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Particle Tracking in Plasma Physics Applications

2 High-speed cameras:

I Frame rate: 10 kHz

I Frames: 42

I Interval: 4.2 ms

Tracer particles:

I Size: 3 µm

I #Particles: ≈ 20− 30
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Particle Tracking in Plasma Physics Applications

Challenges:

I Particles:
Non-smooth objects.

I Data:
Few projections.

I Algorithms:
Computational Complexity?

Approach:

I Discrete Tomography:
Including Dynamics.
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Discrete Tomography
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Discrete Tomography
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Computational Complexity∗:

I ≥ 3 projections: NP-hard

I = 2 projections: In P
(but: more ambiguities)

∗ R.J. Gardner, P. Gritzmann, D. Prangenberg, 1999;

∗ D. Gale, 1957; H.J. Ryser, 1957.
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Dynamic Discrete Tomography

Idea:

I Initial reconstruction at t = 0: Invest time/equipment.

I Subsequent time steps t > 0:
I Reconstruct from 2 projections
I Use solution from step t− 1 and prior knowledge/constraints
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Dynamic Discrete Tomography

Idea:
I Initial reconstruction at t = 0: Invest time/equipment.

I Subsequent time steps t > 0:
I Reconstruct from 2 projections
I Use solution from step t− 1 and prior knowledge/constraints

Σ = γi+1 = 1

Σ = γi = 1

time t− 1

Constraints from physics
Reduce ambiguity
Particle matching can be
still a problem
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Heuristics: Based on Linear Programming

Linear Program:

minimize w(t+1)Tx(t+1)

subject to A(t+1)x(t+1) ≥ b(t+1)

x(t+1) ∈ {0, 1}l

I Weights: w(t+1)T := (ω
(t,t+1)
1 , . . . , ω

(t,t+1)
n ) ∈ Rn

+

I Totally unimodular: At+1 ∈ {0, 1}m×n
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Conclusion

1. Mathematical model: Select it carefully.
I To reflect physical reality (prior knowledge).
I More data −→ Fewer ambiguities but more memory consumption.

More data −→ Computational complexity = ???

More data −→ • Rec({≤, 1}, {=, {0, 4}}) ∈ P,

More data −→ • Rec({≤, 2}, {=, {0, 4}}) ∈ NP-hard.

2. Algorithms: They work on real data.

3. Interplay: Theory ←→ Applications.
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