
ONE-CLASS CLASSIFICATION METHODS VIA AUTOMATIC
COUNTER-EXAMPLE GENERATION

András B́anhalmi
Research Group on Artificial Intelligence of the Hungarian Academy of Sciences

and of the University of Szeged,
H-6720 Szeged, Aradi vértańuk tere 1., Hungary

email: banhalmi@inf.u-szeged.hu

ABSTRACT
Here we propose novel methods for the One-Class Clas-
sification task and examine their applicability. Essentially,
these methods extend the training set – which contains only
positive examples – with artificially generated counter-
examples. After, a two-class classifier is used to separate
them. In this paper following a description of the exist-
ing and the newly proposed methods some problematic is-
sues are investigated theoretically and studied empirically
by applying these methods to artificial datasets. Then their
efficiency is compared to those of other one-class classifi-
cation methods.

KEY WORDS
One-class classification, artificial counter-example genera-
tion.

1 Introduction

One-Class Classification problems [16] - which we shall
focus on in this article - are also referred to as Data De-
scription, Outlier Detection, and Novelty Detection in dif-
ferent fields. What these algorithms have in common is that
only positive examples are available from a particular class
during the training phase. Thus the classification boundary
is defined not between several classes, or between positive
and negative examples of a class, but it is a set of closed sur-
faces which surround the majority of the positive training
instances. The area of one-class training includes several
algorithms like generative probability density estimation
methods (Gaussian Mixture Model (GMM), Parzen estima-
tor), reconstruction methods (k-means, Autoencoder Neu-
ral Networks), and boundary estimators (k-centers, Support
Vector Data Description, Nearest Neighbor Data Descrip-
tion). Here GMM [3] and the One-Class Support Vector
Machine (SVM) [14] [17] will be used for testing purposes
in order to compare the performance of our method with a
fast generative model and a well-known boundary estima-
tor. In practice, one-class models have been applied with
success to numerous problems. Without claiming to be
complete, one-class classifiers have been used in the fault
detection of machinery [15], in automated currency valida-
tion [9], in bioacoustic monitoring [13], and in document
classification [10].

In [2] a new methodology is proposed which is dif-
ferent from the current methods in one fundamental way: a
binary classifier (ν-SVM) is used for the one-class classifi-
cation task. However, to achieve this aim, examples of two
classes are needed. In [2] a new method was introduced
which generates counter-examples around the positives. In
other words the goal was to force the binary classifier to
learn a ”multidimensional contour” at some distance from
the positive examples. In this paper after describing the
basic methods introduced in [2] we propose a new, approx-
imative boundary point search method. After, we try to ap-
ply Radial Basis Neural Network andν-SVM to separate
the examples from the counter-examples.

2 One-Class Classification via Counter-
Example Generation

Here the objective is to generate negative examples at a cer-
tain distance from the region of the positives [2]. In this
section we describe a method which achieves this by find-
ing local boundary points of the set, and then transforms
the positive examples into negative examples on the other
side of the boundary.

2.1 Determining Local Boundary Points and Center
Vectors

Suppose that we haveN points in ann-dimensional space,
and let us define the neighborhood of a point as the set of its
k-nearest neighbors. Let us define ”local boundary point”
as a point for which a hyperplane exists which hyperplane
separates this point from the other positive examples in its
neighborhood.

In the following, the ”center vector” corresponding
to a boundary point will be defined. Letxb be a bound-
ary point, and letxi be thek nearest neighbors ofxb

(i = 1 . . . k). Let ei be the translated and normalized vec-
tors defined byei = xi−xb

‖xi−xb‖
. Then thecenter vectorcor-

responding toxb will be defined as the normal vector of the
hyperplane that separates the origin from the pointsei by a
maximal margin.

