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Abstract. The present paper is devoted to studying Hubbard’s pendulum equation

ẍ + 10−1ẋ + sin(x) = cos(t) .

By rigorous/interval methods of computation, the main assertion of Hubbard on chaos properties
of the induced dynamics is lifted from the level of experimentally observed facts to the level of a
theorem completely proved. A distinguished family of solutions is shown to be chaotic in the sense
that on consecutive time intervals (2kπ, 2(k+1)π) (k ∈ Z) individual members of the family can freely
“choose” between the following possibilities: the pendulum either crosses the bottom position exactly
once clockwise or does not cross the bottom position at all or crosses the bottom position exactly
once counterclockwise. The proof follows the topological index/degree approach by Mischaikow,
Mrozek, and Zgliczynski. The novelty is a definition of the transition graph for which the periodic
orbit lemma, the key technical result of the approach aforementioned, turns out to be a consequence
of Brouwer’s fixed point theorem. The role of wholly automatic versus ‘trial and error with human
overhead’ computer procedures in detecting chaos is also discussed.
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1. Introduction and the main results. The complexity of the solutions to
the forced damped pendulum equation

mℓẍ + bẋ + mg sin(x) = A cos(ωt)

and of the related systems is one of the most frequently studied problems in dynamics.
For certain values of the parameters, small perturbation results for chaos apply.

However, a purely theoretical approach can hardly lead to a proof for chaos if
small perturbation methods break down, in particular, in the special case

ẍ + 10−1ẋ + sin(x) = cos(t)(1.1)

(i.e., for parameters mℓ = mg = A = ω = 1 and b = 10−1) investigated by Hubbard
[20]. Based on numerical experiments and the accompanying abstract considerations
mimicsing Smale’s geometric horseshoe construction, Hubbard [20] has made the exis-
tence of Σ3-chaos—both on Poincaré sections of the 2π-solution mapping and also in
more natural terms of the dynamics—very plausible. His main result can be restated
as follows.
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Theorem H (J.H. Hubbard [20]). Suppose we are given a biinfinite sequence

{εk}k∈Z
∈ {−1; 0; 1}Z

arbitrarily chosen. Then the pendulum governed by equation
(1.1) has at least one motion that corresponds to the biinfinite sequence {εk}k∈Z

in
the sense that, during the time interval (2kπ, 2(k + 1)π), the pendulum

• crosses the bottom position exactly once clockwise if and only if εk = −1,
• does not cross the bottom position at all if and only if εk = 0,
• crosses the bottom position exactly once counterclockwise if and only if εk = 1,

and does not point downwards at the time instants t = 2kπ, k ∈ Z.
The first aim of the present paper is to interpret Hubbard’s observation

within the Mischaikow-Mrozek framework of computer-assisted proofs for horseshoe-
type chaos. We use the word ‘observation’ because as it is written on page 755 of [20],
”no statement is proved anywhere”. Hubbard arranges numerical evidence according
to the framework of symbolic dynamics. We complete his work by filling all gaps via
refining some of his theoretical arguments (in particular, by introducing the small
quadrangles Lℓ, Mℓ, Rℓ, ℓ ∈ Z) and performing the rigorous interval arithmetics
computations necessary. We derive Theorem H as a consequence of a technical result
formulated on the basis of Figure 10 in Hubbard [20] portraying images and preimages
of three large quadrangles, the convex hulls of the smaller sets Lℓ∪Mℓ∪Rℓ, ℓ = −1, 0, 1.
In short, the observation is made a theorem.

Theorem 1.1. There exist compact pairwise disjoint quadrangles

L0, M0, R0 ⊂ {(x, ẋ) ∈ R2
∣

∣ 0 < x < 2π}

with the properties as follows. Given a biinfinite sequence {εk}k∈Z
∈ {−1; 0; 1}Z

, there
exists a solution x = x({εk}k∈Z

) : R → R to equation (1.1) such that

(x(2kπ), ẋ(2kπ)) ∈







Lσk
if εk = −1

Mσk
if εk = 0

Rσk
if εk = 1

(1.2)

where σk+1 = σk + εk, k ∈ Z with σ0 = 0 and

Lℓ = L0 + (2ℓπ, 0) , Mℓ = M0 + (2ℓπ, 0) , Rℓ = R0 + (2ℓπ, 0) , ℓ ∈ Z .(1.3)

Property (1.2) means that the horizontal 2ℓπ-translates Lℓ, Mℓ, Rℓ of the distin-
guished quadrangles L0, M0, R0 are visited by trajectories of the Poincaré mapping

Π : R
2 → R

2 , (x(0), ẋ(0)) → (x(2π), ẋ(2π))

in the given order prescribed by the biinfinite sequence {εk}k∈Z
. The underlying

circle of abstract topological results on transition graphs and iterates of continuous
mappings is the most important part of the landmark paper by Mischaikow and
Mrozek [25] and of the great number of contributions that followed. The essence of
the Mischaikow-Mrozek approach is to prove the existence of an abundance of combi-
natorially different periodic orbits and then, by using the density of periodic orbits in
the shift dynamics, to pass to the existence of horseshoe-type chaos. The key technical
tool is represented by what we state as Lemma 2.1 in Section 2 below. Lemma 2.1
concerns transition graphs and periodic orbits in two dimension and constitutes the
main step in proving Theorem 1.1.

