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IPE Competences

March 2013 Prof. Dr. Marc Weber

Competences cover full data path from detector, 
analog electronics, through data management

Experiments
• Astroparticle & High Energy Physics 
• Atmosphere and Climate 
• Nuclear Fusion
• Electrical Storage Systems
• Photon Science
• Ultrasound Tomography
• Nano and Microsystems 
• Supercomputing & Big Data

Tools and Technologies
• Highspeed DAQ Electronics
• Highperformance and GPU computing
• Software optimization
• Databases and data warehousing
• Webbased data visualization

Detector Digital Electronics Data Analysis
Data

Management
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Example 4D cine-tomography experiment

In vivo X-ray 4D cine-tomography experiment. (a) Photograph of Sitophilus granarius, 
dorsal view. (b) Experimental set-up for ultra-fast X-ray microtomography showing 
bending magnet (1), rotation stage (2), fixed specimen (3) and detector system (4). (c) 
Radiographic projection. (d) 3D rendering of the reconstructed volume with thorax cut 
open and revealing hip joints (arrows). (e) In vivo cine-tomographic sequence of moving 
weevil.
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Fully automated 4D imaging of living 
species with high spatial and temporal 

resolution and image-based control

Scope of the problem & Projects

UFO STROBOS ASTOR

Online montiroing 
and image-based 
control

Real-time 
reconstruction and 
Visualization

Low Dose 
Laminography

High-quality 
reconstruction from 
under-sampled data for 
diffraction laminography

Post-processing 
tools for biologists

Work-flow for remote 
semi-automated 
segmentation 



S. Chilingaryan et. all6 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Ultra Fast X-ray Imaging of Scientific Processes with 
On-Line Assessment and Data-Driven Process Control 

ANKA 
beam line

Optics and sample 
manipulators 

Smart high-
speed camera

Online monitoring 
and evaluation

Offline 
storage

UFO

Goals
High speed tomography
Increase sample throughput
Tomography of temporal processes
Allow interactive quality assessment

Enable data driven control
Auto-tunning optical system
Tracking dynamic processes
Finding area of interest
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4D Tomography of living organisms

Radiation Motion

Nyquist-Shanon criteria defines a minimum number of 
projections required for quality reconstruction

Radiation is destructive and 
limits duration of experiment

Motion during the acquisition 
of projections is blurring the 
reconstruction

We need to reduce number of used projections

A priori knowledge can be introduced to overcome the restriction
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Reconstruction Algorithms

FBPDFM ART Minimization
techniques

Compound
methods

SIRT
SART
OS-SART

Shrinkage
SD
CGLS
...

ASD-POCS
Split-Bregman
...

DFI
Gridding
Pasciak

+ Geometry Modeling
+ Projection Modeling
+ A priory Knowledge

Analytic Iterative

High performance
Customizable Reconstruction

Faster More
Robust
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Handling the computational problem
• Distributed control system based on Infiniband interconnects
• GPU-based computing
• Multiple levels of scalability
• Cheap off-the-shelf components
• Modular reconstruction framework

2007 2008 2010 2012 2014
10

100

1000

10000

Xeon/SP Xeon/DP Tesla/SP Tesla/DP GeForce/SP GeForce/DP

G
F

lo
ps

Historical trends of CPU and GPU performance

Easily scalable
Up to 4 GPUs
with 35 Tflops 
for ~ 5000 EUR
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UFO Control Network

Camera
Station

A
r c hi ve

La
r ge

 S
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l e
 D
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t a

 F
a

c ility

Beam-line

OpenCL
Node

OpenCL
Node

Storage
Node

Storage
Node

IB router

Control Room

Compute
Center

Scalable Control Network

Infiniband
(Optical)

Master Server
(lots of memory)

Camera
Link 

Infiniband
(Electrical)

Ethernet

10 Gig Ethernet

PCIe
x8 gen3
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Master Server

LSDF
Large Scale Data Facility

FDR Infiniband

56 Gbit/s

External PCIe x16 (16 GB/s)

