
1 

Institute for Software Research 

The Challenge of 

Pervasive Software 

and the Web to 

the Conventional Wisdom 

of Software Engineering 
 

Mary Shaw 
Carnegie Mellon University 

     

http://www.cs.cmu.edu/~shaw/ 

http://www.cs.cmu.edu/~shaw/


2 

Institute for Software Research 

 

 

“Computer science is the study of the  
phenomena surrounding computers” 

 

-- Perlis, Newell, Simon  

 

  



3 

Institute for Software Research 

  

Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 



4 

Institute for Software Research 

  

Most software creators are not software professionals. 
 End users are participants and developers,  

not passive consumers 

 They do not reason about software like professionals 

 “Software” is much more than just code 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 



5 

Institute for Software Research 

There are lots of end users 

C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and End User Programmers.  
VL/HCC'05: Proc 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 207-214, 2005. 

Using data from the Bureau of 
Labor Statistics, we estimate 
that over 90M Americans will 
use computers at work in 2012. 
Of these, only about 2.5M will 
be professional programmers; 
40.5M will be managers and 
(non-software) professionals. 
 
This does not include home 
users or non-US users, so there 
will be many more than 90M 
total end users. Most of them 
will “program” in some way. 



6 

Institute for Software Research 

They are not all alike 

C. Scaffidi, Andrew Ko, B. Myers, and M. Shaw. Dimensions Characterizing Programming Feature Usage by Information Workers. VL/HCC'06: Proc2006 IEEE Symposium on 

Visual Languages and Human-Centric Computing, pp. 59-62, 2006.  

Analysis of 
web-based 
survey of 
Information 
Week 
readers 



7 

Institute for Software Research 

Their skills differ, even within clusters 

 “Programming” can mean anything from editing 
spam filters to writing complex code 
Copying the html for a web page hit counter  

vs creating that html yourself 

 There is not a sharp criterion that says where 
“programming” starts 

 

 

Undermines common assumptions: 

 Software is mostly created by professionals 

 End users “only” need good user interfaces 

 



8 

Institute for Software Research 

End users are normal people 

 End users lack rich and robust mental models of 
their computing systems 
 they fail to do backups 

 they can not safely configure a network 

 they do not understand storage models  

 especially local vs network storage 

 End users put themselves at risk 
 they execute malware and open attachments 

 they do not understand privacy issues 

 they trust information without validating sources 

 and also software downloads 

 they innocently engage in other risky behavior.  



9 

Institute for Software Research 

End users are not software engineers 

 The responses of SE to the mismatch between real 
computing systems and end users’ models has been 
to seek ways to “fix” the users. 

 But there is plenty of evidence that most people do 
not reason in the linear, rational form that 
computer scientists prefer. 

 

 

Undermines common assumptions: 

 Users can be trained to act “rationally”  

 Usability is “screen deep” 

 Validation is based on a few definitive analyses 



10 

Institute for Software Research 

Internet resources 

 Information: unstructured text, formatted text, 
databases, live data feeds, images, maps, current status 
(e.g., inventory, location) 

 Calculation: reusable software components, 
applications that can be invoked remotely (e.g., services) 

 Communication: messages, social networking, 
streaming media, synchronous communication, agent 
systems, alert/notification services 

 Control: coordination for use of resources, access to 
registration and subscription services 

 Services: simulation, editorial selection, evaluation, 
secondary (derived) information, responsive experts, 
markets 



11 

Institute for Software Research 

Properties of internet resources 

 Autonomous 
 Independently created and managed 

May change structure or format without notice 

 Heterogeneous 
Different packagings, output often for viewing only 

Different business objectives, conditions of use 

 Open affordances 
 Independent systems, not dependent components 

 Incidental effects may be useful 

Humans integral to some resources 
 

Undermines common assumptions: 

 It’s all about programs 

 Someone is “in charge” or “in control” 



12 

Institute for Software Research 

  

Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 They are large along many dimensions 

More important, they are more complex and more open-
ended than normal systems 

 Scale and complexity make them qualitatively different 

 

What new types of research does this suggest? 



13 

Institute for Software Research 

Ultra-Large-Scale Systems 

 It’s not just about size !!! 

