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(GP)GPU: CUDA (OpenCL)
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• Massively parallel: 

#threads > 104

• Independence: 

synchronization and 

write collisions should

be avoided

• SIMD: conditional

statements are not

welcome

• Coalesced memory

access



PET physics
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Maximum-likelihood reconstruction
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Iterative solution
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Computational challenges

• Numbers of LORs and voxels: hundred millions!

• System matrix A: 1016 elements (PetaBytes)

– Probability that a positron of a voxel is detected by a LOR

– Patient dependent

– Not sparse if accurate simulation is needed

– Do not store, estimate on-the-fly

• Matrix elements are high dimensional integrals

– Monte Carlo quadrature

– Reuse of computation

– High performance (parallel) computational platform

• Minimize the effect of estimation error



Numerical integration
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Quadrature error
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Effect of stratification
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Direct physical simulation
Input driven, scattering type algorithm
• Thread = photon

• Photons scatter different number of times

• The same detector is hit: write collision

• Random memory access

• Cannot mimic the detectors

source detectors



GPU friendly approach
Output driven, gathering type

• Thread = importon

• SIMD: grouping importons

• No write collision: LOR-driven

• Cannot mimic the source

source detectors



Multiple Importance Sampling
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Direct gamma photon contribution
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• Accuracy for given 

sample number

• Cost of a sample
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Output- or LOR-driven sampling
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Pros:

• Gathering

• Thread coherence

• Texture coherence

• Uniform on detectors

• Low-cost samples 

due to reuse

Cons:

• Cannot mimick activityl
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Input or voxel-driven sampling

Detector 
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Detector 
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Pros:

• Can mimick activity

Cons:

• Write collisions

• Less coherence
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Multiple Importance Sampling
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Multiple Importance Sampling



Input-driven scattered photon

transport

• Monte Carlo simulation: 

– Free path

– Absorption?

– Scattering direction

source absorption

voxel
fetches

scattering
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Free Path Sampling

For special cross section functions (t), 

it can be solved analytically.



Ray marching

• Complexity grows with the resolution

• Slow in high resolution low density media
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Mix virtual particles to obtain a density 

that can be solved analytically

photon

Virtual 

collision

Real

collision

Virtual particleReal material 

particle

40963 effective resolution

64 billion sample points



Output-driven single-scattered 

photon transport with reuse
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1. Scattering points 2. Ray marching between

scattering points and detectors
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Multiple Importance Sampling
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Detector response

photon

scattering

absorption

Electronics hits


Problem: 

The domain is 4 dimensional. 
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Quasi-Monte Carlo filtering



Detector Scattering Compensation
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Measured

values
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Simulation

)()( xAy nn ~

Expected

values

Back projection

Monte Carlo simulation

or simplification

Random or

deterministic

estimation
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2D study
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Backprojection with unbiased

forward projection
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Reduce bias and outliers

• Averaging iteration:

• Metropolis iteration: Ignore outliers randomly

Acceptance with probability
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Recons

3382 × 845 res

0.1 mm voxels

4322 × 654 res

1.3 mm voxels



Conclusions

• GPU is an effective tool for computing tens

of thousands of parallel threads having no 

conditionals and collisions.

• The problem must be interpreted and 

solved to keep this requirement in mind. 

• Randomization (Monte Carlo) can help

structure the problem in this way.


