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~Institute for Data Processing and Electronics at KIT
~Instrumentation for high-speed synchrotron imaging
~Optimizing tomographic reconstruction for parallel architectures
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I IPE Competences

Experiments
* Astroparticle & High Energy Physics
* Atmosphere and Climate
* Nuclear Fusion
* Electrical Storage Systems
* Photon Science
* Ultrasound Tomography
* Nano- and Microsystems
* Supercomputing & Big Data

Tools and Technologies
* High-speed DAQ Electronics
* High-performance and GPU computing
* Software optimization
* Databases and data warehousing
Web-based data visualization

Data

Detector Digital Electronics Data Analysis Management

r

_—

Competences cover full data path from detector,
analog electronics, through data management

March 2013 Prof. Dr. Marc Weber
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I Example 4D cine-tomography experiment IT

e of Technology

Sitophilus granarius
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In vivo X-ray 4D cine-tomography experiment. (a) Photograph of Sitophilus granarius,
dorsal view. (b) Experimental set-up for ultra-fast X-ray microtomography showing
bending magnet (1), rotation stage (2), fixed specimen (3) and detector system (4). (c)
Radiographic projection. (d) 3D rendering of the reconstructed volume with thorax cut
open and revealing hip joints (arrows). (e) In vivo cine-tomographic sequence of moving

weevil.
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I Scope of the problem & Projects AT
4 ™
Fully automated 4D imaging of living
species with high spatial and temporal
- resolution and image-based control -

UFO

Online montiroing
and image-based
control

Real-time
reconstruction and
Visualization
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STROBOS

Low Dose
Laminography

High-quality
reconstruction from
under-sampled data for
diffraction laminography

ASTOR

Post-processing
tools for biologists

Work-flow for remote
semi-automated
segmentation

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology



IU FO Ultra Fast X-ray Imaging of Scientific Processes with ﬂ(".

On-Line Assessment and Data-Driven Process Control == %% &
ANKA  Optics and sample Smart high- Online monitoring Offline
beam line  manipulators speed camera and evaluation storage
S 9 5 . o8 (s sl & e é
e
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Fast
control loop
S Classification
control loop

Goals
»High speed tomography » Enable data driven control
» Increase sample throughput » Auto-tunning optical system
» Tomography of temporal processes » Tracking dynamic processes
» Allow interactive quality assessment » Finding area of interest

T Institute for Data Processing and
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I 4D Tomography of living organisms AT
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Radiation Motion
Radiation is destructive and MOtiOf‘ dqring _the acguisition
limits duration of experiment of projections is blurring the

\)w

We need to reduce number of used projections

Nyquist-Shanon criteria defines a minimum number of
projections required for quality reconstruction

A priori knowledge can be introduced to overcome the restriction

Institute for Data Processing and
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I Reconstruction Algorithms AT

Analytic

DFM FBP

DFI
Gridding
Pasciak

More

Fast
aster Robust

- /
N

High performance
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Iterative
ART Minimization Compound
techniques methods
SIRT Shrinkage ASD-POCS
SART SD Split-Bregman
OS-SART CGLS

+ Geometry Modeling
+ Projection Modeling
+ A priory Knowledge

—

Customizable Reconstruction

Institute for Data Processing and
Electronics
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I Handling the computational problem AT

Karlsruhe Institute of Technology

- Distributed control system based on Infiniband interconnects
« GPU-based computing

« Multiple levels of scalability

« Cheap off-the-shelf components

* Modular reconstruction framework
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Easily scalable 2007 2008 2010 2012 2014
U o to 4 GPUs =i~ Xeon/SP —#— Xeon/DP Tesla/SP=#&— Tesla/DP GeForce/SP=»— GeForce/DP

with 35 Tflops

for ~ 5000 EUR _ _
Historical trends of CPU and GPU performance

Institute for Data Processing and
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I UFO Control Network AT

of Technology

Control Room

Beam-line -

e

|
Compute
| ]