Input: A set of N positive examples (X)
Output: A set of K boundary points (B),
and a set of inner points (I)
Init.: B = ∅
1. For eachx in X do
2. Takexi, thek closest points

(but with a positive distance) tox.
3. Compute the unit vectors:ei = xi−x

‖xi−x‖

4. Try to separateei points from the origin using a
hard margin linear SVM

5. If the optimization of SVM fails
I = I ∪ {x}

else
B = B ∪ {x}, and form the vector:

xcenter =
k
∑

i=1

αiei

Table 1. The SVM-based boundary point search method

2.1.1 Exact Solution

The application of the algorithm below was first presented
in [2]. The linear Support Vector Machine (SVM) finds the
separating hyperplane with a maximal margin, when it ex-
ists. Moreover, the normal vector of this hyperplane can be
found using the support vectors and the correspondingαi

values computed by SVM. For more information and for a
proof see [20]. Making use of this fact, the pseudo-code in
the Table 1 shows the corresponding boundary point search
algorithm.

2.1.2 Approximated Solution

The idea behind the following algorithm we propose here
is that the components of a bisectrix vector (c) between two
n-dimensional unit vectors (x, y) can be computed as:

ci = min(xi, yi) + max(xi, yi) (1)

Although in this special case a bisectrix vector can be
calculated in other ways too (eg. computing the average),
when using themin/max formulation the result is influ-
enced by just the extreme-valued components when more
than two data samples are available. So let as define the
approximated center vectorxc for a boundary pointxb and
for the k-nearest neighborsxi (i = 1 . . . k) of xb by the
following formula:

(xc)i = min
j=1...k

((xj)i) + max
j=1...k

((xj)i) (2)

It is evident that the vector computed using the pre-
viousmin/max formulation differs from the exact center
vector. In Section 4.3 we will examine the probability den-
sity of the differences by applying both methods to artifi-
cially generated datasets.

Input: A set of N positive examples (X)
Output: A set of K boundary points (B),
and a set of inner points (I)
Init: B = ∅
1. For eachx in X do
2. Take theK set containing the k closest points tox
3. Compute the minimal and maximal values

of the components of all the vectors inK:
(xmin)j = min

xi∈K
((xi − x)/ ‖xi − x‖)j

(xmax)j = max
xi∈K

((xi − x)/ ‖xi − x‖)j

4. Form the vector:xcenter = xmin + xmax

5. For all the vectors in K compute
the following values:

cos(ϕi) = (xi−x)T ·xcenter

‖xi−x‖·‖xcenter‖

6. If all thecos(ϕi) values are nonnegative,
thenB = B ∪ {x},
elseI = I ∪ {x}

Table 2. Themin/max-based boundary point search
method

Using the previously defined center vector, the
pseudo-code for the boundary point selection method is
shown in Table 2. Since the condition for being a boundary
point – that the angles between the vectors to thek-nearest
neighbors and the approximated center vector have to be
acute angles – is only a sufficient condition, the boundary
points found with this method will be a subset of all of
them. In Section 4.3 the number of boundary points found
will also be examined.

2.2 Generating Counter-Examples

Here the goal is to automatically produce negative exam-
ples using just the positive ones [2]. Our approach is to
transform the positive examples outside their region. For
this purpose the closest boundary point and the correspond-
ing center-vector are utilized. Essentially, each point is
transformed somehow along the direction of its nearest
boundary point. For the details of our proposed algorithm,
see Table 3 with the following explanation.

In the second row the closest boundary pointxb to
x is selected. The transformation of the pointx will be a
translation along thev = xb −x direction, and the distance
of the transformed pointy from the boundary pointxb de-
pends on theT (x, xb,X) functional. In the forth and fifth
rows the algorithm checks to see ify is an inner point, and
if it is, then we do not take it as a negative example, and
the boundary point will be deleted from the set. For the T
functional we suggest the following formula:

T (x, xb,X) =
dist

dist · curv + CosAngle(x, xb,X)
, (3)

Input: A set of N positive examples (X)
Output: A set of N negative examples (Y)
Init.: Y = ∅, B = boundaryPoints(X)
1. For eachx in X do
2. Findxb, the closest boundary point

(but with a positive distance) tox
3. Transformx to xb using the following formula:

y = v(1 + T (x, xb,X)/ ‖v‖) + x, where
v = xb − x, T is a functional of X,x, xb

4. Checky to see if it is an inner point using the algorithm
given in Table 1 or in Table 2

5. If y is not an inner point, thenY = Y ∪ {y}
elseB = B\{xb}, and with the next
closest boundary point repeat the procedure.

