

Performance-oriented instrumentation for high-speed synchrotron imaging

S. Chilingaryan, M. Caselle, T. Dritschler, A. Kopmann, A. Shkarin, M. Vogelgesang

Institute for Data Processing and Electronics at KIT
 Instrumentation for high-speed synchrotron imaging
 Optimizing tomographic reconstruction for parallel architectures

Karlsruhe Institute of Technology

KIT is the merger of Karlsruhe Research Center and *Karlsruhe University*

ANKA Synchrotron

IPE Competences

Experiments

- **Astroparticle & High Energy Physics**
- **Atmosphere and Climate**
- **Nuclear Fusion**
- **Electrical Storage Systems**
- **Photon Science**
- **Ultrasound Tomography**
- **Nano- and Microsystems**
- Supercomputing & Big Data

Tools and Technologies

- **High-speed DAQ Electronics**
- **High-performance and GPU computing**
- Software optimization
- Databases and data warehousing
- Web-based data visualization

Example 4D cine-tomography experiment

In vivo X-ray 4D cine-tomography experiment. (a) Photograph of Sitophilus granarius, dorsal view. (b) Experimental set-up for ultra-fast X-ray microtomography showing bending magnet (1), rotation stage (2), fixed specimen (3) and detector system (4). (c) Radiographic projection. (d) 3D rendering of the reconstructed volume with thorax cut open and revealing hip joints (arrows). (e) In vivo cine-tomographic sequence of moving weevil.

Scope of the problem & Projects

Fully automated 4D imaging of living species with high spatial and temporal resolution and image-based control

UFO

Online montiroing and image-based control

Real-time reconstruction and Visualization STROBOS

Low Dose Laminography

High-quality reconstruction from under-sampled data for diffraction laminography ASTOR

Post-processing tools for biologists

Work-flow for remote semi-automated segmentation

UFO <u>U</u>Itra <u>Fast</u> X-ray Imaging of Scientific Processes with <u>On-Line Assessment and Data-Driven Process</u> Control

High speed tomography

- Increase sample throughput
- Tomography of temporal processes
- Allow interactive quality assessment
- Enable data driven control
 - Auto-tunning optical system
 - Tracking dynamic processes
 - Finding area of interest

4D Tomography of living organisms

We need to reduce number of used projections

Nyquist-Shanon criteria defines a minimum number of projections required for quality reconstruction

A priori knowledge can be introduced to overcome the restriction

Reconstruction Algorithms

Analytic			Iterative			
DFM	FBP	ART	ART Minimization techniques			
DFI Gridding Pasciak		SIRT SART OS-SART	Shrinkage SD CGLS	ASD-POCS Split-Bregman 		
Faster	More Robust	+ + +	+ Geometry Modeling + Projection Modeling + A priory Knowledge			
High pe	rformance	Cus	Customizable Reconstruction			

Handling the computational problem

- Distributed control system based on Infiniband interconnects
- GPU-based computing
- Multiple levels of scalability
- Cheap off-the-shelf components
- Modular reconstruction framework

Historical trends of CPU and GPU performance

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

for ~ 5000 EUR

UFO Control Network

Control Room

Scalable Control Network

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

11

UFO Image Processing Framework

Fully pipelined architecture supporting diversity of the hardware platforms and based on open standards for easy algorithms exchange. Easy prototyping with Python and other scripting languages.