Center

Cameral PCle

Link X8 gen3 Ethernet

O

Infiniband
(Optical)

10 Gig Ethernet

Infiniband
(Electrical)

------------------

isszz
L

1E

IB router

OpenCL

Scalable Control Network

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

11 S. Chilingaryan et. all



I Master Server QAT

Karlsruhe Institute of Technology

Storage

]
10 Gb/s

Cameras | et =
' FDR Infiniband ' A B =

56 Gbit/s
Internal

PCO.edge

PCO.dimax

L

External PCle x16 (16 GB/s)

I SuperMicro 7047GR-TRF (Intel C602 Chipset)

Y CPU: 2 x Xeon E5-2680v2 ( total 20 cores at 2.8 Ghz)
» GPUs: 7 x NVIDIA GTX Titan
Memory: 256 GB (512GB max)
Network: Intel 82598EB (10 Gb/s)
Infiniband: 2 x Mellanox ConnectX-3 VPI
Storage: Areca ARC-1880-ix-12 SAS Raid
8 x Samsung 840 Pro 510 (Raid0)
16 x Hitachi A7K200 (Raid6)

< High amount of memory
@ Fast SSD-based Raid for overflow data
& Easy scalability with external PCIl express and SAS

T Institute for Data Processing and
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I UFO Image Processing Framework AT

e of Technology
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java & python” -

provides interface for i "|
] § /‘ Clusters Ma ny‘GPUs Many CPUs
A A A
Glib; OpenCL Computation distribution
GObject Introspection
A

Uses open standards\ U F 0 framework ‘ AUTomatic memory U Fo S

Ultra-fast X-ray Imagin
y Jhd J management

Graph structure
@ - processing task

/

Preprocessing Reconstruction
Executes on CPUs '_‘ Executeson GPUs
Radiogram Sinogram
acquisition Flat-field Noise generation Filter#1 Filter#2 Filter#N

correction reduction

Storage  Segmentation

Fully pipelined architecture supporting diversity of the hardware
platforms and based on open standards for easy algorithms exchange.
Easy prototyping with Python and other scripting languages.

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology
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I UFO Filters
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Preprocessing

Tomography

Laminography

Flat-field correction
Phase-contrast Imaging

Filtered Back Projection
Direct Fourier Inversion

Filtered Back Projection
Discrete ART

Grating Interferometry SART / SIRT
Projectors Regularized

Joseph SBTV

DFl-based ASD-POCS

Postprocessing

De-noising
Optical flow
Visualization

Split-Bregman / TV
Split-Bregman / *lets
Split-Bregman / Hybrid

S. Chilingaryan et. all
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I UFO Algorithms: Synchrotron data AT

Karlsruhe Institute of Technology

Zoomed joint of Sitophilus granarius (grain weevil

Split-Bregman with

Segmented
Framelets

Reconstructed from 50 projections (~ 1/40 of standard dataset)

T Institute for Data Processing and
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I Reconstruction Performance

DFI
N *log N

1600 MB/s (CUDA)
850 MB/s (OpenCL)

CUDA

OpenCL

16 S. Chilingaryan et. all

FBP
M * N

800 MB/s

Scaling up to 6000 MB/s
~ 2250 MB / s from 12 bit camera

Scaling up to 2500 MB/s
~ 950 MB / s from 12 bit camera

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

SART/SIRT
N? equations

500 KB/s

> DF Number of GPUs

2 3 4 5 6 7

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology



I Software Stack IT

of Technology

Storage
UFO Master Server Cluster
coneert | o tiRaid | iSER
ﬁ ’? =
Advanced Linux Gobject-Introspection

PCI Services

LibUCA UFO .
Unified Camera GPU Image [> FaStW”ter DM

Access Streaming Library

)

Processing Framework

LibPCO

PCO Drivers @

C Stat
amera Station KIRO

1L

OpenCL |, | UFO

Computing Cluster Remote Users

T Institute for Data Processing and
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Karlsruhe Institute of Technology

