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“Computer science is the study of the  
phenomena surrounding computers” 

 

-- Perlis, Newell, Simon  
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Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 
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Most software creators are not software professionals. 
 End users are participants and developers,  

not passive consumers 

 They do not reason about software like professionals 

 “Software” is much more than just code 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 
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There are lots of end users 

C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and End User Programmers.  
VL/HCC'05: Proc 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 207-214, 2005. 

Using data from the Bureau of 
Labor Statistics, we estimate 
that over 90M Americans will 
use computers at work in 2012. 
Of these, only about 2.5M will 
be professional programmers; 
40.5M will be managers and 
(non-software) professionals. 
 
This does not include home 
users or non-US users, so there 
will be many more than 90M 
total end users. Most of them 
will “program” in some way. 
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They are not all alike 

C. Scaffidi, Andrew Ko, B. Myers, and M. Shaw. Dimensions Characterizing Programming Feature Usage by Information Workers. VL/HCC'06: Proc2006 IEEE Symposium on 

Visual Languages and Human-Centric Computing, pp. 59-62, 2006.  

Analysis of 
web-based 
survey of 
Information 
Week 
readers 
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Their skills differ, even within clusters 

 “Programming” can mean anything from editing 
spam filters to writing complex code 
Copying the html for a web page hit counter  

vs creating that html yourself 

 There is not a sharp criterion that says where 
“programming” starts 

 

 

Undermines common assumptions: 

 Software is mostly created by professionals 

 End users “only” need good user interfaces 
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End users are normal people 

 End users lack rich and robust mental models of 
their computing systems 
 they fail to do backups 

 they can not safely configure a network 

 they do not understand storage models  

 especially local vs network storage 

 End users put themselves at risk 
 they execute malware and open attachments 

 they do not understand privacy issues 

 they trust information without validating sources 

 and also software downloads 

 they innocently engage in other risky behavior.  
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End users are not software engineers 

 The responses of SE to the mismatch between real 
computing systems and end users’ models has been 
to seek ways to “fix” the users. 

 But there is plenty of evidence that most people do 
not reason in the linear, rational form that 
computer scientists prefer. 

 

 

Undermines common assumptions: 

 Users can be trained to act “rationally”  

 Usability is “screen deep” 

 Validation is based on a few definitive analyses 
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Internet resources 

 Information: unstructured text, formatted text, 
databases, live data feeds, images, maps, current status 
(e.g., inventory, location) 

 Calculation: reusable software components, 
applications that can be invoked remotely (e.g., services) 

 Communication: messages, social networking, 
streaming media, synchronous communication, agent 
systems, alert/notification services 

 Control: coordination for use of resources, access to 
registration and subscription services 

 Services: simulation, editorial selection, evaluation, 
secondary (derived) information, responsive experts, 
markets 
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Properties of internet resources 

 Autonomous 
 Independently created and managed 

May change structure or format without notice 

 Heterogeneous 
Different packagings, output often for viewing only 

Different business objectives, conditions of use 

 Open affordances 
 Independent systems, not dependent components 

 Incidental effects may be useful 

Humans integral to some resources 
 

Undermines common assumptions: 

 It’s all about programs 

 Someone is “in charge” or “in control” 
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Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 They are large along many dimensions 

More important, they are more complex and more open-
ended than normal systems 

 Scale and complexity make them qualitatively different 

 

What new types of research does this suggest? 
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Ultra-Large-Scale Systems 

 It’s not just about size !!! 

 Some societal problems don’t have clean specs, 
well-defined boundaries, objective tests of success 

 Characteristics 
Multiple stakeholders with different objectives 

No problem statement that satisfies all stakeholders 

Different success criteria for different stakeholders 

 Evolving understanding of problem as solution grows 

 Irreversible consequences of any attempt to solve 

 Technical elements, but deep community engatement 

 In planning/policy world, “wicked problems” 

SEI. Ultra-Large-Scale Systems. 2006 
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Decentralized control 

 ULS system scale offers only limited possibilities 
for central or hierarchical control 
 Long life, multiple users and objectives, span of 

physical jurisdictions are the norm at ULS scale 

Many versions of subsystems, developed and installed 
independently, must work together 

Minimal central control governs a few critical parts 

 Spontaneous new uses arise (“network effects”) 

 

Undermines common assumption: 

 Specifications are complete, static, & homogeneous 

 All conflicts must be resolved, and they must be 
resolved uniformly 
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Conflicting, unknowable, diverse requirements 

 Requirements may not be adequately understood 
until the system is in use 
Competing user groups contend for requirements 