Table 3. The method used to generate counter-examples

where

CosAngle(x, xb,X) =
xT

b,center · (x − xb)
∥

∥

∥
xT

b,center

∥

∥

∥
‖x − xb‖

, (4)

andxb,center is the center vector for thexb obtained and
stored by the boundary point selection method (see Table
1). The constant parameterdist controls the distance be-
tween the transformed point and the boundary point, and
the curv parameter controls the curvature of the hyper-
surface of the counter-examples obtained by transforma-
tions on the same boundary point. Figure 1 provides some
examples with differentdist and curv parameter values.
The method generatesN counter examples for a positive
dataset ofN data samples.

One refinement of the above-described method can be
made to achieve a better performance. It springs from the
recognition of the fact that the boundary points do not nec-
essarily have the same ”popularity”. In some cases there
are several boundary points which are rarely chosen for
the point-transformation, and this can cause an imbalance
in the density of the counter-examples. This problem can
be handled by adding extra counter-examples to the origi-
nal ones in the following way. First, the number of trans-
formations should be counted for all the boundary points.
Then extra boundary points should be added using the fol-
lowing rule: for each rarely used boundary point, select
their k closest points, and after applying the transformation
method add the new points to the set of counter-examples.
To define which boundary points the rule can be applied to,
a frequency threshold has to be used.

2.3 Training on the Extended Dataset

Here two classical methods are used to separate the positive
and negative examples: theν- Support Vector Machine (ν-
SVM) with RBF kernel [4], and the Radial Basis Neural
Network (RBN) [6]. The ν-SVM is the WEKA [7] (lib-
svm) implementation. TheRBN comes from the MAT-

Figure 1. These figures show the generated counter-
examples with different settings. Left to right: 1st:
(dist, curv) = (1, 0), 2nd: (dist, curv) = (0.4, 0), 3rd:
(dist, curv) = (1, 0.5), 4th: (dist, curv) = (1, 1). One
can see thatcurv = 0 will generate points of a hyper-
plane, whilecurv > 0 will generate points of a better
fitting boundary hyper-surface. With thedist parameter
the distance between the boundary points and the generated
counter-examples can be adjusted.

LAB Neural Network Toolbox, of which the first layer has
radial-bases neurons, while the output layer contains a neu-
ron with a linear activation function. After training, the
distance between the decision boundary and the set of the
positive examples can be adjusted by setting an acceptance
threshold.

Our experiments showed quite clearly that only
distance-based classification methods can be used to suc-
cessfully separate a region in a multidimensional space
from its surroundings. That is why we used the above-
mentioned classifiers in our experiments. We also plan
to test some other Neural Network constructions with a
distance-based activation function [6] in the near future.

3 Time Complexity

The time complexity of the counter-example generation
– when the dimension is fixed – depends onk and N ,
wherek is the number of nearest neighbors used during the
boundary point tests, andN is the total number of positive
training examples. The exact boundary point test method
uses a linear SVM, so the time complexity iso(k3). The
time complexity of the approximated boundary point test
method iso(k). To choose thek-nearest neighbors, a time
of o(N ·log(N)) is needed, thus altogether forN points the
total time complexity iso(k3·N2·logN) oro(k·N2·logN).
When generating a counter-example for a specified point,
we need the closest boundary point, and a test has to be
done to see if the transformed point is an inner point. The
combined time complexity of this part after summing for

each training example iso(|B| · n · k3), or o(|B| · n · k),
where|B| is the number of boundary points.

4 Investigation of the proposed method

In this part we examine how the results of the proposed
methods depend on parameters like the dimension of the
space, the number of nearest neighbors, and the number
of positive examples. After, the results (the number of
boundary points, and the direction of center vectors) of
the min/max boundary search method are compared to
those of the exact SVM-based method from an approxima-
tion point of view. For this purpose artificially generated
multidimensional datasets with Gaussian distribution will
be used. However, before describing this shall first discuss
the curses and blessings of dimensionality.