; "R E
ASTOR | /nitiate | ASTOR -
Web- analysis Analysis Virtualization =
catalog Services Servers |
A
request data +
get data stgre results WIS eIERLE
from catalo Servers
ASTOR Data Compute
Management Servers
\
manage recorded data \
_ \l/ Long-term Archive
UFO Station
A ,| Processing N
transmit data Cache NG archive +

7l
/%

7 B
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restore data

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology



I WAVe: Web-based volume visualization QT

Karlsruhe Institute of Technology

volume visualization

Sl e Ray-casting approach

zooming 512 1024 2048 4096

zoome: d out
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A preview slice-maps Zrcrseiess
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Optimized storage layout
for fast zooming

72291
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~Working on majority mobile platforms with descent GPUs
~Multiple zooming levels for inspecting fine details
~High-quality cuts

~ Automatic thresholding-based segmentation

~ Multi-modality rendering support

Institute for Data Processing and
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IOptimizing tomography for parallel architectures T
» Consists of SIMD-type Compute Units (CU)

» One instruction is executed on many data items
» Each CU able to execute several operation types
» But only FP additions/multiplications are fast

» Posses complex memory hierarchy
» Low Bandwidth-per-flop ratio and small caches
» Up to four different types of memory
» Optimal access pattern have to be followed

» Architectures vary drastically
» Sizes, speed, and structure of memories / caches
» Types and amount of provided processing units
» Balance of operation throughput

.(:m
o
.(:m
.m.

4 : N s
Codes and algorithms have to be T
carefully optimized for the specific = '

- Compute Unit
arallel architecture
P > on Fermi

20 S Chilingaryan et. all Institute for Data Processing and

Electronics
Karlsruhe Institute of Technology




I Memory model AT

Device « Host Memory

Multiprocessor N — 6 GBI/s (PCle x16 gen2) to
: 12 GB/s (PCle x16 gen3)

* Global Memory

— 100 — 300 GB/s with
latencies up to 1000 clocks

 Local Memory

Multiprocessor 1
— 1 -2 TB/s (total) with
latencies below 100 clocks

-~ |« Registers

.-_-- — private to threads

« Caches
— L1/L2 cache

— Constant memory

Complex memory hierarchy consisting of 4 levels and with each level
one order of magnitude faster when previous!

Multiprocessor 2

T Institute for Data Processing and
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Programming Model AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Thread abstraction is used to split the problem space into the
independent GPU tasks

~All threads execute the same code (kernel)

~Task is defined by the linear or volumetric index of the thread
~GPU schedules threads in groups of fixed size (warp)

~ A user-defined block of threads is assigned to a specific CU
~Threads of the block may exchange data using CU shared

memory grid
= e block

/e.g. resulting image is mapped o N | ;

a 1-, 2-, or 3D grid of GPU threads {

and each pixel is computed by a N

thread with the index equal to pixel NN e

' | thread
. coordinates A\
| warp

T Institute for Data Processing and
S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Scheduling

Warp Scheduler

Warp Scheduler

YYYYYITYYYYYYYYY

YYYYYIYYYYYYYYYY

. Warp 1 instr 1 Warp 2 instr 1

3

? Warp 3 instr 1 Warp 3 instr 2
Y Warp 1 instr 2 Warp 4 instr 1

—

Core Core Core SFU

SFU LD LD

AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Multiple warps on CU
executed in parallel

Independent instructions
executed in parallel

Warp 4 will be blocked for
a long time, but other
warps on CU will execute
and hide the latency

~Warps from several blocks are executed by CU in parallel

~ The number of currently resident warps is called occupancy

~ Occupancy is limited by available registers and shared memory
~ Suboptimal occupancy limits the instruction bandwidth

( For optimal performance we have to increase occupancy
and number of independent instructions