Understanding of problem evolves 

 Problem is deeply embedded in cultural context 

Dependability is “better/worse”, not “right/wrong” 

 Thus the uncertainty about requirements is 
inherent to the class of problems 

 

Undermines common assumptions: 

 Requirements are known in advance, evolve slowly 

 Tradeoff decisions will be stable 
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Continuous evolution and deployment 

 ULS systems have long lives and multiple independent 
developers 
Different groups may install capability for their own needs 

 This may open completely new opportunities (“emergence”)  

 This may also conflict with other groups 

 Evolution can’t be controlled centrally; it must be shaped 
by rules and policies that protect critical services and allow 
diversity at the edges 

 

Undermines common assumption: 

 System improvements are introduced explicitly and at 
discrete intervals 
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Heterogeneous, inconsistent, changing elements 

 ULS systems will be composed from diverse 
independently-created components 
Heterogeneous: many sources, no single interface 

standard, often incorporating legacy systems 

 Inconsistent: evolution spontaneous, not planned; 
different objectives may cause inconsistent versions 

Changing: hardware, software, operating environment 
change based on local decisions 

 

Undermines common assumptions: 

 Effect of change can be predicted adequately 

 Configuration information is accurate & controlled 

 Components and users are fairly homogeneous 
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Indistinct people/system boundary 

 ULS systems’ service to a user depends on actions 
of other users; user/developer distinction soft 
User actions may affect overall system health 

User behavior will be part of system capability 

 System will be used in unanticipated ways 

 System must adapt to changing usage patterns 

Aggregate analysis may be better than exact analysis 

 

Undermines common assumption: 

 Users’ behavior doesn’t affect overall system 

 Collective behavior of people is not relevant 

 Social interactions are not relevant 
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Normal failures 

 ULS system scale implies inevitable failures, so 
systems must do protection/recovery/enforcement 
Hardware failures are inevitable because of scale  

 Legitimate use of software and services outside 
planned capability will cause degradation/failure 

Malicious use will cause problems 

 Even well-intentioned users make mistakes 

 

 

Undermines common assumptions: 

 Failures will be infrequent and exceptional 

 Defects can be removed 
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New forms of acquisition and policy 

 ULS systems will evolve, but there must be 
governance to prevent anarchy 
Comprehensive detailed rules are not feasible 

Need effective guidance on allowed/unallowed 
activity, but policy rather than prescription 

 Success of system depends on organic evolution 

 Individual developers won’t fully understand core 
infrastructure 

 

 

Undermines common assumption: 

 There is a single agent responsible for system 
development, operation, and evolution 
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Analogy: Cities and city planning 

 Cities are complex systems 
 Built of individual components chosen by individuals 

Constantly evolve 

Withstand failures and attacks 

 Cities are not centrally controlled 
 Standards for infrastructures  

 Building codes, highway standards 

 Policies that allow individual action within constraints 

 Zoning laws 

Regulations that govern individual action 

 Enforcement after the fact, rather than prior constraint 

 “Wicked problems” 
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Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 
 Extend architectural models to explain cyberspace 

 Put adaptation via feedback on a more systematic basis 

Reconsider “design” 
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Architectures of cyberspace  

 Users can choose from many applications 
 For communication alone, we have email, blogs, 

facebook, newsgroups, BitTorrent, distribution lists, 
twitter, Yahoo groups, Wikis, Second Life, Flickr, 
YouTube, personal webs, … 

 Users need help matching application to need 
Recall, their mental models are weak 

 End-user developers often get this wrong 
 For example, they choose a web page update (which 

requires users to pull the information) rather than 
email (which pushes the information to the user) 

 Comparison through selected architectural 
properties brings out significant differences 
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Design spaces 

 Design space: set of decisions about a design with 
alternative choices for the decisions 
 Intuitively, discrete Cartesian space with design 

decisions as dimensions 

Complete designs correspond to points in the space 

 In practice, design spaces are very rich 
Representations focus on principal dimensions 

 Some choices preclude others, so hierarchy is used to 
subdue detail 

 Long history in CS 
Computer architecture, user interfaces, distributed 

sensors, software architecture styles, typefaces 
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Example architectural comparison 