Ethernet 

10 Gb/s
Internal
PCO.edge
PCO.dimax
….

SuperMicro 7047GR-TRF (Intel C602 Chipset)
CPU: 2 x Xeon E5-2680v2 ( total 20 cores at 2.8 Ghz)
GPUs: 7 x NVIDIA GTX Titan
Memory: 256 GB  (512GB max)
Network: Intel 82598EB (10 Gb/s)
Infiniband: 2 x Mellanox ConnectX-3 VPI
Storage: Areca ARC-1880-ix-12 SAS Raid
     8 x Samsung 840 Pro 510 (Raid0)
   16 x Hitachi A7K200 (Raid6)

SFF8088 (2.4 GB/s)

Cameras Storage

High amount of memory
Fast SSD-based Raid for overflow data
Easy scalability with external PCI express and SAS
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UFO Image Processing Framework

Fully pipelined architecture supporting diversity of the hardware 
platforms and based on open standards for easy algorithms exchange. 
Easy prototyping with Python and other scripting languages.



S. Chilingaryan et. all14 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

UFO Filters

Flat-field correction
Phase-contrast Imaging
Grating Interferometry

Preprocessing Tomography

Filtered Back Projection
Direct Fourier Inversion
SART / SIRT 

Laminography

Filtered Back Projection
Discrete ART

Joseph
DFI-based

Projectors

De-noising
Optical flow
Visualization

Postprocessing

Regularized

SBTV
ASD-POCS
Split-Bregman / TV
Split-Bregman / *lets
Split-Bregman / Hybrid



S. Chilingaryan et. all15 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

UFO Algorithms: Synchrotron data

FBP Split-Bregman with
Framelets

Zoomed joint of Sitophilus granarius (grain weevil) 

Segmented

Reconstructed from 50 projections (~ 1/40 of standard dataset)  
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Reconstruction Performance

DFI 

N2 * log N

FBP 

M * N2

SART/SIRT 

1600 MB/s  (CUDA)
 850  MB/s  (OpenCL)

800 MB/s

 N2  equations

500 KB/s

Scaling up to 6000 MB/s
~ 2250 MB / s from 12 bit camera

1 2 3 4 5 6 7
0

1000
2000
3000
4000
5000
6000
7000

Scalability with CUDA

FBP DFI Number of GPUs

M
B

/s
Scaling up to 2500 MB/s

~ 950 MB / s from 12 bit camera

CUDA

OpenCL
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Software Stack

ALPS
Advanced Linux 

PCI Services
LibUCA
Unified Camera 

Access

UFO
GPU Image

Processing Framework

FastWriter
Streaming Library

Tango Control

Device
Motors

Device
Other slow device

Concert
Control System

LibPCO
PCO Drivers

Camera Station

OpenCL

KIRO

UFO

UFO Master Server

Computing Cluster

XFS

iSER

Storage
Cluster

SoftRaid

Python
Gobject-Introspection

KIRO

Remote Users

WAVe

DM
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ASTOR

Initiate
analysis

Processing
Cache

Processing
Cache

get data 
from catalog

archive +
restore data

transmit data

request data +
store results

Compute 
Servers

Compute 
Servers

ASTOR
Web-

catalog

ASTOR Data 
Management

ASTOR Portal

Long-term Archive
LSDF 

Virtualization
Servers

Virtualization
Servers

VM-Storage 
Servers

VM-Storage 
Servers

ASTOR
Analysis
Services

manage recorded data

UFO Station
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WAVe: Web-based volume visualization

Ray-casting approach

A preview slice-maps 
pre-generated using 
UFO framework

Optimized storage layout 
for fast zooming

Working on majority mobile platforms with descent GPUs
Multiple zooming levels for inspecting fine details 
High-quality cuts 
Automatic thresholding-based segmentation 
Multi-modality rendering support
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Optimizing tomography for parallel architectures

Compute Unit 
on Fermi

Consists of SIMD-type Compute Units (CU)
One instruction is executed on many data items
Each CU able to execute several operation types
But only FP additions/multiplications are fast
  

Posses complex memory hierarchy
Low Bandwidth-per-flop ratio and small caches
Up to four different types of memory
Optimal access pattern have to be followed
 

Architectures vary drastically
Sizes, speed, and structure of memories / caches
Types and amount of provided processing units
Balance of operation throughput

Codes and algorithms have to be 
carefully optimized for the specific 
parallel architecture
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Memory model
• Host Memory
– 6 GB/s (PCIe x16 gen2)  to 

 12 GB/s (PCIe x16 gen3)
• Global Memory
– 100 – 300 GB/s with 

latencies up to 1000 clocks
• Local Memory
– 1 – 2 TB/s (total) with 

latencies below 100 clocks
• Registers 
– private to threads
• Caches
– L1/L2 cache
– Texture cache
– Constant memory 

Complex memory hierarchy consisting of 4 levels and with each level 
one order of magnitude faster when previous!