The second aim of the present paper is to give an elementary proof to
a higher-dimensional generalization of Lemma 2.1. Higher dimensional versions of
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Lemma 2.1 were given by Gidea and Zgliczynski [17] and Pireddu and Zanolin [32].
The underlying definitions of the transition graphs in [17] and [32] (the latter mo-
tivated by [21]) are different. Both proofs are based on Brouwer degree arguments.
We give a third definition of the transition graph in higher dimension—the two-
dimensional case was settled by Papini and Zanolin [29]—for which a simple appli-
cation of Brouwer’s fixed point theorem suffices. This implies, in particular, that
in some of the earliest computer-assisted proofs for horseshoe-type chaos [25], [45],
[46], [47], Conley index and/or Brouwer degree arguments can be replaced by appli-
cations of Brouwer’s fixed point theorem. Actually, as it is discussed in Remark 1, it
is Miranda theorem (the intermediate value theorem in R

N , a particularly appealing
reformulation of Brouwer’s fixed point theorem) that applies more easily. The ‘rect-
angular character’ of Miranda theorem fits beautifully to the rectangles in defining
the transition graph as well as to the rectangles in rigorous/interval computation.

The computer-aided parts of the proofs of Theorems 1.1 and H were performed
both in the LINUX and in the Cygwin environment, on an average personal computer.
We used the C-XSC [23] programming language supporting interval arithmetics and
the Validated Numerical ODE (VNODE) package by Ned Nedialkov [27], [28]. Our
basic references for rigorous/interval computation and set-valued numerics are [1] and
[10], respectively.

The present paper is organized as follows. Section 2 begins with the
definition of the transition graph in two dimension, goes on with stating Lemma 2.1,
and ends with the proof of Theorem 1.1. TheoremH and a higher dimensional gener-
alization of Lemma 2.1 are proved in Sections 4 and 5, respectively. The intermediate
Section 3 is devoted to discussing the role of the computer in chaos detection.

Results on symbolic dynamics and various types of the pendulum equation can
be found in a large number of papers. Two early results into this direction concern
the standard pendulum equation with damping and variable length (but without an
outer forcing term) ẍ+bẋ+(1+c sin(µt)) sin(x) = 0. They were achieved by applying
Melnikov’s approach [42] and a computer-assisted version of the shooting method [19],
respectively. The concept of a chaotic oscillation for case b = 0 was defined in [14].

From the enormous (and still mathematically sound) literature on chaos in elec-
trical circuits, we refer to the computer-assisted proofs of Galias [15] for chaos in
Chua’s circuit as well as to the computer-assisted proof of Yang and Li [41] for chaos
in Josephson junctions.

Chaos results for the time-periodic nonlinear Hill equation ẍ + q(t)g(x) = 0 were
obtained by topological and variational methods. The slightly more general time-
periodic equations ẍ+bẋ+q(t)g(x) = 0 and ẍ+∂W (t, x)/∂x = h(t) were investigated
in [7] and [6], respectively. For details, generalizations, and more references, see
the forthcoming survey by Papini and Zanolin [30]. Note that Hubbard’s pendulum
equation (1.1) is not captured by theoretical and computational results we are aware
of.

2. Transition graph and chaos associated. For j ∈ Z, define

Qj = {(x1, x2) ∈ R
2

∣

∣ 3j + 1 ≤ x1 ≤ 3j + 2 , 0 ≤ x2 ≤ 1} ,

λj = {x ∈ Qj

∣

∣ x1 = 3j + 1} , ρj = {x ∈ Qj

∣

∣ x1 = 3j + 2} ,

Ej = {(x1, x2) ∈ R
2

∣

∣ 3j + 1 ≤ x1 ≤ 3j + 2 , |2x2 − 1| > 1} .

Set X = ∪j∈ZQj ⊂ R
2 and consider a continuous mapping ϕ : X → R

2 with
coordinate functions ϕ1, ϕ2. The transition graph G(ϕ) of ϕ is defined as a directed
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graph with vertex set V(G) = Z. For j, j̃ ∈ V(G), the pair (j, j̃) belongs to the edge
set E(G) of G(ϕ) if

ϕ(Qj) ⊂ R
2 \ cl(Ej̃)(2.1)

and the following alternative holds true:
either

ϕ1(x) < 3j̃ + 1 for x ∈ λj and ϕ1(x) > 3j̃ + 2 for x ∈ ρj(2.2)

or

ϕ1(x) > 3j̃ + 2 for x ∈ λj and ϕ1(x) < 3j̃ + 1 for x ∈ ρj .(2.3)

We write V = V(G) and E = E(G) in the sequel. For N ∈ N, the directed graph
C = C(j0, j1, . . . , jN ) is a directed (N + 1)-circle in G(ϕ) if V(C) = (j0, j1, . . . , jN ) ∈