Appli-
cation 

Activ-
ation 

Content Privacy State 
locus 

Author-
ship  

Inter-
activity 

Synch-
ronicity 

email sender 
push 

text + 
attach 

private per user originator K known minutes 
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reader 
pull 

text public server 
archive 

submitter N anony-
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hours 
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short text within 
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none all 
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K known immed-
iate 

web reader 
pull 

web page 
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public web 
server 

web 
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no immed-
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soon 
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Example architectural comparison 
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Design space for web communication 
A

c
ti

v
a
ti

o
n
 

Authorship 

sender  
push 

reader 
pull 

shared solo 

  

blog 

    IM;  
email 

twitter 

FB wall 
w/comments 

wiki 

facebook 
status 

Yahoo group 
as email 

email 
d-list 

Other Dimensions 
    content type 
    state location 
    interactivity 
    synch delay 
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Architectural operators 

 RSS feeds 
Abstractly, convert reader pull to sender push  

Can be applied to many sorts of reader pull 

 Yahoo pipes 
Merge and filter RSS feeds 

Do not get much attention from software engineers 

 

 

 Recall that software engineers neglected spreadsheets  
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User composition of internet resources 

 The internet provides a rich set of resources 
 autonomous, heterogeneous, open affordances 

meager specification and documentation 

 End users should be able to compose resources 
 all resources, not just code 

 current state of art is ad hoc “mash-up” 

 need usable means to combine elements from diverse 
sources under local control 

 End users should be able to understand whether a 
composition is good enough for their needs 
 Information about resources is low-ceremony and 

incremental 
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Example:  
Pat and Lou 

Objective: compose 
autonomous 
heterogeneous 
resources 

Pat is diabetic 

Pat and Lou exercise 
together outdoors 

They plan outings based 
on online forecasts 

Pat logs food and 
exercise 

A medical service 
reviews logs and offers 
advice 
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Adaptive solutions 

These characteristics of ULSs favor adaptive solutions 
 Substantial uncertainty in the environment 

 that leads to substantial irregularity or other disruption 

 that may arise from insufficient knowledge 

 that may arise from rapid change of conditions 

 Nondeterminism in the environment 

 of a sort that requires significantly different responses 

 Incomplete control of system components 

 for example, mechanical components 

 for example, humans in the loop (they’re only biddable) 
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Feedback 

Control Loops 
 

Adaptation can take 
many forms, but it 
often involves one or 
more feedback 
control loops 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 
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Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 

Probe must yield 
model of operating 
state. 
 
However, it often 
relies on proxy data 
of variable quality. 
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Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 

Controller must  
have sufficient 
command authority  
to actually control 
executing system 
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Obligations for a feedback loop 

 In Requirements 
 Specify the objective, with tolerances and timing 

 In Design 
 Identify feedback elements explicitly, in a separate view 

Choose adaptation (control) strategy  

 In Analysis/V&V, show how .. 
 current state is modeled from sensor data 

 the correction plan works (it can be achieved with 
commands available, it will have desired effect) 

 time constraints are achieved 

 In Implementation 
Map elements of design to elements of implementation 

(control is not necessarily a separate element) 
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Executing 

System 

P
ro

b
e
 

Target 

Compare Choose 

Correction 

Effect 

Correction 

Adaptable system 
 
Garlan, Cheng, Schmerl 
 
Increasing System 
Dependability Through 
Architecture-Based  
Self Repair 
 
In Architecting Dependable 
Systems 
de Lemos, Gacek, 
Romanovsky (eds) 
Springer Verlag 2003 
 

Executing 

System 

P
ro

b
e
 

Target 

(Set point) 

Compare Choose 

Correction 

Effect 

Correction 
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Proposition 

 For a system to be called “adaptive”, it must 
change in response to changes in its internal or 
external environment. 
 

 This usually requires a closed feedback loop. 
 

 The control loop should be an explicit, visible 
element of the system, in design, analysis, and 
implementation. 
 But usually it is not ! 
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“Design” 

 Software engineering separates requirements 
elicitation from “design” 

 This falls squarely in the Simon tradition: 
 [devising] “courses of action aimed at changing existing 

situations into preferred ones” 

 problem solving 

 satisficing – finding a “good enough” solution 

 But both disintermedition of the internet and ultra-
large-scale systems lack explicit requirements 

 Other design traditions consider problem-setting 
an integral part of design 

 What should software engineering do about this? 
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 I suggested examples of research that respond to 
current engineering problems of software 
 Extend architectural models to explain cyberspace 

 Put adaptation via feedback on a more systematic basis 

Reconsider “design” 

 Think about how well current software engineering 
research paradigms suit our current problems 
 If an a priori specification is not feasible, what does that 

mean for formal methods?   for design? 

 If end users will create widely-used software, how can 
they gain confidence in it? 
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Most software creators are not software professionals. 
 

Ultra-Large-Scale systems represent a qualitative shift. 
 

What new types of research does this suggest? 