 Some societal problems don’t have clean specs, 
well-defined boundaries, objective tests of success 

 Characteristics 
Multiple stakeholders with different objectives 

No problem statement that satisfies all stakeholders 

Different success criteria for different stakeholders 

 Evolving understanding of problem as solution grows 

 Irreversible consequences of any attempt to solve 

 Technical elements, but deep community engatement 

 In planning/policy world, “wicked problems” 

SEI. Ultra-Large-Scale Systems. 2006 



14 

Institute for Software Research 

Decentralized control 

 ULS system scale offers only limited possibilities 
for central or hierarchical control 
 Long life, multiple users and objectives, span of 

physical jurisdictions are the norm at ULS scale 

Many versions of subsystems, developed and installed 
independently, must work together 

Minimal central control governs a few critical parts 

 Spontaneous new uses arise (“network effects”) 

 

Undermines common assumption: 

 Specifications are complete, static, & homogeneous 

 All conflicts must be resolved, and they must be 
resolved uniformly 



15 

Institute for Software Research 

Conflicting, unknowable, diverse requirements 

 Requirements may not be adequately understood 
until the system is in use 
Competing user groups contend for requirements 

Understanding of problem evolves 

 Problem is deeply embedded in cultural context 

Dependability is “better/worse”, not “right/wrong” 

 Thus the uncertainty about requirements is 
inherent to the class of problems 

 

Undermines common assumptions: 

 Requirements are known in advance, evolve slowly 

 Tradeoff decisions will be stable 



16 

Institute for Software Research 

Continuous evolution and deployment 

 ULS systems have long lives and multiple independent 
developers 
Different groups may install capability for their own needs 

 This may open completely new opportunities (“emergence”)  

 This may also conflict with other groups 

 Evolution can’t be controlled centrally; it must be shaped 
by rules and policies that protect critical services and allow 
diversity at the edges 

 

Undermines common assumption: 

 System improvements are introduced explicitly and at 
discrete intervals 



17 

Institute for Software Research 

Heterogeneous, inconsistent, changing elements 

 ULS systems will be composed from diverse 
independently-created components 
Heterogeneous: many sources, no single interface 

standard, often incorporating legacy systems 

 Inconsistent: evolution spontaneous, not planned; 
different objectives may cause inconsistent versions 

Changing: hardware, software, operating environment 
change based on local decisions 

 

Undermines common assumptions: 

 Effect of change can be predicted adequately 

 Configuration information is accurate & controlled 

 Components and users are fairly homogeneous 



18 

Institute for Software Research 

Indistinct people/system boundary 

 ULS systems’ service to a user depends on actions 
of other users; user/developer distinction soft 
User actions may affect overall system health 

User behavior will be part of system capability 

 System will be used in unanticipated ways 

 System must adapt to changing usage patterns 

Aggregate analysis may be better than exact analysis 

 

Undermines common assumption: 

 Users’ behavior doesn’t affect overall system 

 Collective behavior of people is not relevant 

 Social interactions are not relevant 



19 

Institute for Software Research 

Normal failures 

 ULS system scale implies inevitable failures, so 
systems must do protection/recovery/enforcement 
Hardware failures are inevitable because of scale  

 Legitimate use of software and services outside 
planned capability will cause degradation/failure 

Malicious use will cause problems 

 Even well-intentioned users make mistakes 

 

 

Undermines common assumptions: 

 Failures will be infrequent and exceptional 

 Defects can be removed 



20 

Institute for Software Research 

New forms of acquisition and policy 

 ULS systems will evolve, but there must be 
governance to prevent anarchy 
Comprehensive detailed rules are not feasible 

Need effective guidance on allowed/unallowed 
activity, but policy rather than prescription 

 Success of system depends on organic evolution 

 Individual developers won’t fully understand core 
infrastructure 

 

 

Undermines common assumption: 

 There is a single agent responsible for system 
development, operation, and evolution 



21 

Institute for Software Research 

Analogy: Cities and city planning 

 Cities are complex systems 
 Built of individual components chosen by individuals 