23 S. Chilingaryan et. all
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I FBP Reconstruction (IT
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1. Filtering
Multiplication with the configured filter in the Fourier space

2. BackProjection o
InS L] L
> 1. For each position we compute:

xecos(a) - yesin(a)

roj. O
Ero} 1 1 g g j g 2. Interpolate between neighboring bins
proj. 2 192345 3. Sum over all projection
' 4. The sum is the value of (x,y)

pro,a 1 2 3 45

\ xecos(a) - yesin(a)
(X,y)

For each texel of output volume
and for each projection we perform
a single linear interpolation

R

T Institute for Data Processing and
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I Texture Engine =

25

Features:

Spatial-aware cache
Bi/tri-linear interpolation
Normalized coordinates
Different clamping modes

Applications:

Linear interpolation, i.e. image
scaling

Optimize random access to
multidimensional arrays

S. Chilingaryan et. all

AL T e a e

PolyMorph Engine

Vertex Fetch |[ Tesselia tor ||

|Attribute Setup | | stream Output |

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology



I Filtered Back Projection

C> Image Loader

Fetch slices
for processing

KIT

Karlsruhe Institute of Technology

Data Storage C>

X<

Pool of Sinograms
(host memory)

Pool of CPU and GPU

Store results

<

NVIDIA. \

GEFORCE
GTX 280Mm

processing threads

Pool of Vertical Slices

(host memory)

Jojsuel|
eled 9|10d

— T
8 O = | GPU 1°* Stage 2™ Stage
n @ gerznes || thread
o9 \
= Q0 BN L
&5 i a1
| i \—:fj}:
y 7777777777;7;' =~ mm
/\ = - Double
Double w buffering
fferi Filterin
buffering = Texture
26 S. Chilingaryan et. all
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I Performance of Texture Engine

27

GT280
$I(1):§ughput 930 GF
Texture Fill 48 GT/s
Rate
Ratio 19.3

S. Chilingaryan et. all

Karlsruhe Institute of Technology

GTXS580

1580 GF

49 GT/s

31.6



I Optimizing FBP for Fermi AT

28
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16 px vV = Xecos(a) - yesin(a)
maXXy<N(V) — rnir]xy (V) < N\/Z

<N
NV2 <1.5N

xd 9|

Each block of threads accesses actually only 3 ¢ N/ 2 bins per projection

(3/2)*N texture

§ fetches
N? texture fetches ¥ N? interpolations
N AN \
— 07 Shared %
Image Memory Image
Texture Texture
Standard Version Fermi-optimized Version
Texture engine is heavily loaded Both texture & computations engines are used

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology
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Pixe

| to thread mapping AT

Karlsruhe Institute of Technology

Processing 4 pixels per thread reducing amount of
texture fetches and hides operation latencies with
multiple independent operations (instruction

reordering).

bins

°
cf.:' Texture
=: Memory
>

y

oL ™ |

o E——

ol =

S. ]

[oud 9} |

Processing in multiple passes,
16 projections each

29
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Px. Fetches/px. Regs ShMem Occup. ILP
1 0.09375 26 1536 66% 1

4 0.046875 32 3072 66 % 4

Step1: filling shared memory Legend
Only 48 textdre fetches per Processed by a single
rojection
brol ;-6i thread block (16x16)
uy f()o 48 bins of a projection
E\ o required for current block
S x 16 of the projections
are \ : .
Memory : processed in a single pass
. Step2: integrating the volume 32 px
48 bins  32%interpolations per projection Volume - thr (1,1) - thr (2,1) thr (3,1)

B 2 thr 2,2) [ thr 3.2)
thr (1,3) [ thr 23) [ thr (3,3)

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology




I Oversampling T

0 02505 0.75 112515 1.75 2 22525 275 3 Linear interpolation is
Bin 0 Bin 1 Bin2 - slow, and nearest
e | e | [ | neighbor is not precise
enough