VN+1 and, with the convention jN+1 = j0, E(C) = {(jk, jk+1)}
N
k=0

⊂ E. The directed
graph P = P({jk}k∈Z

) is a directed biinfinite path in G(ϕ) if V(P) = {jk}k∈Z
∈ VZ

and E(P) = {(jk, jk+1)}k∈Z
⊂ E. The definition of directed finite and infinite paths

(i.e., paths having a root vertex) in G(ϕ) follows a similar pattern and is omitted.
Lemma 2.1. Let C = C(j0, j1, . . . , jN ) be a directed circle in the transition graph

G(ϕ). Then there is a finite sequence of points {qk}
N
k=0

⊂ X such that, with the
convention qN+1 = q0,

qk+1 = ϕ(qk) and qk ∈ Qjk
, k = 0, 1, . . . , N .

Lemma 2.1 goes back to Mischaikow and Mrozek [25]. As stated above, it is a
version of the main result in Zgliczynski [45]. The proof of (a higher-dimensional
generalization of) Lemma 2.1 is postponed to Section 5.

Corollary 2.2. Let P = P({jk}k∈Z
) be a directed biinfinite path in the transi-

tion graph G(ϕ). Assume that either
(A) every directed infinite path in P has infinitely many different vertices

or
(B) G (as a directed graph) is connected.

Then there is a biinfinite sequence of points {qk}k∈Z
⊂ X with the property that

qk+1 = ϕ(qk) and qk ∈ Qjk
, k ∈ Z .

Proof. Case (A). Fix a positive integer ℓ = L and consider the finite path with
consecutive vertices (j−L, j−L+1, . . . , jL) ∈ V2L+1. Fix an integer M > L so that
jM 6= jk for k = −L, . . . , L. Redefining ϕ on QjM

, we may assume that (jM , j−L) ∈ E.
Thus the extended finite sequence (j−L, . . . , jL, jL+1, . . . , jM )) ∈ VL+1+M forms the
set of consecutive vertices of a directed circle in G(ϕ). Applying Lemma 2.1, we
conclude there exists a finite sequence of points {qL

k }|k|≤L ⊂ X such that

qL
k+1 = ϕ(qL

k ) for k = −L, . . . , L − 1 and qL
k ∈ Qjk

for k = −L, . . . , L .

Repeating the previous considerations for ℓ = L + 1, L + 2, . . ., a standard Bolzano-
Weierstrass subsequence argument in the limiting process ℓ → ∞ leads to the desired
result.
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Case (B). The connectedness of G is equivalent to the property that every
directed finite path in P is contained in a directed circle of G(ϕ). Consequently, with
easy modifications, the argument we applied in proving case (A) can be repeated.

Corollary 2.2 asserts the existence of a ϕ-trajectory visiting the Qj’s in the pre-
scribed order: A directed biinfinite path of type (A) or (B) of the transition graph
is shadowed by a ϕ-trajectory. Directed (N + 1)-circles in G(ϕ) are shadowed by
(N + 1)-periodic ϕ-trajectories. This is the content of Lemma 2.1.

Remark 1. If N = 0, then Lemma 2.1 simplifies to the Colorado fixed point
theorem in [3]. If the vertical coordinate is missing, then Lemma 2.1 simplifies to
a well-known result in one-dimensional dynamics (see e.g. Lemma III.1.4 in [34])
whose proof is based solely on the intermediate value theorem. The proof of a higher
dimensional generalization of Lemma 2.1 in Section 5 mimics the standard derivation
of Miranda theorem from Brouwer’s fixed point theorem [31]. Note that Miranda
theorem is nothing else but the higher dimensional counterpart of the intermediate
value theorem. It is known to be equivalent to Brouwer’s fixed point theorem and
to many other important results in topology [44]. Its history goes back to as early
as to Poincaré and Bohl. Recently, Miranda theorem has appeared as a root test in
numerical analysis and interval computation [13], [12], [36] as well as in chaos theory
for two-dimensional mappings [29], [4].

Remark 2. Observe that Lemma 2.1 remains valid if the right-hand side of in-
clusion (2.1) is weakened to R

2 \ Ej̃ and the strict inequalities in (2.2) and (2.3) are
replaced by their nonstrict counterparts. (In fact, for ℓ = 1, 2, . . ., it is elementary to
construct a modified map ϕℓ : X → R

2 satisfying |ϕℓ − ϕ| < 1/ℓ for which Lemma
2.1 (as stated above) applies. By passing ℓ → ∞, existence of the desired ϕ-periodic
trajectory follows from the Bolzano-Weierstrass argument.) The reason of stating
Lemma 2.1 in the form as presented above is to make the result stable with respect to
small perturbations. Actually, if the conditions of Lemma 2.1 are met, and a contin-
uous mapping ϕ̃ : ∪j∈ZQj → R

2 satisfies max{ |ϕ(q)− ϕ̃(q)|
∣

∣ q ∈ ∪N
k=0Qjk

} ≤ η with
η sufficiently small, then the (N + 1)-tuple (j0, j1, . . . , jN ) ∈ Z

N+1 forms a directed
circle in G(ϕ̃) as well. As we shall see in the sequel, it is exactly this robustness prop-
erty of the transition graph which makes Lemma 2.1 applicable in computer-assisted
proofs for horseshoe-type chaos. Stability with respect to small perturbations paves
the way to stability with respect to numerical approximations including those with
rounding errors.