4.1 Curses and Blessings of Dimensionality

The title of this subsection comes from [5], and tells us that
the nature of a multidimensional space is quite strange. The
phrase ”curse of dimensionality” means that to describe a
probability distribution with the ”same quality” (or with the
same density of the samples) we need data with size that
grows exponentially with the number of the dimensions.
There are some other important and interesting phenomena
associated with high dimensional spaces which are of in-
terest here: the theater effect, the boundary effect, and the
measure concentration. For a clear and concise descrip-
tion, see [11]. The ”theater effect” denomination refers
to the phenomena that if we have a point set with a rea-
sonable number of points distributed normally in a higher
dimensional space, then the distances between a point and
some other (randomly selected) fixed number of points will
be almost equal with a high probability. Moreover, theχ-
distribution tells us that the expected value of the distance
between a point and the center increases with increasing
dimensionn, so the points will probably lie farther and
farther from the center asn increases. This might be one
reason for the ”boundary effect” phenomena which can be
expressed in our case in the following way: if we have
a number of data samplesN in an n-dimensional space
(N > n + 1), then the probability that one of these points
is not a boundary point exponentially decreases with the di-
mension. So a typical training dataset will contain bound-
ary points in a very high ratio. In addition, almost all the
testpoints will also be boundary points of the training set,
thus the great majority of the test set will not be in the con-
vex hull of the training samples. Approaching the one-class
classification task from this point of view, we can say that a
good one-class classifier has to learn a decision boundary at
a considerable distancefrom the region of the positive ex-
amples. Despite this, the ”boundary effect” can be useful in
some cases – for example for k nearest neighbor searching
methods [1], and for us here as well.

4.2 Number of Nearest Neighbors Needed

The above-mentioned ”boundary effect” implies that if the
dataset contains vectors with a proportionate number of
necessary points of exponentially huge size, then all the
nearest neighbors have a high probability of being bound-
ary points. In this case as few as possible nearest neighbors
are needed to detect boundary points, and the correspond-
ing inner vectors. To include these in our problem: to de-
fine a hyperplane in ann-dimensional space, a number of
n points are needed (but a hyperplane with a maximal mar-
gin exists between two points, respectively). In our experi-
ments we chosek = 2 · n for the boundary point determi-
nation. If the size of the database becomes commensurate
with the exponentially huge number, then it is still a ques-
tion of how we should choose the optimal value ofk for the
k-NN in the boundary point search. We think thatk should
be chosen as an exponential function of the density of the
data, hencek can still be much smaller than the size of the
dataset.

4.3 SVM- vs. Min/Max-Based Boundary Point Search

Up until now we have not found a theoretical explana-
tion for why themin/max method can work well. Here
some statistical experiments were done to see the differ-
ences between the results of the exact and themin/max-
approximated boundary point search methods. For this,
a comparative study is made on the number of boundary
points found, and the directions of the corresponding in-
ner vectors we found using artificially generated normally
distributed datasets with different dimensions (2 - 15) and
different sizes (100 - 500,1000).

Figure 3 shows the ratio of the sizes of the two bound-
ary point sets determined approximately and exactly, while
Figure 2 shows the ratio of the number of the (exact)
boundary points, and the total number of positive exam-
ples. Figure 4 shows the mean values of the angles between
the two kinds of center vectors. The figures tell us that
when the ”boundary effect” occurs, the number of bound-
ary points detected by the two methods becomes almost
equal. On the other hand, the mean of the angles between
the two kinds of center vectors does not grow with the di-
mensionn or with the size of the database. Actually, this
value is about 0.1 in radians, and is quite a small angle.

5 Experiments and Results

The binary classifiers utilized here for the one-class classi-
fication tasks wereν-SVM (WEKA version [7]) and RBN
(MATLAB version). For the boundary point tests the Mat-
lab SVM Toolbox by Steve Gunn was used [8]. Both clas-
sifiers were applied on two training sets which were cre-
ated using the exact and the approximated boundary point
search method. These test cases will be denoted by ”SVM-
E”, ”SVM-A”, ”RBN-E”, and ”RBN-A”. Here for the sake

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. The ratio of the number of the exact bound-
ary points plotted against the total number of examples (y-
axis). The width of each solid line indicates the size of
the dataset (100, 200, . . . , 500). The dashed line refers to a
size of 1000. The x-axis is the dimension of the data vec-
tors. Notice that above a dimension value of 10 the bound-
ary effect occurs, and all the data points become boundary
points.

