

WORKSHOP ON LARGE-SCALE TOMOGRAPHY

BIG DATA: SIZE DOES MATTER!

LAJOS RODEK
BIG DATA ARCHITECT, EPAM SYSTEMS, SZEGED
LAJOS RODEK@EPAM.COM

JANUARY 26, 2016

DISCLAIMER

NO SCIENCE TODAY!

AGENDA

- 1 Introduction to Big Data
- 2 Big Data in practice
- 3 Technologies & tools
- 4 Conclusions

DEFINITION OF BIG DATA

"... a new generation of technologies and architectures designed to extract value economically from very large volumes of a wide variety of data by enabling high-velocity capture, discovery, and/or analysis." (IDC, 2012)

"... high-volume, -velocity and -variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." (Gartner, 2013)

THE 3 V'S

Volume

Scale of data

Large & expanding

Many data sources

Velocity

Rate of data arrival

Rate of processing: offline (batch) vs low-latency vs realtime (stream)

Rate of changes

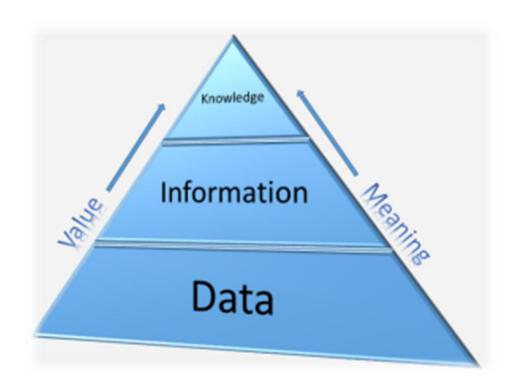
Variety

Structured vs unstructured vs semi-structured data

Text vs binary data

"Dark data"

(Doug Laney, META Group / Gartner, 2001)


ONE MORE IMPORTANT V

Value

Relevance

Outcome

Actions

USE CASES

TOP BIG DATA USE CASES Customer Financial Marketing Retail Security 45% Customer **Analytics Experience Analytics** 48% **Threat Analysis** 30% 37% Campaign Optimization 23% 26% Location-based Targeting Product **Placement** 16% Optimization Brand 16% Sentiment Analysis A 9% Other 1%

Big Data use cases across all industries

Financial Services

- Fraud detection
- Risk management
- * 360° View of the Customer

Utilities

- · Weather impact analysis on power generation
- Transmission monitoring

IT

. Smart grid management

Transportation

 Weather and traffic impact on logistics and fuel consumption

Health & Life Sciences

- Epidemic early warning system
- ICU monitoring
- · Remote healthcare monitoring

Telecommunications

- CDR processing
- Churn prediction
- · Geomapping / marketing
- Network monitoring

- Transition log analysis for multiple transactional systems
- Cybers ecurity

Retail

- * 360° View of the Customer
- Click-stream analysis
- · Real-time promotions

- · Real-time multimodal surveillance Situational awareness
- Cyber security detection

@ 2012 IBM Corporation

TYPICAL TASKS

Distributed data storage

Even geographically → Multiple data centers

Distributed data processing

- Collect
- Transform
- Query
- Analyze & understand

Distributed computing

PRINCIPLES 1.

Robustness & reliability on SW framework level

- Fault tolerance
- Redundant storage

"Keep everything"

Including raw data

Linear (or better) scalability

- Horizontal (scale out) vs vertical (scale up)
- Scale down
- Dynamic / elastic / autoscaling

PRINCIPLES 2.

Efficiency

- High-throughput
- Low-latency

Data locality

• Execute computation where data are located → No unnecessary data transfers

Running on commodity HW

Dominated by open-source, community-driven SW (vs proprietary)

CHALLENGES 1.

Choosing the right tool

• Abundance of options ©

Efficient data access

- Denormalization
- Graph schema
- Serialization

Testing

- Verification
- Debugging
- Performance measurement

CHALLENGES 2.

Enterprise integration

Data hub / lake

Extremely large data size (exponential growth)

Data federation / virtualization

Data governance

- Data sources, data integration / fusion, data catalogs, metadata management
- Data quality
- Security, privacy, legal compliance
- Retention policy

CHALLENGES 3.

High Availability (HA)

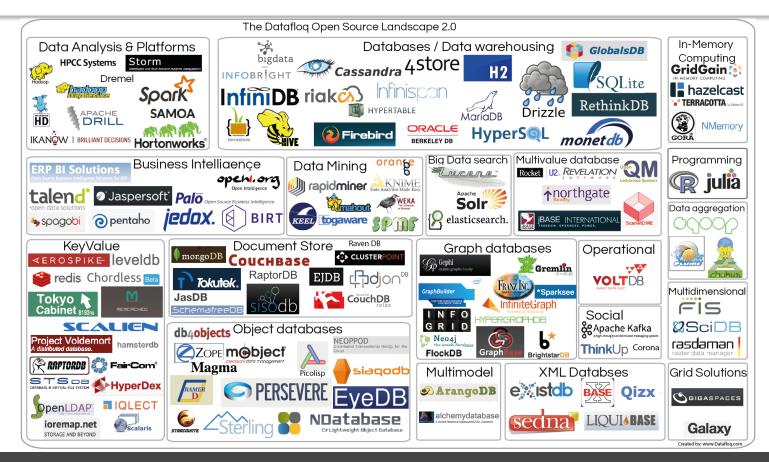
- No single point of failure (SPoF)
- Standby / fallback
- Replication / synchronization

Service Level Agreement (SLA)

- Availability
- Multi-tenancy
- Quotas
- Scheduler policy

CHALLENGES 4.