Now we return to equation (1.1) investigated by Hubbard [20].
In what follows we point out how Corollary 2.2 applies and leads to a complete

proof of Theorem 1.1. The strategy is to find a biinfinite sequence of pairwise disjoint
compacta {Kj}j∈Z

in the Poincaré plane {(x, ẋ) ∈ R
2} such that, up to a coor-

dinate transformation h, Corollary 2.2 applies to the associated Poincaré mapping
Π : (x(0), ẋ(0)) → (x(2π), ẋ(2π)) of equation (1.1). We need such a homeomorphism
h of the Poincaré plane onto the standard plane {(x1, x2) ∈ R

2} that, for

ϕ = hΠh−1|X : X → R
2 with Qj = h(Kj) , j ∈ Z ,

Corollary 2.2 directly applies. Here, of course, X = ∪j∈ZQj and hΠh−1|X means
the restriction of hΠh−1 to X . Since Π is 2π-periodic with respect to the x variable
and the number of different εk’s is three, the biinfinite sequence {Kj}j∈Z

is sought
as a collection of the horizontal 2ℓπ-translates of the three distinguished quadrangles
L0, M0, R0 with (compare to the notation in (1.3) and have a look at Figure 2.1)
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0

L0 L1

1

2π

Fig. 2.1. Notation used in proving Theorem 1.1

K3ℓ = L0 + (2ℓπ, 0) , K3ℓ+1 = M0 + (2ℓπ, 0) , K3ℓ+2 = R0 + (2ℓπ, 0) , ℓ ∈ Z .

Given a biinfinte sequence {εk}k∈Z
∈ {−1; 0; 1}Z

, it is crucial that the directed biin-
finite path P = P({jk}k∈Z

) with jk = 3σk + 1 + εk (where—as defined in Theorem
1.1—σ0 = 0 and σk+1 = σk + εk for k ∈ Z) is a subgraph of G(ϕ). Applying
Corollary 2.2, trajectories satisfying (1.2) correspond to the directed biinfinite path
P = P({jk}k∈Z

) and vice versa.
Proof. [Proof of Theorem 1.1.] The successful realization of the strategy outlined

above depends on the careful choice of the distinguished quadrangles L0, M0, R0 and
of the coordinate transformation h. In line with the horizontal 2π-translation invari-
ance property of the collection {Kj}j∈Z

, the continuous mapping ϕ = hΠh−1|X is
prescribed to be 9-periodic with respect to the x1 variable. This can be guaranteed
by requiring that the coordinate functions of homeomorphism h : {(x, ẋ) ∈ R

2} →
{(x1, x2) ∈ R

2} satisfy

h1(x + 2π, ẋ) = 9 + h1(x, ẋ) and h2(x + 2π, ẋ) = h2(x, ẋ) .(2.4)

The existence of quadrangles L0, M0, R0 that lead to a transition graph suitably com-
plicated depends on the inner structure of the Poincaré mapping. Being far away from
perturbative regimes, this inner structure is hardly accessible to a purely analytic-
theoretical approach but can be revealed by computer experimentation quite easily.

Following Hubbard [20], consider quadrangles K0 = L0, K1 = M0, K2 = R0 as

Kj = conv{V
Kj

ul , V Kj
ur , V

Kj

ll , V
Kj

lr } , j = 0, 1, 2 ,

the closed convex hulls of their respective upper left, upper right, lower left, lower right
vertices. (Letters L, M, R themselves stand for left, middle, and right, respectively.)
The coordinates of these vertices are

V L0

ul = (1.000, −0.985) , V L0
ur = (1.970, −0.208)

V L0

ll = (1.226, −1.350) , V L0

lr = (2.226, −0.516) ,



A computer-assisted proof for Σ3-chaos in the forced damped pendulum equation 7

V M0

ul = (2.436, 0.166) , V M0
ur = (2.481, 0.201)

V M0

ll = (2.758, −0.123) , V M0

lr = (2.796, −0.092) ,

V R0

ul = (3.197, 0.775) , V R0
ur = (3.800, 1.258)

V R0

ll = (3.398, 0.389) , V R0

lr = (4.412, 1.202) .

See Figure 2.1. For details on how the individual vertices were found, see the third
paragraph of Section 3 below.