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. The ratio of the number of the ”approximated”
boundary points plotted against the number of exact bound-
ary points (y-axis). The x-axis and the with of the lines are
the same as before.

of comparison we applied GMM, which is a very fast prob-
abilistic method (we chose the GMMBayes Matlab Tool-
box [12]) and the widely used One-Class SVM (or ”OC-
SVM” for short, from WEKA) as baselines.

All the models were trained using a number of dif-
ferent free parameter settings, and the best accuracy scores
are listed in Table 4. The free parameters are the number
of clusters and confidence value for GMM, theν andγ val-
ues for the one-class SVM andν-SVM, the (curv, dist)
parameters, the number of nearest neighbors that need to

2 4 6 8 10 12 14 16
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Figure 4. The mean values of the angles between the dif-
ferent center vectors in radians (y-axis). The x-axis and the
with of the lines are the same as before.

be considered (k) and the acceptance threshold for the
counter-example generation-based methods. In the case of
SVM-E and SVM-A the number of clusters can also be set.

For testing purposes 10 one-class datasets were em-
ployed. The ”unvoiced DB”, and ”silence DB” were con-
structed by us and contain feature vectors of 25 Mel Filter
Bank coefficients created from human speech samples. In
the ”Unvoiced” one-class problem the task was to train the
examples of unvoiced phonemes. The ”Silence” one-class
database contained feature vectors of silent parts (which
also contained the short silences in a plosive). The ”Ball-
Bearing”, ”Water Pump” train and test datasets (used in
faulty detection) were downloaded from [18]. That is, out
of the Ball-Bearing datasets the ”rectangular window” ver-
sion (containing 26-dimensional vectors), and out of the
”Water Pump” datasets the ”autocorrelation function” ver-
sion (containing 26-dimensional vectors) were utilized. In
[19] these datasets are described in detail, and were used to
find the optimal parameter values for the One-class SVM,
and to choose the best preprocessing method. The other
6 datasets (OC xxx) were downloaded from a webpage1.
More information about these datasets can be found there
2. These datasets did not contain separate train and test
sets, so training sets and test sets were generated using a
5-fold cross-validation technique. In our experiments each
test dataset contained an equal number of positive and neg-
ative examples. To preprocess the positive datasets, a PCA
transformation was applied.

Table 4 below lists the best results of the different
classification algorithms applied to one-class tasks.

1David M.J. Tax: OCC benchmark. http://www-it.et.
tudelft.nl/˜davidt/occ/

2The training set in the case of OC-620 contained only the every third
element of the original set, because thew RBN implementation did not
support more.

DB: train size/dim. OC-SVM GMM SVM-E SVM-A RBN-E RBN-A

Silence: 301/12 82.4/89.7/24.8 85.8/82.5/36.8 85.6/83.8/12.4 85.2/86.6/16.1 84.7/85.9/16.5 84.1/86.6/18.3
Unvoiced: 405/12 78.6/86.3/29.0 78.1/82.9/26.6 82.9/80.0/14.4 79.6/82.0/22.7 72.4/86.1/41.3 74.4/85.0/35.6
Ball B.: 56/26 99.3/96.9/0.0 96.3/81.3/0.0 100/100/0.0 100/100/0.0 100/100/0.0 100/100/0.0
Water P.: 224/26 94.0/88.5/4.4 94.9/87.5/4.4 95.7/94.8/4.1 95.7/94.8/4.1 95.4/96.9/9.4 95.7/96.8/8.3
OC507: 163/13 67.2/78.8/44.4 60.3/26.9/6.3 67.5/77.5/42.5 67.5/78.1/43.1 68.4/76.9/40.0 70.3/76.8/36.3
OC511: 126/5 85.2/88.8/18.4 78.8/80.0/22.4 87.2/93.6/19.2 87.2/94.4/8.0 87.2/82.4/8.0 87.2/83.2/8.8
OC514: 236/278 70.9/82.6/40.9 67.7/53.2/17.9 71.9/68.3/34.4 70.0/78.7/39.6 50.0/50.0/50.0 50.0/50.0/50.0
OC589: 125/34 52.4/4.8/0.0 52.4/4.8/0.0 71.6/62.4/19.2 56.0/84.8/72.8 52.4/4.8/0.0 52.4/4.8/0.0
OC598: 300/21 77.8/76.0/20.3 50.5/1.0/0.0 77.7/86.3/31.0 76.5/81.0/28.0 77.0/78.0/24.076.7/64.0/10.7
OC620: 4490/10 87.2/89.4/15.1 89.2/82.1/3.7 85.4/85.8/14.9 87.2/87.9/13.5 88.8/85.5/7.9 89.2/83.4/5.0

Table 4. Best test results (accuracy/rates of true positives/rates of false positives) using different models in one-class tasks.