13

UFO Filters

Preprocessing	Tomography	Laminography	
Flat-field correction Phase-contrast Imaging Grating Interferometry	Filtered Back Projection Direct Fourier Inversion SART / SIRT	Filtered Back Projection Discrete ART	
Projectors	Regularized		
Joseph DFI-based	SBTV ASD-POCS Split-Breaman / TV		
Postprocessing	Split-Bregman / *lets Split-Bregman / Hybrid		
De-noising Optical flow			

14

UFO Algorithms: Synchrotron data

Zoomed joint of Sitophilus granarius (grain weevil)

Segmented

FBP

Split-Bregman with Framelets

Reconstructed from 50 projections (~ 1/40 of standard dataset)

15

Reconstruction Performance

Software Stack

17

ASTOR

18

WAVe: Web-based volume visualization

Working on majority mobile platforms with descent GPUs
 Multiple zooming levels for inspecting fine details
 High-quality cuts
 Automatic thresholding-based segmentation

Multi-modality rendering support

19

Optimizing tomography for parallel architectures

Consists of SIMD-type Compute Units (CU)

One instruction is executed on many data items
 Each CU able to execute several operation types
 But only FP additions/multiplications are fast

Posses complex memory hierarchy

Low Bandwidth-per-flop ratio and small caches
 Up to four different types of memory
 Optimal access pattern have to be followed

Architectures vary drastically

Sizes, speed, and structure of memories / caches
 Types and amount of provided processing units
 Balance of operation throughput

Codes and algorithms have to be carefully optimized for the specific parallel architecture

Compute Unit on Fermi

Memory model

Complex memory hierarchy consisting of 4 levels and with each level one order of magnitude faster when previous!

21

Programming Model

Thread abstraction is used to split the problem space into the independent GPU tasks

- All threads execute the same code (kernel)
- Task is defined by the linear or volumetric index of the thread

GPU schedules threads in groups of fixed size (warp)

A user-defined **block** of threads is assigned to a specific CU
 Threads of the block may exchange data using CU shared grid

e.g. resulting image is mapped to a 1-, 2-, or 3D grid of GPU threads and each pixel is computed by a thread with the index equal to pixel coordinates

Scheduling

Multiple warps on CU executed in parallel Independent instructions executed in parallel Warp 4 will be blocked for

a long time, but other warps on CU will execute and hide the latency

Warps from several blocks are executed by CU in parallel
 The number of currently resident warps is called occupancy
 Occupancy is limited by available registers and shared memory
 Suboptimal occupancy limits the instruction bandwidth

For optimal performance we have to increase occupancy and number of independent instructions

FBP Reconstruction

1. Filtering

Multiplication with the configured filter in the Fourier space

24

Texture Engine

Features:

- Spatial-aware cache
- Bi/tri-linear interpolation
- Normalized coordinates
- Different clamping modes

Applications:

- Linear interpolation, i.e. image scaling
- Optimize random access to multidimensional arrays

	Karlsruhe Institute of Technolo					hnolo	
	SM						
	Instruction Cache						
	Warp Scheduler Warp Scheduler				uler		
	Dispatch Unit			Dispatch Unit			
	Register File (3			2.768 x 32-bit)			
	Core	Core	Core	Core	LD/ST		
					LD/ST	SFU	
	Core	Core	Core	Core	LD/ST		
					LD/ST		
	Core	Core	Core	Core	LD/ST	SELL	
	Core	Core	Core	Core	LD/ST	SPU	
					LD/ST		
	Core	Core	Core	Core	LD/ST		
					LD/ST	SFU	
	Core	Core	Core	Core	LD/ST		
	Core	Core	Core	Core	LD/ST		
		Core	Cone		LD/ST	SFU	
	Core	Core	Core	Core	LD/ST		
	00000	Int	erconne	ct Netwo	rk	0000	
				monull	1 Cacho		
	64 KB Shared Memory / L1 Cache						
	Tex	1	Tex	Tex	1	Tex	Ь
	Tex	and a second		Tex			
PolyMorph Engine							
	Vertex Fetch Tessellator Viewport Transform						
		Attribut	te Setup	Stream (Output		

Filtered Back Projection

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

26

Performance of Texture Engine

	GT280	GTX580
Core Throughput	930 GF	1580 GF
Texture Fill Rate	48 GT/s	49 GT/s
Ratio	19.3	31.6