With  oversampling the
texture engine is used to

interpolate 4 positions for
12 texture fetches per thread each projection bin and
shared near-neighbor interpolation
emory _
. IS used then.
192 bins

Method Fetches/px Regs ShMem Occup. Reads/px Flops/px

Linear 0.046875 32 3072 66% 2 7

Oversample 0.1875 42 12288 50% 1 4

T Institute for Data Processing and
30 S. Chlllngaryan et. all Electronics
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I Kepler: Fast Texture Engine is Back AT

Karlsruhe Institute of Technology

GT580 GTX680 Change
Texture Engine 49.4 GT/s 128.8 GT/s 2.6 x
Floating-point 16 x 32 X 8 x 192 x 1.006 N Vs
operations 1.55 GHz GHz '
‘bit operations, ype 10X 16X 8x32x
P 1S, type 1.55 GHz 1,006 GHz |
conversions
Shared Memory 48 KB 48 KB 1
Blocks per SM 8 16 2
: 32K per SM, 64K per SM,
Registers y & 1

63 per thr. 63 per thr.

T Institute for Data Processing and
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I Default approach AT

bins
iaJ_ Texture Texture Cache Hit Rate 89 %
§  Memory Texture Throughput 79.3 GT/s

16 bins 16 bins Theoretical Throughput  128.8 GT/s

Suol
<

LA N

1121372 516718 9/101112131411516

123 45(67 8 910111213141516
Block of 16x16 pixels

1. Up to 16 bins are accessed per warp
2. All threads are accessing a single texture row

Institute for Data Processing and
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I Optimizing the thread mapping g("‘

Block of 16x16 pixels
waps 1234 5/6 7 8 910111213141516

12345678 910111213141516

Wap1 12 34 56 7 8 910111213141516

i i i l i Up to 16 texture locations
v per warp.
1 % 34567 8 910111213141516 Texture

/ Less than 6 texture
locations per warp

7223/4/12341234 ‘
56 7856785678 :
910111291011129 101112 =008 =HLIEE
131415161314151613141516

Warp 1 Warp 2 Warp 3

T Institute for Data Processing and
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I Using spatial locality

IT

e Institute of Technology

bins Layout Regs Occup. Hit Rate Bandwidth
S |Texture Standard 32 100% 89 79.3 GT/s
% Memory Optimized 40 75% 96 117.5 GTls
ﬂ 16 pixels _
6 bi -
INS 6 bins 112134 S
N L co oo 567 8 lteration | lteration | = | S
> 9101112 2 3 5 8
S. : — 13141516 I
o
2,
lteration =N
5 16 iterations 3P
>®p1
L S,
=
Q
. .
1]2)3]4 N
Better 2D texture cache locality with g fomz teration| lteration /9 Z
. . . Q)
16 projections computed in parallel 13141516 > §
(16 sums are summed_tog_ether after 16 iterations o)
processing all projections) '

36 S. Chilingaryan et. all
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warpld 0

1

2

3

4

5

6

7

1

i

1

1

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

v+= shfl down (v, 4)

v+=_shfl down (v, 2)

v+=_shfl down(wv,1)

Shuffle instruction introduced by Kepler architecture
allows fast exchange of information between threads
of the warp.

S. Chilingaryan et. all

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology
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Oversampling approach on Kepler AT

Slow performance of integer and rounding operations
makes Fermi oversampling algorithm slow.

~ W
o

floud 91

proj_offset = [bxecos(a) — byesin(a) + correction(a)]

On Fermi, for each block and projection we compute smallest-bin
offset on the fly by each thread. On Kepler instead we can:

~ Optimize rounding routine
~Pre-calculate and cache offsets

T Institute for Data Processing and
S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Looking for faster rounding on Kepler QAT

Exponent, 8 bits Fraction, 23 bits oo
= - ) N IEEE 754
single-precision

f =|s eeeeeeeef ffff ... ffff ﬂoating pointnumber

31 — _4Se DE-127, e Ni-23 0

f = -1% 2912701 + 3fe24%0)

Only 23 significant positions, for
small positive numbers: round(f) = f + 22°- 2%

f+2% = 2%:(1 + 3fe2%) (int)f = f + 22~ 0x4B000000
I.e. no fractional part

*

SFUs (x4) LD/ST Units (x16)

fp math rounding texture

We get faster rounding, but SFUs left unused and we got no
speed up...

