows

 Irreversible consequences of any attempt to solve

 Technical elements, but deep community engatement

 In planning/policy world, “wicked problems”

SEI. Ultra-Large-Scale Systems. 2006

14

Institute for Software Research

Decentralized control

 ULS system scale offers only limited possibilities
for central or hierarchical control
 Long life, multiple users and objectives, span of

physical jurisdictions are the norm at ULS scale

Many versions of subsystems, developed and installed
independently, must work together

Minimal central control governs a few critical parts

 Spontaneous new uses arise (“network effects”)

Undermines common assumption:

 Specifications are complete, static, & homogeneous

 All conflicts must be resolved, and they must be
resolved uniformly

15

Institute for Software Research

Conflicting, unknowable, diverse requirements

 Requirements may not be adequately understood
until the system is in use
Competing user groups contend for requirements

Understanding of problem evolves

 Problem is deeply embedded in cultural context

Dependability is “better/worse”, not “right/wrong”

 Thus the uncertainty about requirements is
inherent to the class of problems

Undermines common assumptions:

 Requirements are known in advance, evolve slowly

 Tradeoff decisions will be stable

16

Institute for Software Research

Continuous evolution and deployment

 ULS systems have long lives and multiple independent
developers
Different groups may install capability for their own needs

 This may open completely new opportunities (“emergence”)

 This may also conflict with other groups

 Evolution can’t be controlled centrally; it must be shaped
by rules and policies that protect critical services and allow
diversity at the edges

Undermines common assumption:

 System improvements are introduced explicitly and at
discrete intervals

17

Institute for Software Research

Heterogeneous, inconsistent, changing elements

 ULS systems will be composed from diverse
independently-created components
Heterogeneous: many sources, no single interface

standard, often incorporating legacy systems

 Inconsistent: evolution spontaneous, not planned;
different objectives may cause inconsistent versions

Changing: hardware, software, operating environment
change based on local decisions

Undermines common assumptions:

 Effect of change can be predicted adequately

 Configuration information is accurate & controlled

 Components and users are fairly homogeneous

18

Institute for Software Research

Indistinct people/system boundary

 ULS systems’ service to a user depends on actions
of other users; user/developer distinction soft
User actions may affect overall system health

User behavior will be part of system capability

 System will be used in unanticipated ways

 System must adapt to changing usage patterns

Aggregate analysis may be better than exact analysis

Undermines common assumption:

 Users’ behavior doesn’t affect overall system

 Collective behavior of people is not relevant

 Social interactions are not relevant

19

Institute for Software Research

Normal failures

 ULS system scale implies inevitable failures, so
systems must do protection/recovery/enforcement
Hardware failures are inevitable because of scale

 Legitimate use of software and services outside
planned capability will cause degradation/failure

Malicious use will cause problems

 Even well-intentioned users make mistakes

Undermines common assumptions:

 Failures will be infrequent and exceptional

 Defects can be removed

20

Institute for Software Research

New forms of acquisition and policy

 ULS systems will evolve, but there must be
governance to prevent anarchy
Comprehensive detailed rules are not feasible

Need effective guidance on allowed/unallowed
activity, but policy rather than prescription

 Success of system depends on organic evolution

 Individual developers won’t fully understand core
infrastructure

Undermines common assumption:

 There is a single agent responsible for system
development, operation, and evolution

21

Institute for Software Research

Analogy: Cities and city planning

 Cities are complex systems
 Built of individual components chosen by individuals

Constantly evolve

Withstand failures and attacks

 Cities are not centrally controlled
 Standards for infrastructures

 Building codes, highway standards

 Policies that allow individual action within constraints

 Zoning laws

Regulations that govern individual action

 Enforcement after the fact, rather than prior constraint

 “Wicked problems”

22

Institute for Software Research

Most software creators are not software professionals.

Ultra-Large-Scale systems represent a qualitative shift.

What new types of research does this suggest?
 Extend architectural models to explain cyberspace

 Put adaptation via feedback on a more systematic basis

Reconsider “design”

23

Institute for Software Research

Architectures of cyberspace

 Users can choose from many applications
 For communication alone, we have email, blogs,

facebook, newsgroups, BitTorrent, distribution lists,
twitter, Yahoo groups, Wikis, Second Life, Flickr,
YouTube, personal webs, …

 Users need help matching application to need
Recall, their mental models are weak

 End-user developers often get this wrong
 For example, they choose a web page update (which

requires users to pull the information) rather than
email (which pushes the information to the user)

 Comparison through selected architectural
properties brings out significant differences

24

Institute for Software Research

Design spaces

 Design space: set of decisions about a design with
alternative choices for the decisions
 Intuitively, discrete Cartesian space with design

decisions as dimensions

Complete designs correspond to points in the space

 In practice, design spaces are very rich
Representations focus on principal dimensions

