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Particle Tracking in Plasma Physics Applications

2 High-speed cameras:
» Frame rate: 10 kHz
» Frames: 42

» Interval: 4.2 ms

PNV Tracer particles:

> Size: 3 um

> F#Particles: ~ 20 — 30
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Challenges:
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Particle Tracking in Plasma Physics Applications

Challenges:

> Particles:
Non-smooth objects.

» Data:
Few projections.

Right View ,

> Algorithms:
Computational Complexity?
Approach:

» Discrete Tomography:
Including Dynamics.

Front View

Andreas Alpers Dynamic Discrete Tomography 4



Discrete Tomography
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Discrete Tomography

Computational Complexity*:

» > 3 projections: NP-hard
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Discrete Tomography

Computational Complexity*:

» > 3 projections: NP-hard

» = 2 projections: In P

2
0
3 (but: more ambiguities)
3
5

* R.J. Gardner, P. Gritzmann, D. Prangenberg, 1999;

* D. Gale, 1957; H.J. Ryser, 1957.
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Idea:
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Dynamic Discrete Tomography

Idea:

» Initial reconstruction at ¢t = 0: Invest time/equipment.

» Subsequent time steps t > O:
» Reconstruct from 2 projections

» Use solution from step ¢ — 1 and prior knowledge/constraints
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Idea:
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Dynamic Discrete Tomography

Idea:

» Initial reconstruction at ¢t = 0: Invest time/equipment.

» Subsequent time steps t > O:
» Reconstruct from 2 projections

» Use solution from step ¢ — 1 and prior knowledge/constraints

» Constraints from physics
» Reduce ambiguity

» Particle matching can be
still a problem
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Heuristics: Based on Linear Programming
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Heuristics: Based on Linear Programming

Linear Program:

minimize wtH DT g t+1)
subject to AW+ g+ > plt+1)
w(t+1) c {0’ l}l

» Weights: wt+DT = (wgt’“l), . ,wr(f’tH)) e Ry}
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Heuristics: Based on Linear Programming

Linear Program:

minimize wtH DT g t+1)
subject to AW+ g+ > plt+1)
w(t+1) c {0’ l}l

» Weights: wt+DT = (wgt’“l), . ,wr(f’tH)) e Ry}

» Totally unimodular: ATt € {0,1}m*"
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Conclusion

1. Mathematical model: Select it carefully.
» To reflect physical reality (prior knowledge).
» More data — Fewer ambiguities but more memory consumption.
Computational complexity = 777

o Rec({<, 1}, {=,{0,4}}) € P,
e Rec({<, 2}, {=,{0,4}}) € NP-hard.

2. Algorithms: They work on real data.

3. Interplay: Theory «+— Applications.
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