S
y stem

 M
e

m
ory
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grid

block

thread

warp

Programming Model

e.g. resulting image is mapped to 
a 1-, 2-, or 3D grid of GPU threads 
and each pixel is computed by a 
thread with the index equal to pixel 
coordinates 

All threads execute the same code (kernel)
Task is defined by the linear or volumetric index of the thread
GPU schedules threads in groups of fixed size (warp)
A user-defined block of threads is assigned to a specific CU
Threads of the block may exchange data using CU shared 

memory

Thread abstraction is used to split the problem space into the 
independent GPU tasks
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Scheduling

Warps from several blocks are executed by CU in parallel
The number of currently resident warps is called occupancy
Occupancy is limited by available registers and shared memory
Suboptimal occupancy limits the instruction bandwidth

Warp Scheduler Warp Scheduler

Warp 1 instr 1 Warp 2 instr 1

Warp 3 instr 1 Warp 3 instr 2

Warp 1 instr 2 Warp 4 instr 1

ti m
e

Core Core Core SFU SFU LD LD

Multiple warps on CU
executed in parallel

Independent instructions
executed in parallel

Warp 4 will be blocked for 
a long time, but other 
warps on CU will execute 
and hide the latency

For optimal performance we have to increase occupancy 
and number of independent instructions
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FBP Reconstruction

1 2 3 4 5proj. α

1. For each position we compute: 
x●cos(α) - y●sin(α) 

2. Interpolate between neighboring bins
3. Sum over all projection
4. The sum is the value of (x,y)

(x,y)
 

x●cos(α) - y●sin(α)

….

1 2 3 4 5proj. 0 ….
1 2 3 4 5proj. 1 ….
1 2 3 4 5proj. 2 ….

….

bins

For each texel of output volume
and for each projection we perform
a single linear interpolation

1. Filtering
Multiplication with the configured filter in the Fourier space

2. BackProjection
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Texture Engine 

Features:
• Spatial-aware cache
• Bi/tri-linear interpolation
• Normalized coordinates
• Different clamping modes

Applications:
• Linear interpolation, i.e. image 

scaling 
• Optimize random access to 

multidimensional arrays
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Filtered Back Projection

Image Loader

Pool of Sinograms
   (host memory)

Pool of CPU and GPU
processing threads

Pool of Vertical Slices
(host memory)

Texture

Data Storage

W

H

GPU 
thread

1st Stage 2nd Stage

Double 
buffering

Double 
buffering

Filtering

P
C

Ie  D
ata  

T
rans fer

P
C

Ie D
ata

T
ra nsf er

Fetch slices
for processing Store results
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Performance of Texture Engine

GT280 GTX580

Core 
Throughput

930 GF 1580 GF

Texture Fill 
Rate

48 GT/s 49 GT/s

Ratio 19.3 31.6 



S. Chilingaryan, M. Vogelgesang, A. Mirone, A. Kopmann28 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Optimizing FBP for Fermi

Texture

Image

N
2
 texture fetches

Standard Version
Texture engine is heavily loaded

Texture

Shared
Memory

(3/2)*N texture 
fetches

Image

N
2
 interpolations

Fermi-optimized Version
Both texture & computations engines are used

Thread
block

16 px

16 px

Each block of threads accesses actually only 3 ● N / 2  bins per projection 

v = x●cos(α) - y●sin(α)
max

x,y<N
(v) – min

x,y<N
(v) < N√2 

N√2 < 1.5 N

NN
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Pixel to thread mapping
bins

projections

24 bins

16 proj.