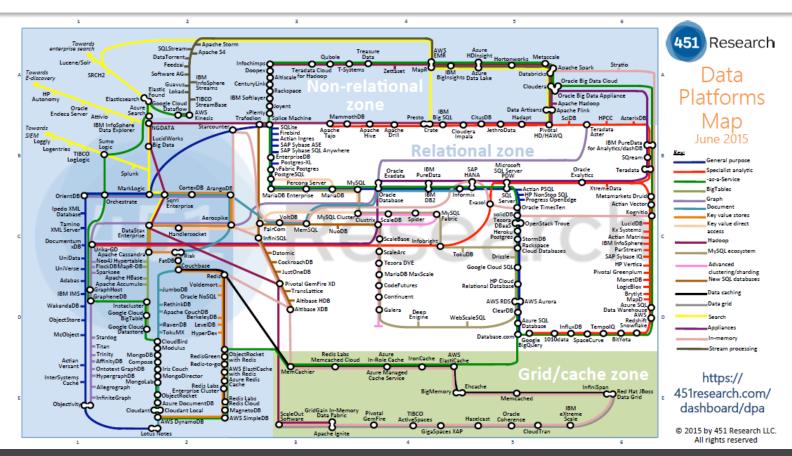
Administration / operation


- Installation, provisioning
- Monitoring
- Management
- Troubleshooting

Expenses

- Infrastructure
- Experienced workforce (e.g. Data Scientist, Data Engineer, Platform Engineer)
- Trainings, learning curve
- Commercial support / consultancy

BIG DATA OPEN-SOURCE LANDSCAPE


APACHE HADOOP AND ITS ECOSYSTEM

STORAGE: RDBMS, NEWSQL, NOSQL, GRID / CACHE

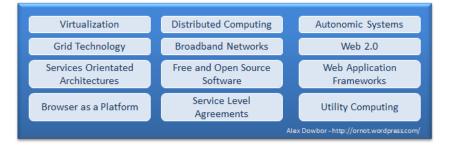
CLOUD

Deployment Models

Public Hybrid Private Community

Delivery Models

Software as Platform as a Service (SaaS) a Service (PaaS) Infrastructure as a Service (IaaS)


Google Cloud Platform

Essential Characteristics

Foundational Elements / Enablers

Based on the NIST Working Definition of Cloud Computing v14 and http://www.csrc.nist.gov/groups/SNS/cloud-computing/index.html

Creative Commons Attribution-Share Alike 3.0 Alexander Dowbor - http://ornot.wordpress.com

APPLICATION DESIGN

Architecture

- Event-driven, reactive
- Lambda, Kappa
- Shared-nothing

Patterns

- MapReduce
- Actor model
- Data pipeline / flow

Algorithms

- Divide and conquer
- Concurrent / parallel

RELATED TOPICS: STORAGE

High-performance drives

- SSD
- RAID

Network storage

- SAN
- NAS

Network / distributed file systems

• NFS, Lustre, GlusterFS, GFS, HDFS, GPFS

"Fast data" (in-memory)

• Tachyon, GridGain / Apache Ignite file system

RELATED TOPICS: PROCESSING

High-performance networking

- InfiniBand, Fibre Channel, fiber-optics
- RDMA, zero-copy

Artificial intelligence

• Machine learning, NLP, data mining, dimension reduction

Analytics & statistics

• DWH, BI, data visualization

Data science

RELATED TOPICS: COMPUTING 1.

Parallel computing

- Multithreading, SMP, OpenMP
- GPGPU → OpenCL, CUDA
- SIMD, VLIW / MIMD, MPP, vector processors

Grid computing

• GigaSpaces XAP, GridGain / Apache Ignite, GemFire / Apache Geode, JPPF, HTCondor

HPC / supercomputers

• PVM, OpenMPI

RELATED TOPICS: COMPUTING 2.

Edge computing

Sensor networks / IoT, P2P

"Fast data" (in-memory)

• Apache Spark, Apache Flink, SAP HANA

BIG DATA IS COMPLEX

POSSIBLE CONNECTIONS WITH TOMOGRAPHY

Storage

- Collect
- Query, retrieve
- Link with other data sources, associate metadata

Processing

- Transform, pre-process
- Analyze & understand
- Evaluate

Computing

Reconstruct