T Institute for Data Processing and
39 S. Chilingaryan et. all Electronics
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I Reducing number of rounding operations Q{JT

stitute of Technology

/N

warp1 | po /p16\ p240
warp2 | p1 | p17 0241
warp16 | p15 \p31/ 0255

On each iteration, the appropriate
offsets are shuffled to all threads of

the warp

shuffle broadcast

Get all 256 projection offsets
at once and iterate 16 times

over 16 projections.

p16

40 S. Chilingaryan et. all

p17

p31

16 pixels
1234
567 8 lteration| Iteration
9101112 2 3
13141516
Iteration _ _

5 16 iterations
112 34
5167 8 lteration | lteration
9101112 2 3
13141516

16 iterations

-

Electronics

sfexid g}

sjexid 9|

\J

Institute for Data Processing and

\/

I91]eJed ul 400|q pesiy}-9Gz yum passasoid

suonoafoud g}

Karlsruhe Institute of Technology



I Summary: 3 stages of oversampling AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Work-group of 256 threads used to backproject area
of 32x32 pixels from 256 projections

1 PO p16 .. 240 compute all offsets 16 iterations
p1 |p17 ... p241 work-items are Y
only 16 projections
.. | .. .. mapped linearly to all 2 (only af gncje)
p15 p31 ... p255 projections. Im”
| _ cache data in shmem
3 256 iterations warps are mappedto 3
each processing a projections and individual®
single projection work-items to its bins. |
16 192 bins
B | ., interpolate pixels : .
o g | 5 work-items are mapped 3 dn‘fer.ent Mmappings
to area 16x16 pixels and | for optimal
> ' proess 4 pixels at once performance
pX

Institute for Data Processing and
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I Performance of Back Projection ﬂ(“‘

GTX680

GTX580

GTX280

0 20 40 60 80 100 120 140 160

Modifications: giga-interpolations per second

M Standard M Linear ® Oversample Kepler B Kepler Oversample

42 S Chilingaryan et. all Institute for Data Processing and

Electronics
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I Optimizing Filtering Step AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

FFT library is optimized for complex-to-complex transforms while we are
dealing with real numbers.

projection 1 projection 2
a;aasasasag.. bib,bsb,bsbs...
| | real part
T v i imaginary part
FFT(|a, by a, bsas; bsa, b, as bsagbg ... ) Interleaved complex vector
X

fo fy fy £y f5 f5 £y f4 f5 f5 g fg ... Filter

IFFT( la, by a, b, as bsa, b, asbsagbs ... ) Interleaved complex vector

diaazasasas... b;b,b;b,bsDbg ... Filtered projections

» Also

» Pad data to a size equal to the closest power of 2
» Batched processing

43 S. Chilingaryan et. all
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| Summary AT

~Scalable hardware platform for image-based control gy
~Only off-the-shelf components are used
~ Easily scalable from single PC to the GPU cluster
~Reliable storage for data streaming at rates up to 4 GB/s
~Distributed over large area using Optical Infiniband Links
~ Fully-pipelined parallel image-processing framework
~Tuning for various parallel architectures
~ Real-time reconstruction (up to 2 GB/s from camera)
~ Fast low-dose reconstruction (about 4 hours per dataset)
~Remote data analysis infrastructure
~Virtualization environment for remote image segmentation
~High quality web-based visualization of large volumes

44 S Chilingaryan et. all Institute for Data Processing and

Electronics
Karlsruhe Institute of Technology
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