6 Conclusions

Based on the results obtained in the study we think that
the counter-example generation-based methods are supe-
rior to the statistical GMM, and the One-Class SVM in
most cases. Thus the novel methodology for one-class
classification which is based on counter-example genera-
tion is competitive with the conventional methods which
are trained using just the positive examples. However, for
better applicability in practice some improvements should
be made in the near future to reduce the time complexity of
our algorithm.

References

[1] S. Arya, D. M. Mount, and O. Narayan. Accounting for
boundary effects in nearest neighbor searching. InSympo-
sium on Computational Geometry, pages 336–344, 1995.

[2] A. Bánhalmi, A. Kocsor, and R. Busa-Fekete. Counter-
example generation-based one-class classification. Inproc.
ECML 2007 LNAI 4701, pages 543–550, 2007.

[3] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[4] P.-H. Chen, C.-J. Lin, and B. Schölkopf. A tutorial onν-
support vector machines: Research articles.Appl. Stoch.
Model. Bus. Ind., 21(2):111–136, 2005.

[5] D. L. Donoho. High-dimensional data analysis: The curses
and blessings of dimensionality. 2000.

[6] W. Duch and N. Jankowski. Survey of neural transfer func-
tions, 1999.

[7] Y. EL-Manzalawy and V. Honavar.WLSVM: Integrating
LibSVM into Weka Environment, 2005. Software avail-
able athttp://www.cs.iastate.edu/˜yasser/
wlsvm .

[8] I. R. Group. Matlab support vector machine tool-
box, http://www.isis.ecs.soton.ac.uk/
resources/svminfo/ .

[9] C. He, M. Girolami, and G. Ross. Employing opti-
mised combinations of one-class classifiers for automated
currency validation. Pattern Recognition, 37:1085–1096,
2004.

[10] L. M. Manevitz and M. Yousef. One-class SVMs for docu-
ment classification.Journal of Machine Learning Research,
2:139–154, 2001.

[11] J. Marcel and J. jr. Marcel. How does the space where
e-golem walks looks like. InInterdisciplinary Aspects of
Human-Machine Co-existence and Cooperation, Prague,
CTU 2005, pages 271–279, 2005.

[12] P. Paalanen. Bayesian classification using Gaussian mixture
model and EM estimation: Implementations and compar-
isons. Technical report, Department of Information Tech-
nology, Lappeenranta University of Technology, Lappeen-
ranta, 2004.

[13] A. Sachs, C. Thiel, and F. Schwenker. One-class support-
vector machines for the classification of bioacoustic time
series. ICGST International Journal on Artificial Intelli-
gence and Machine Learning (AIML), 6(4):29–34, 2006.

[14] B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of
a high-dimensional distribution. Neural Computation,
13(7):1443–1471, 2001.

[15] H. J. Shin, D.-H. Eom, and S.-S. Kim. One-class support
vector machines: an application in machine fault detec-
tion and classification.Comput. Ind. Eng., 48(2):395–408,
March 2005.

[16] D. Tax. One-class classification; Concept-learning in the
absence of counter-examples. PhD thesis, Delft University
of Technology, 2001.

[17] D. M. J. Tax and R. P. W. Duin. Support vector domain
description. Pattern Recogn. Lett., 20(11-13):1191–1199,
1999.

[18] R. Unnthorsson. Datasets for model selection in one-
classν-svms using rbf kernels,http://www.hi.is/
˜runson/svm/ .

[19] R. Unnthorsson, T. P. Runarsson, and M. T. Jonsson. Model
selection in one-classν-svms using rbf kernels. InCOMA-
DEM Proceedings of the 16th international congress, 2003.

[20] V. N. Vapnik. Statistical Learning Theory. John Wiley and
Son, 1998.