Constantly evolve 

Withstand failures and attacks 

 Cities are not centrally controlled 
 Standards for infrastructures  

 Building codes, highway standards 

 Policies that allow individual action within constraints 

 Zoning laws 

Regulations that govern individual action 

 Enforcement after the fact, rather than prior constraint 

 “Wicked problems” 



22 

Institute for Software Research 

 

Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 
 Extend architectural models to explain cyberspace 

 Put adaptation via feedback on a more systematic basis 

Reconsider “design” 



23 

Institute for Software Research 

Architectures of cyberspace  

 Users can choose from many applications 
 For communication alone, we have email, blogs, 

facebook, newsgroups, BitTorrent, distribution lists, 
twitter, Yahoo groups, Wikis, Second Life, Flickr, 
YouTube, personal webs, … 

 Users need help matching application to need 
Recall, their mental models are weak 

 End-user developers often get this wrong 
 For example, they choose a web page update (which 

requires users to pull the information) rather than 
email (which pushes the information to the user) 

 Comparison through selected architectural 
properties brings out significant differences 



24 

Institute for Software Research 

Design spaces 

 Design space: set of decisions about a design with 
alternative choices for the decisions 
 Intuitively, discrete Cartesian space with design 

decisions as dimensions 

Complete designs correspond to points in the space 

 In practice, design spaces are very rich 
Representations focus on principal dimensions 

 Some choices preclude others, so hierarchy is used to 
subdue detail 

 Long history in CS 
Computer architecture, user interfaces, distributed 

sensors, software architecture styles, typefaces 



25 

Institute for Software Research 

Example architectural comparison 

Appli-
cation 

Activ-
ation 

Content Privacy State 
locus 

Author-
ship  

Inter-
activity 

Synch-
ronicity 

email sender 
push 

text + 
attach 

private per user originator K known minutes 

news-
groups 

reader 
pull 

text public server 
archive 

submitter N anony-
mous 

hours 

chat inter-
active 

short text within 
group 

none all 
present 

K known immed-
iate 

web reader 
pull 

web page 
+ files 

public web 
server 

web 
owner 

no immed-
iate 

wiki reader 
pull 

struct 
text 

login 
controlled 

wiki 
server 

anyone no immed-
iate 

blog reader 
pull 

text + 
photo 

public blog 
server 

originator 
+ readers 

N anony-
mous 

hours 
to days 

2nd 
life 

inter-
active 

image +  public in 
app 

2ndlife 
server 

all 
members 

high immed-
iate 

twitter s-push 
+ r-pull 

struc 140-
char text 

public sender 
tw-page 

originator N 
knowable 

soon 
  



26 

Institute for Software Research 

Example architectural comparison 

Appli-
cation 

Activ-
ation 

Content Privacy State 
locus 

Author-
ship  

Inter-
activity 

Synch-
ronicity 

email sender 
push 

text + 
attach 

private per user originator K known minutes 

news-
groups 

reader 
pull 

text public server 
archive 

submitter N anony-
mous 

hours 

chat inter-
active 

short text within 
group 

none all 
present 

K known immed-
iate 

face 
book 

reader 
pull 

short text 
+ photo 

within 
group 

web 
server 

member 
+ friends 

N known minutes 

wiki reader 
pull 

struct 
text 

login 
controlled 

wiki 
server 

anyone no immed-
iate 

blog reader 
pull 

text + 
photo 

public blog 
server 

originator 
+ readers 

N anony-
mous 

hours 
to days 

2nd 
life 

inter-
active 

image +  public in 
app 

2ndlife 
server 

all 
members 

high immed-
iate 

twitter s-push 
+ r-pull 

struc 140-
char text 

public sender 
tw-page 

originator N 
knowable 

soon 
  



27 

Institute for Software Research 

Design space for web communication 
A

c
ti

v
a
ti

o
n
 

Authorship 

sender  
push 

reader 
pull 

shared solo 

  

blog 

    IM;  
email 

twitter 

FB wall 
w/comments 

wiki 

facebook 
status 

Yahoo group 
as email 

email 
d-list 

Other Dimensions 
    content type 
    state location 
    interactivity 
    synch delay 