Consider also the broken line in Figure 2.1

L1 = {the vertical half-line below W 1
1 }∪[W 1

1 , W 2
1 ]∪{the vertical half-line above W 2

1 }

where

W 1
1 = (w1

1 , w
1
2) = V L0

lr + (0.2, 0) , W 2
1 = (w2

1 , w
2
2) = (7.5, 2)

and [W 1
1 , W 2

1 ] stays for the closed line segment between W 1
1 and W 2

1 . The open strip
between L1 and the translated broken line L0 = L1 +(−2π, 0) is denoted by S0. With
‘conv’ abbreviating the closed convex hull of the points that follow, define

D0 = {the vertical half-line below V L0

lr } ∪ L0 ∪ conv{V L0

ur , V M0

ul , V M0

ll , V L0

lr }

∪M0 ∪ conv{V M0

ur , V R0

ul , V R0

ll , V M0

lr } ∪ R0 ∪ {the vertical half-line above V R0

ul } .

The open strips between D0 and L0 resp. L1 are denoted by OL
0 resp. OR

0 . The union
of the right-hand side boundary of the strip OL

0 and the left-hand side boundary of
the strip OR

0 is denoted by B0. Finally, we set

E0 = B0 \ {(V
L0

ul , V L0

ll ) ∪ (V R0

ur , V R0

lr )}

where (V L0

ul , V L0

ll ) stays for the open line segment connecting V L0

ul and V L0

ll etc. (The

closed line segment connecting V L0

ul and V L0

ll is denoted by [V L0

ul , V L0

ll ] etc. Note that
E0 is the union of ten closed line segments and two closed half-lines. See Figure 2.1
again.)

The crucial properties responsible for the edge structure of the transition graph
are

Π(R−1) , Π(M0) , Π(L1) ⊂ S0 \ E0 ,(2.5)

Π([V
R−1

ul , V
R−1

ll ]) , Π([V M0

ul , V M0

ll ]), Π([V L1

ur , V L1

lr ]) ⊂ OL
0 ,(2.6)

Π([V R−1

ur , V
R−1

lr ]) , Π([V M0

ur , V M0

lr ]) , Π([V L1

ul , V L1

ll ]) ⊂ OR
0 .(2.7)

See Figure 2.2 portraying the sets Π(L0) (a translated copy of Π(L1)) Π(M0), Π(R0)
(a translated copy of Π(R−1)). The subset relations (2.5), (2.6), (2.7) are checked by
computer. Note that the sets S0 \ E0, OL

0 , OR
0 are open and all the nine sets Π(R−1),

. . ., Π([V L1

ul , V L1

ll ]) on the respective left-hand sides are compact. Hence inclusions
(2.5), (2.6), (2.7) remain valid if the entire construction is repeated with the sets
D0, B0, and E0 slightly thicker, i.e., if D0, B0, and E0 are replaced by their closed
neighborhoods D, B, and E suitably chosen.

Now we start with the construction of homeomorphism h subject to condition
(2.4). We require also that Qj = h(Kj) with

(3j + 1, 1) = h(V
Kj

ul ) , (3j + 2, 1) = h(V Kj
ur ) , j = 0, 1, 2

(3j + 1, 0) = h(V
Kj

ll ) , (3j + 2, 0) = h(V
Kj

lr ) , j = 0, 1, 2
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ẋ

x

1

2πM0

L0

R0

M−1

L−1

R−1

M1

L1

R1

Π(M0)Π(L0) Π(R0)

Fig. 2.2. Images of the distinguished quadrangles under Π

(i.e., the corresponding vertices are mapped to each other) and

cl(E0 ∪ E1 ∪ E2) ⊂ h(E) , {(x1, x2) ∈ R
2

∣

∣ x1 = 0} = h(L0) .(2.8)

Due to the piecewise linear boundaries of the sets involved, the construction of h
is elementary. We have a great freedom in choosing h. Advanced results of two-
dimensional topology are not needed. Note that, by translation symmetry, the broken
line L1 is mapped onto the line of equation x1 = 9.

Recall that X = ∪j∈ZQj . Property (2.5) and the inclusion in (2.8) imply that

ϕ(X) ⊂ R
2 \ cl (∪j∈ZEj) .

Using (2.6), (2.7), we conclude that the transition graph of ϕ is as follows. The vertex
set of G(ϕ) is obviously V = Z and G(ϕ) is three-periodic in the sense that (j, j̃) ∈ E

if and only if (j + 3, j̃ + 3) ∈ E. The edges starting from the vertex subset { 0, 1, 2}
are as illustrated in Figure 2.3(a):

(0,−3); (0,−2); (0,−1); (1, 0); (1, 1); (1, 2); (2, 3); (2, 4); (2, 5) .

Thus we arrive at the schematic phase portrait of the Poincaré mapping presented in
Figure 2.3(b).

Given a biinfinte sequence {εk}k∈Z
∈ {−1; 0; 1}Z

, a quick analysis of the transition
graph G(ϕ) = G(hΠh−1|X) shows that the directed biinfinite path P = P({jk}k∈Z

)
with jk = 3σk +1+εk (where—as defined in Theorem 1.1—σ0 = 0 and σk+1 = σk +εk

for k ∈ Z) is a subgraph of G(ϕ). Trajectories satisfying (1.2) correspond to the
directed biinfinite path P = P({jk}k∈Z

) and vice versa.
This supplies all the details of proving Theorem 1.1: Corollary 2.2 applies and we

are done.
The derivation of Theorem 1.1 follows the standard main argument in the Mischai-

kow-Mrozek framework for computer-assisted proofs. (Note that the invertibility of
Π was not exploited but it will be needed for the backward invariance of the set Λ
in Corollary 2.3 below). For the geometric background and details on the role of the
computer, see Section 3.