Processed by a single 
thread block (16x16)

48 bins of a projection 
required for current block

Texture
Memory

48 bins

16 proj

..

.Step1: filling shared memory
Only 48 texture fetches per 
projection

32 px

32 px

Step2:  integrating the volume 
322 interpolations per projection thr (1,1)

thr (1,2)

thr (1,3)

thr (2,1)

thr (2,2)

thr (2,3)

thr (3,1)

thr (3,2)

thr (3,3)

Shared 
Memory

Volume

16 of the projections 
processed in a single pass

Legend

Processing in multiple passes, 
16 projections each

16

16

Processing 4 pixels per thread reducing amount of 
texture fetches and hides operation latencies with 
multiple independent operations (instruction 
reordering).

Px. Fetches/px. Regs ShMem Occup. ILP

1 0.09375 26 1536 66% 1

4 0.046875 32 3072 66% 4
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Oversampling

Method Fetches/px Regs ShMem Occup. Reads/px Flops/px

Linear 0.046875 32 3072 66% 2 7

Oversample 0.1875 42 12288 50% 1 4

Linear interpolation is 
slow, and nearest 

neighbor is not precise 
enough

Bin 0

0 0.25 0.5 0.75 1

192 bins

Shared 
Memory

Bin 1

1.25 1.5 1.75 2

Bin 2

2.25 2.5 2.75 3

...

12 texture fetches per thread

With oversampling the 
texture engine is used to 
interpolate 4 positions for 
each projection bin and 
near-neighbor interpolation 
is used then.
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Kepler: Fast Texture Engine is Back

GT580 GTX680 Change

Texture Engine 49.4 GT/s 128.8 GT/s 2.6 x

Floating-point 
operations

16 x 32 x 

1.55 GHz
8 x 192 x 1.006 

GHz 1.94 x

Integer multiplication, 
bit operations, type 

conversions

16 x 16 x 

1.55 GHz

8 x 32 x

1.006 GHz
0.65 x

Shared Memory 48 KB 48 KB 1

Blocks per SM 8 16 2

Registers
32K per SM,

63 per thr. 

64K per SM,

63 per thr.
1
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Default approach

binsprojections 16 bins

Texture
Memory

2 3 4 5 6 7 8 9 101112131415161

2 3 4 5 6 7 8 9 101112131415161

2 3 4 5 6 7 8 9 101112131415161

16 bins

Texture Cache Hit Rate 89 %

Texture Throughput  79.3 GT/s

Theoretical Throughput 128.8 GT/s

1. Up to 16 bins are accessed per warp 
2. All threads are accessing a single texture row

Block of 16x16 pixels
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Optimizing the thread mapping

Warp 1

Warp 2

Warp 3

Up to 16 texture locations  
per warp.

Less than 6 texture
locations per warp

Texture

2 3 4 5 6 7 8 9 101112131415161

Block of 16x16 pixels

2 3 4 5 6 7 8 9 101112131415161

2 3 4
5 6 7 8
9 101112
13141516

1 2 3 4
5 6 7 8
9 101112

13141516

1 2 3 4
5 6 7 8
9 101112

13141516

1

2 3 4 5 6 7 8 9 101112131415161
2 3 4 5 6 7 8 9 101112131415161

Warp 1 Warp 2 Warp 3

Reduce required
memory bandwidth
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Using spatial locality

4
5 6 7 8
9 101112
13141516

1

16 iterations

Iteration
2

Iteration
3

Iteration
5

2 3

16 pixels

16 pixels

Layout Regs Occup. Hit Rate Bandwidth

Standard 32 100% 89 79.3 GT/s

Optimized 40 75% 96 117.5 GT/s

binsprojections

  6 bins

Texture
Memory

  6 bins

16 proj.

Better 2D texture cache locality with 
16 projections computed in parallel 

(16 sums are summed together after 
processing all projections) 

4
5 6 7 8
9 101112

13141516

1

16 iterations

Iteration
2

Iteration
3

2 3 16 pixels

16 projections
processed w

ith 256-thread block in parallel
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Faster reduction with shuffle instruction

Shuffle instruction introduced by Kepler architecture 
allows fast exchange of information between threads 
of the warp. 
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Oversampling approach on Kepler

Optimize rounding routine
Pre-calculate and cache offsets

Slow performance of integer and rounding operations 
makes Fermi oversampling algorithm slow.