28 

Institute for Software Research 

Architectural operators 

 RSS feeds 
Abstractly, convert reader pull to sender push  

Can be applied to many sorts of reader pull 

 Yahoo pipes 
Merge and filter RSS feeds 

Do not get much attention from software engineers 

 

 

 Recall that software engineers neglected spreadsheets  



29 

Institute for Software Research 

User composition of internet resources 

 The internet provides a rich set of resources 
 autonomous, heterogeneous, open affordances 

meager specification and documentation 

 End users should be able to compose resources 
 all resources, not just code 

 current state of art is ad hoc “mash-up” 

 need usable means to combine elements from diverse 
sources under local control 

 End users should be able to understand whether a 
composition is good enough for their needs 
 Information about resources is low-ceremony and 

incremental 

 



30 

Institute for Software Research 

Example:  
Pat and Lou 

Objective: compose 
autonomous 
heterogeneous 
resources 

Pat is diabetic 

Pat and Lou exercise 
together outdoors 

They plan outings based 
on online forecasts 

Pat logs food and 
exercise 

A medical service 
reviews logs and offers 
advice 



31 

Institute for Software Research 

Adaptive solutions 

These characteristics of ULSs favor adaptive solutions 
 Substantial uncertainty in the environment 

 that leads to substantial irregularity or other disruption 

 that may arise from insufficient knowledge 

 that may arise from rapid change of conditions 

 Nondeterminism in the environment 

 of a sort that requires significantly different responses 

 Incomplete control of system components 

 for example, mechanical components 

 for example, humans in the loop (they’re only biddable) 



32 

Institute for Software Research 

Feedback 

Control Loops 
 

Adaptation can take 
many forms, but it 
often involves one or 
more feedback 
control loops 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 



33 

Institute for Software Research 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 

Probe must yield 
model of operating 
state. 
 
However, it often 
relies on proxy data 
of variable quality. 



34 

Institute for Software Research 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 

Controller must  
have sufficient 
command authority  
to actually control 
executing system 



35 

Institute for Software Research 

Obligations for a feedback loop 

 In Requirements 
 Specify the objective, with tolerances and timing 

 In Design 
 Identify feedback elements explicitly, in a separate view 

Choose adaptation (control) strategy  

 In Analysis/V&V, show how .. 
 current state is modeled from sensor data 

 the correction plan works (it can be achieved with 
commands available, it will have desired effect) 

 time constraints are achieved 

 In Implementation 
Map elements of design to elements of implementation 

(control is not necessarily a separate element) 



36 

Institute for Software Research 

Executing 

System 

P
ro

b
e
 

Target 

Compare Choose 

Correction 

Effect 

Correction 

Adaptable system 
 
Garlan, Cheng, Schmerl 
 
Increasing System 
Dependability Through 
Architecture-Based  
Self Repair 
 
In Architecting Dependable 
Systems 
de Lemos, Gacek, 
Romanovsky (eds) 
Springer Verlag 2003 
 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 



37 

Institute for Software Research 

Proposition 

 For a system to be called “adaptive”, it must 
change in response to changes in its internal or 
external environment. 
 

 This usually requires a closed feedback loop. 
 

 The control loop should be an explicit, visible 
element of the system, in design, analysis, and 
implementation. 
 But usually it is not ! 

 



38 

Institute for Software Research 

“Design” 

 Software engineering separates requirements 
elicitation from “design” 

 This falls squarely in the Simon tradition: 
 [devising] “courses of action aimed at changing existing 

situations into preferred ones” 

 problem solving 

 satisficing – finding a “good enough” solution 

 But both disintermedition of the internet and ultra-
large-scale systems lack explicit requirements 

 Other design traditions consider problem-setting 
an integral part of design 

 What should software engineering do about this? 



39 

Institute for Software Research 

 I suggested examples of research that respond to 
current engineering problems of software 
 Extend architectural models to explain cyberspace 

 Put adaptation via feedback on a more systematic basis 

Reconsider “design” 

 Think about how well current software engineering 
research paradigms suit our current problems 
 If an a priori specification is not feasible, what does that 

mean for formal methods?   for design? 

 If end users will create widely-used software, how can 
they gain confidence in it? 



40 

Institute for Software Research 

 

Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 