It is an easy exercise to reformulate Theorem 1.1 in the language of symbolic
dynamics [43], [34]. In fact, recall that Qj = h(Kj) and let Θ ⊂ X be the closure of
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Q0 Q1 Q2Q−3 Q−2 Q−1 Q3 Q4 Q5

(a) A three–periodic segment of the transition graph G(ϕ)

L0 M0 R0L−1 M−1 R−1 L1 M1 R1

Π

Π

Π

(b) Σ3–chaos in the quotient dynamics of Π

Fig. 2.3. Combinatorial complexity in Hubbard’s forced damped pendulum equation

all periodic points of ϕ that shadow the directed circles of G(ϕ). Set Θ is backward
and forward invariant under ϕ. For x ∈ Θ, formula

(c(x))k = jk whenever ϕk(x) ∈ Qjk
and k ∈ Z ,

defines a continuous itinerary mapping c : Θ → Z
Z. The inverse of homeomorphism h

lifts everything to the Poincaré plane. Clearly Λ = h−1(Θ) is backward and forward
invariant under the Poincaré mapping Π and, for λ = (x, ẋ) ∈ Λ with d(λ) = c(h(λ)),

(d(λ))k = jk whenever Πk(λ) ∈ Kjk
, k ∈ Z .

With S denoting the shift operator on Z
Z, we conclude that

c(ϕ(x)) = Sc(x) for each x ∈ Θ and d(Π(λ)) = Sd(x) for each λ ∈ Λ .

The entire construction reflects the horizontal 2π-translation symmetry of Π. The
respective quotient maps are continuous and satisfy

d̄(Π̄(λ̄)) = S̄d̄(λ̄) for each λ̄ ∈ Λ̄ .

The quotient transition graph G(ϕ̄) is the complete directed graph on three vertices

and thus the modulo 3 itinerary map d̄ : Λ̄ → { 0, 1, 2}Z is onto. For convenience,
note that

(d̄(λ̄))k = 1 + εk for λ̄ ∈ Λ̄ = Λ ∩ {(x, ẋ) ∈ R2
∣

∣ 0 < x < 2π} , k ∈ Z .

The quotient results can be restated in a compact form as follows.
Corollary 2.3 (Continuation of Theorem 1.1). The modulo 2π Poincaré map-

ping Π̄ on Λ̄ is semiconjugate to the shift operator S̄ on Σ3, the space of three symbols.
Actually, as it is suggested by Hubbard [20], d̄ is plausibly one-to-one and thus

Π̄|Λ̄ and S̄ are conjugate. See Figure 2.2 again and compare it to Figures 2.3(a) and
2.3(b).
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3. Chaos detection by computer. What the computer is used for in the
Mischaikow-Mrozek framework of computer-assisted proofs for chaos is to check cer-
tain subset relations (like (2.5), (2.6), (2.7)) and above all, to find the subset relations
to be checked – basically, to find such a collection of ‘rectangular’ subsets of the phase
space (like L0, M0, R0) that the associated transition graph has at least two different,
but intersecting circles.

The successful collection of ‘rectangular’ subsets is usually the result of computer
experimentation with human overhead. In principle, by using constrained satisfaction
techniques of global optimization [33], this trial and error process can be entirely
left to the computer [9]. If three quadrangles are sought for, the search domain
of the optimization procedure is a subset of a 24-dimensional parameter space (8
dimension for each quadrangle according to the coordinate pairs of the four vertices.
The search for a successful collection of the ‘forbidden sets’ L0, L1, and E0 requires
the introduction of some additional parameters.) The smaller the search domain the
better. However, a ‘small’ search domain corresponds to a ‘good’ initial guess which
cannot be obtained but only from some a priori known theoretical or numerical results
on the structure of the dynamics. Typical candidates for members of a successful
collection are quadrangles sitting on the unstable manifold of a transversal homoclinic
saddle. We feel it is not inappropriate here to call the attention of the reader to a
forthcoming paper [5] of ours where, within a 17-dimensional parameter space, the
full power of the optimization method [4] is exploited. The main result is that Hk,
the k-th iterate of Hénon’s mapping with the classical parameters a = 1.4 and b = 0.3
has an embedded copy of the Σ2 dynamics if and only if k = 2, k = 4, or k ≥ 6.
This is guaranteed by Smale’s abstract theory of transversal homoclinic saddles only
for k ≥ k0 sufficiently large. (By the way, to the best of our knowledge, all existence
proofs (e.g. [26], [11], [16]) for a transversal homoclinic saddle in the dynamics of H
are, in some way or the other, computer-assisted.)