27

Optimizing FBP for Fermi

Each block of threads accesses actually only 3 • N / 2 bins per projection

Standard Version Texture engine is heavily loaded

Fermi-optimized Version Both texture & computations engines are used

Pixel to thread mapping

Processing in multiple passes, 16 projections each

> Institute for Data Processing and Electronics Karlsruhe Institute of Technology

thr (3,3)

thr (2,3)

thr (1,3)

Oversampling

Method Fetches/px Regs ShMem Occup. Reads/px Flops/px 0.046875 32 66% 2 Linear 3072 Oversample 0.1875 42 12288 50% 1 Δ

Kepler: Fast Texture Engine is Back

	GT580	GTX680	Change
Texture Engine	49.4 GT/s	128.8 GT/s	2.6 x
Floating-point operations	16 x 32 x 1.55 GHz	8 x 192 x 1.006 GHz	1.94 x
Integer multiplication, bit operations, type conversions	16 x 16 x 1.55 GHz	8 x 32 x 1.006 GHz	0.65 x
Shared Memory	48 KB	48 KB	1
Blocks per SM	8	16	2
Registers	32K per SM, 63 per thr.	64K per SM, 63 per thr.	1

33

Default approach

Texture Cache Hit Rate	89 %
Texture Throughput	79.3 GT/s
Theoretical Throughput	128.8 GT/s

Up to 16 bins are accessed per warp
 All threads are accessing a single texture row

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

34

S. Chilingaryan et. all

Using spatial locality

36

Faster reduction with shuffle instruction

Shuffle instruction introduced by Kepler architecture allows fast exchange of information between threads of the warp.

Oversampling approach on Kepler

Slow performance of integer and rounding operations makes Fermi oversampling algorithm slow.

proj_offset = $[bx \bullet cos(\alpha) - by \bullet sin(\alpha) + correction(\alpha)]$

On Fermi, for each block and projection we compute smallest-bin offset on the fly by each thread. On Kepler instead we can:

Optimize rounding routine
Pre-calculate and cache offsets

Looking for faster rounding on Kepler

Exponent, 8 bits
Fraction, 23 bits
Fraction, 23 bits
IEEE 754
single-precision
floating point number

$$f = -1^{s} \cdot 2^{e-127} \cdot (1 + \sum f_i \cdot 2^{i-23}) = 0$$

If 23 significant positions, for
all positive numbers:
 $f + 2^{23} = 2^{23} \cdot (1 + \sum f_i \cdot 2^{i-23})$
no fractional part
Instruction Dispatch Unit
Instruction Dispatch Unit
CUDA Cores (x16)
fp math
rounding texture

We get faster rounding, but SFUs left unused and we got no speed up...

Or

sm

i.e.

39

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

Reducing number of rounding operations

S. Chilingaryan et. all

40

Summary: 3 stages of oversampling

Work-group of 256 threads used to backproject area of 32x32 pixels from 256 projections

1	p0	p16	 p240
	р1	p17	 p241
	p15	p31	 p255

compute all offsets work-items are mapped linearly to all projections.

3 256 iterations each processing a single projection

cache data in shmem

warps are mapped to projections and individual work-items to its bins.

interpolate pixels

work-items are mapped to area 16x16 pixels and proess 4 pixels at once 3 different mappings for optimal performance

Performance of Back Projection

Optimizing Filtering Step

FFT library is optimized for complex-to-complex transforms while we are dealing with real numbers.

- Pad data to a size equal to the closest power of 2
- Batched processing

43

Summary

Scalable hardware platform for image-based control Only off-the-shelf components are used Easily scalable from single PC to the GPU cluster Reliable storage for data streaming at rates up to 4 GB/s Distributed over large area using Optical Infiniband Links Fully-pipelined parallel image-processing framework Tuning for various parallel architectures Real-time reconstruction (up to 2 GB/s from camera) Fast low-dose reconstruction (about 4 hours per dataset) Remote data analysis infrastructure Virtualization environment for remote image segmentation High quality web-based visualization of large volumes