16 proj.

Offset 1

Offset 2

proj_offset = b⌊ x●cos(α) – by●sin(α) + correction(α)⌋

4
5 6 7 8
9 101112

13141516

1 2 3

bx

by

On Fermi, for each block and projection we compute smallest-bin 
offset  on the fly by each thread. On Kepler instead we can:
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Looking for faster rounding on Kepler

s e e e e e e e e f f f f f f f f f

Exponent, 8 bits Fraction, 23 bits

031

….f  =

IEEE 754
single-precision
floating point number

f  = -1s• 2e-127•(1 + ∑f
i
•2i-23)

Only 23 significant positions, for 
small positive numbers:
      f + 223 = 223•(1 + ∑f

i
•2i-23)

i.e. no fractional part

fp math rounding

round(f) = f + 223 - 223 
(int)f = f + 223 – 0x4B000000   

texture

We get faster rounding, but SFUs left unused and we got no 
speed up...
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Reducing number of rounding operations

p240

p1 p17 ... p241

... ... ... ...

p15 p31 ... p255

p0 p16 ...

p17

...

p31

p16

warp1

warp2

warp16

Get all 256 projection offsets 
at once and iterate 16 times 
over 16 projections.

16 iterations

Iteration
2

Iteration
3

Iteration
5

4
5 6 7 8
9 101112
13141516

1 2 3

16 pixels

16 iterations

Iteration
2

Iteration
3

4
5 6 7 8
9 101112

13141516

1 2 3 16 pixels

16 projections
processed w

ith 256-thread block in parallel

On each iteration, the appropriate 
offsets are shuffled to all threads of 
the warp

shuffle broadcast

16 pixels
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Summary: 3 stages of oversampling

Work-group of 256 threads used to backproject area 
of 32x32 pixels from 256 projections

p240

p1 p17 ... p241

... ... ... ...

p15 p31 ... p255

p0 p16 ... compute all offsets 
work-items are 
mapped linearly to all 
projections.

192 bins

16 proj

cache data in shmem 
warps are mapped to 
projections and individual 
work-items to its bins.

16 iterations 
(only 16 projections 

at once)

32 px

32 px

16

16

1
2

256 iterations 
each processing a 

single projection

3

interpolate pixels
work-items are mapped 
to area 16x16 pixels and 
proess 4 pixels at once

3 different mappings 
for optimal 
performance
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Performance of Back Projection

GTX280

GTX580

GTX680

0 20 40 60 80 100 120 140 160

Standard Linear Oversample Kepler Kepler Oversample

giga-interpolations per second
Modifications:
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Optimizing Filtering Step

Also
Pad data to a size equal to the closest power of 2
Batched processing

FFT library is optimized for complex-to-complex transforms while we are 
dealing with real numbers.

a2 a3 a4 a5 a6 ...a1

projection 1

b2 b3 b4 b5 b6 ...b1

b1 a2 b2 a3 b3a1 b4 a5 b5 a6 b6 ...a4

projection 2

), Interleaved complex vector

f1 f2 f2 f3 f3f1 f4 f5 f5 f6 f6 ...f4

X
Filter

a2 a3 a4 a5 a6 ...a1 b2 b3 b4 b5 b6 ...b1

FFT(

real part
imaginary part

b1 a2 b2 a3 b3a1 b4 a5 b5 a6 b6 ...a4 ), Interleaved complex vectoriFFT(
=

Filtered projections
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Summary
Scalable hardware platform for image-based control

Only off-the-shelf components are used
Easily scalable from single PC to the GPU cluster
Reliable storage for data streaming at rates up to 4 GB/s
Distributed over large area using Optical Infiniband Links

Fully-pipelined parallel image-processing framework
Tuning for various parallel architectures 
Real-time reconstruction (up to 2 GB/s from camera)
Fast low-dose reconstruction (about 4 hours per dataset)

Remote data analysis infrastructure
Virtualization environment for remote image segmentation
High quality web-based visualization of large volumes
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