 Some choices preclude others, so hierarchy is used to
subdue detail

 Long history in CS
Computer architecture, user interfaces, distributed

sensors, software architecture styles, typefaces

25

Institute for Software Research

Example architectural comparison

Appli-
cation

Activ-
ation

Content Privacy State
locus

Author-
ship

Inter-
activity

Synch-
ronicity

email sender
push

text +
attach

private per user originator K known minutes

news-
groups

reader
pull

text public server
archive

submitter N anony-
mous

hours

chat inter-
active

short text within
group

none all
present

K known immed-
iate

web reader
pull

web page
+ files

public web
server

web
owner

no immed-
iate

wiki reader
pull

struct
text

login
controlled

wiki
server

anyone no immed-
iate

blog reader
pull

text +
photo

public blog
server

originator
+ readers

N anony-
mous

hours
to days

2nd
life

inter-
active

image + public in
app

2ndlife
server

all
members

high immed-
iate

twitter s-push
+ r-pull

struc 140-
char text

public sender
tw-page

originator N
knowable

soon

26

Institute for Software Research

Example architectural comparison

Appli-
cation

Activ-
ation

Content Privacy State
locus

Author-
ship

Inter-
activity

Synch-
ronicity

email sender
push

text +
attach

private per user originator K known minutes

news-
groups

reader
pull

text public server
archive

submitter N anony-
mous

hours

chat inter-
active

short text within
group

none all
present

K known immed-
iate

face
book

reader
pull

short text
+ photo

within
group

web
server

member
+ friends

N known minutes

wiki reader
pull

struct
text

login
controlled

wiki
server

anyone no immed-
iate

blog reader
pull

text +
photo

public blog
server

originator
+ readers

N anony-
mous

hours
to days

2nd
life

inter-
active

image + public in
app

2ndlife
server

all
members

high immed-
iate

twitter s-push
+ r-pull

struc 140-
char text

public sender
tw-page

originator N
knowable

soon

27

Institute for Software Research

Design space for web communication
A

c
ti

v
a
ti

o
n

Authorship

sender
push

reader
pull

shared solo

blog

 IM;
email

twitter

FB wall
w/comments

wiki

facebook
status

Yahoo group
as email

email
d-list

Other Dimensions
 content type
 state location
 interactivity
 synch delay

28

Institute for Software Research

Architectural operators

 RSS feeds
Abstractly, convert reader pull to sender push

Can be applied to many sorts of reader pull

 Yahoo pipes
Merge and filter RSS feeds

Do not get much attention from software engineers

 Recall that software engineers neglected spreadsheets

29

Institute for Software Research

User composition of internet resources

 The internet provides a rich set of resources
 autonomous, heterogeneous, open affordances

meager specification and documentation

 End users should be able to compose resources
 all resources, not just code

 current state of art is ad hoc “mash-up”

 need usable means to combine elements from diverse
sources under local control

 End users should be able to understand whether a
composition is good enough for their needs
 Information about resources is low-ceremony and

incremental

30

Institute for Software Research

Example:
Pat and Lou

Objective: compose
autonomous
heterogeneous
resources

Pat is diabetic

Pat and Lou exercise
together outdoors

They plan outings based
on online forecasts

Pat logs food and
exercise

A medical service
reviews logs and offers
advice

31

Institute for Software Research

Adaptive solutions

These characteristics of ULSs favor adaptive solutions
 Substantial uncertainty in the environment

 that leads to substantial irregularity or other disruption

 that may arise from insufficient knowledge

 that may arise from rapid change of conditions

 Nondeterminism in the environment

 of a sort that requires significantly different responses

 Incomplete control of system components

 for example, mechanical components

 for example, humans in the loop (they’re only biddable)

32

Institute for Software Research

Feedback

Control Loops

Adaptation can take
many forms, but it
often involves one or
more feedback
control loops

Executing

System

P
ro

b
e

Target

(Set point)

Compare Choose

Correction

Effect

Correction

33

Institute for Software Research

Executing

System

P
ro

b
e

Target

(Set point)

Compare Choose

Correction

Effect

Correction

Probe must yield
model of operating
state.

However, it often
relies on proxy data
of variable quality.

34

Institute for Software Research

Executing

System

P
ro

b
e

Target

(Set point)

Compare Choose

Correction

Effect

Correction

Controller must
have sufficient
command authority
to actually control
executing system

35

Institute for Software Research

Obligations for a feedback loop

 In Requirements
 Specify the objective, with tolerances and timing

 In Design
 Identify feedback elements explicitly, in a separate view

Choose adaptation (control) strategy

 In Analysis/V&V, show how ..
 current state is modeled from sensor data

 the correction plan works (it can be achieved with
commands available, it will have desired effect)

 time constraints are achieved

 In Implementation
Map elements of design to elements of implementation

(control is not necessarily a separate element)

36

Institute for Software Research

Executing

System

P
ro

b
e

Target

Compare Choose

Correction

Effect

Correction

Adaptable system

Garlan, Cheng, Schmerl

Increasing System
Dependability Through
Architecture-Based
Self Repair

In Architecting Dependable
Systems
de Lemos, Gacek,
Romanovsky (eds)
Springer Verlag 2003

Executing

System

P
ro

b
e

Target

(Set point)

Compare Choose

Correction

Effect

Correction

37

Institute for Software Research

Proposition

 For a system to be called “adaptive”, it must
change in response to changes in its internal or
external environment.

 This usually requires a closed feedback loop.

 The control loop should be an explicit, visible
element of the system, in design, analysis, and
implementation.
 But usually it is not !

38

Institute for Software Research

“Design”

 Software engineering separates requirements
elicitation from “design”

 This falls squarely in the Simon tradition:
 [devising] “courses of action aimed at changing existing

situations into preferred ones”

 problem solving

 satisficing – finding a “good enough” solution

 But both disintermedition of the internet and ultra-
large-scale systems lack explicit requirements

 Other design traditions consider problem-setting
an integral part of design

 What should software engineering do about this?

39

Institute for Software Research

 I suggested examples of research that respond to
current engineering problems of software
 Extend architectural models to explain cyberspace

 Put adaptation via feedback on a more systematic basis

Reconsider “design”

 Think about how well current software engineering
research paradigms suit our current problems
 If an a priori specification is not feasible, what does that

mean for formal methods? for design?

 If end users will create widely-used software, how can
they gain confidence in it?

40

Institute for Software Research

Most software creators are not software professionals.

Ultra-Large-Scale systems represent a qualitative shift.

What new types of research does this suggest?