In proving Theorem 1.1, the vertices of the distinguished quadrangles L0, M0, R0

(as well as of the ‘forbidden sets’ L0, L1, E0) were chosen as indicated in Hubbard [20].
Though the coordinates of the individual vertices were not given explicitly by him, it
was easy to adjust them on the basis of Figure 10 of his paper. This adjustment was
made by hand and the optimization method [9] avoided. (Actually, what Hubbard
works with are only three large quadrangles, the convex hulls of what we define as
the sets Lℓ ∪ Mℓ ∪ Rℓ, ℓ = −1, 0, 1 (and the ‘forbidden sets’ are not mentioned by
him at all). At the first sight, it is plausible that the twelve vertices V L0

ul , . . . , V R0

lr lie
on the circumference of Hubbard’s large quadrangle. However, we could not establish
such an arrangement. This seems to point to the differences between nonrigorous and
rigorous computation.) Just like Hénon’s mapping H, also the Poincaré mapping Π
of Hubbard’s pendulum equation (1.1) has a homoclinic saddle. This saddle point is

P = (2.634 . . . , 0.026 . . .) with eigenvalues µ1 = 321.836 . . . and µ2 = 0.001 . . .

(all computations are rigorous). Of course P represents an unstable 2π-periodic so-
lution which has bifurcated from the upward/top equilibrium position x = π, ẋ = 0
of the damped unforced pendulum. (Equation (1.1) has a second, asymptotically
stable 2π-periodic solution which corresponds to the sink Q = (4.236 . . . , 0.392 . . .)
of the Poincaré mapping with eigenvalues µ1,2 = −0.725 . . . ± i 0.129 . . . and which
has bifurcated from the bottom equilibrium position x = 0, ẋ = 0 of the damped
unforced pendulum. A computer-assisted argumentation shows there are no further
2π-periodic solutions.) Note that P is contained in M0 and, one after the other, its
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unstable manifold intersects the distinguished quadrangles in the rather strange order
of R−1, M−1, L−1, L0, M0, R0, L1, M0, R1.

Unstable and stable manifolds of P intersect each other outside P . Apparently,
this is a transversal intersection. We did not verify transversality by rigorous com-
putation. The reason is that transversality alone, though guaranteeing the existence
of a topological horseshoe, contains less information on the dynamics than a transi-
tion graph with carefully chosen ‘rectangular’ subsets. The next logical step forward
should be rather the verification of the Conley-Moser invariant cone field conditions
[43] leading (if it is really the case) to transversality as well as to the conjugacy be-
tween Π̄|Λ̄ and S̄. Unfortunately, the verification of inclusions (2.5), (2.6), (2.7) takes
almost an entire hour on a personal computer of medium size. See Figure 4.1(a). Con-
sequently, we think there is little hope to check the invariant cone field conditions in a
reasonable amount of time. Nevertheless, the semiconjugacy of Π̄|Λ̄ to S̄ established
in Corollary 2.3 is not much worse than the conjugacy expected. Semiconjugacy to
S̄ means that the dynamics is at least as complicated as the one of the shift opera-
tor on the space of three symbols whereas conjugacy would mean that the dynamics
of Π̄|Λ̄ is exactly as complicated as the one of S̄. What is easy to show is that
m(Λ̄), the Lebesgue measure of Λ̄, equals zero. (This is clear because Π̄(C̄) ⊂ C̄ for
C̄ = {(x, ẋ) ∈ R

2
∣

∣ 0 ≤ x < 2π , |ẋ| ≤ 12}, Λ̄ ⊂ ∩∞
k=0Π̄

k(C̄), and Π̄ contracts areas

by a factor of e−π/5, due to the damping and Liouville theorem [20].) Questions on
further characteristics of chaos in Hubbard’spendulum equation (1.1), e.g., the Wada
property experimentally observed by Hubbard [20] or fine ergodic properties like the
existence of a unique SRB measure (established for the Lorenz equation by Tucker
[40]) and mixing (established for the Lorenz equation by Luzzato, Melbourne, and
Paccaut [24]) remain open.

Concluding this section, we note that the existence of a transition graph with
two different but intersecting circles is implicit in an interesting paper by Stoffer and
Palmer [38] on shadowing. Essentially, they prove that the existence of two hyperbolic
periodic orbits that come sufficiently near to each other without remaining too close
in the long run (e.g. whose minimal periods are highly nonresonant) implies the exis-
tence of an embedded horseshoe. This corresponds to the Levinson phenomenon that
motivated Smale to construct the geometric horseshoe [37]. For related differences and
similarities between the shadowing and the topological approach in computer-assisted
proofs for chaos, see the recent paper of Coomes, Kocak, and Palmer [8].

4. Chaos in natural terms of the dynamics. The one-to-one correspondence
between a set of the solutions to Hubbard’s pendulum equation (1.1) and the set of all
biinfinite sequences on three symbols manifests itself in natural terms of the dynamics.

Looking at the pendulum, the distinguished quadrangles L0, M0, R0 remain hid-
den, even to the most careful spectator. What he can easily notice, are high speed or
low speed, the number of consecutive clockwise or counterclockwise returns, changes
in the direction of swing and/or rotation, passages across the upper and/or the lower
vertical position etc. In systematizing an abundance of different dynamical behaviour,
the mind has a natural tendency to consider the consecutive occurrences of alternative,
easily discernible events like heads-or-tails sequences in coin-tossing.

Theorems H and 1.1 have to be interpreted from this view-point. Any possi-
ble order of the mutually exclusive alternatives can be realized. Both observations
describe the same combinatorial aspect of Σ3-chaos, the existence of ‘coin-tossing’
(coins with three sides) label sequences [22] for itineraries. However, the alternatives
in Theorem 1.1 can hardly be observed whereas the alternatives in Theorem H are
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(a) A typical detail in the computer–assisted
part of proving Theorem 1.1

x

ẋ

R0

L1

2π
1

(b) A typical detail in the computer–assisted
part of proving Theorem H

Fig. 4.1. Checking inclusions by interval computation

quite transparent: There exist uncountably many solutions of Hubbard’s pendulum
equation that can be distinguished from each other on the basis of their combinato-
rially different qualitative behaviour. This is what we might call combinatorial chaos
in natural terms of the dynamics. Previous examples include symbolic dynamics in
terms of consecutive return times in Alekseev’s three-body system [2], [20]; in terms
of consecutive maxima and minima in the Lorenz systems [18]; in terms of the num-
ber of sign changes in consecutive time intervals of equal length [7], [39]; in terms
of multibumps in bursting oscillations [35]; etc. Their natural place to occur is the
vicinity of bifurcating homoclinic/heteroclinic orbit connections.

Proof. [Proof of Theorem H.] The derivation of from Theorem 1.1 requires investi-
gating of what the solution map (x(0), ẋ(0)) → (x(t), ẋ(t)) does between the Poincaré
sections at t0 = 0 and t1 = 2π.

Consider the collection of motions of the forced damped pendulum with initial
position (x(0), ẋ(0)) ∈ R0 and final position (x(2π), ẋ(2π)) ∈ L1 ∪ M1 ∪ R1. It is
not hard to check by rigorous/interval computation that 0 < x(t) < 4π whenever
0 ≤ t ≤ 2π and

{(x(t), ẋ(t)) ∈ R
2

∣

∣ 0 ≤ t ≤ 2π} ∩ {(x, ẋ) ∈ R
2

∣

∣ x = 2π and ẋ ≤ 0} = ∅ .

In view of the intermediate value theorem, it follows that x(t∗) = 2π for some t∗ ∈
(0, 2π), x(t) ∈ (0, 2π) for t ∈ [0, t∗), and x(t) ∈ (2π, 4π) for t ∈ (t∗, 2π]. In other
words, during the time interval (0, 2π), the pendulum crosses the bottom position
exactly once counterclockwise and does not point downwards at the time instants
t0 = 0 and t1 = 2π. This holds true for all motions of the pendulum with initial
position (x(0), ẋ(0)) ∈ R0 and final position (x(2π), ẋ(2π)) ∈ L1 ∪ M1 ∪ R1 (but not
for all motions with initial position (x(0), ẋ(0)) ∈ R0). In particular, this holds true
for all distinguished σ0 = 0, ε0 = 1 (and, a fortiori, σ1 = 1, ε1 ∈ {−1, 0, 1}) motions
of the pendulum captured by Theorem 1.1. Parts of the necessary computations in
subcase σ0 = 0, ε0 = 1, σ1 = 1, ε1 = −1 are illustrated in Figure 4.1(b).

The remaining cases σ0 = 0, ε0 = 0 and σ0 = 0, ε0 = −1 cases were settled
similarly. The total computing time was less than two minutes on an average personal
computer.

The relation between symbolic dynamics and oscillation patterns is worth of fur-
ther investigation. We ask if symbolic dynamics appears in terms of crossing the
bottom and the top equilibrium position.
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5. Lemma 2.1 in higher dimension. A simple proof. Let m, n be fixed
nonnegative integers, and let V ⊂ Z be a finite or countably infinite indexing set.
Boundary and interior of a compact set S in a Euclidean space R

k is denoted by ∂S
and int(S), respectively. The closed neighborhood of radius R > 0 of a point p and
a set S in R

k is denoted by Bk[p, R] and Bk[S, R], respectively. Norm and scalar
product in R

k are denoted by ‖ · ‖ and 〈·, ·〉.
Consider the collection of the rectangular sets of the form

Qj = {x = (u, s) ∈ R
m × R

n
∣

∣ u ∈ Uj , s ∈ Sj} , j ∈ V

where {Uj}j∈V
and {Sj}j∈V

are compact topological balls in R
m and in R

n, respec-
tively. Note that Sj is a retract of R

n. Let rj : R
n → Sj be a retraction, j ∈ V.

Let X = ∪j∈VQj ⊂ R
m × R

n and consider a continuous mapping ϕ : X →
R

m × R
n with coordinate functions ϕu, ϕs. It is assumed that Qj ∩Qk = ∅ for j 6= k

and that {j ∈ V |Qj ∩{(u, s) ∈ R
m×R

n
∣

∣‖u‖+‖s‖ < R} 6= ∅} is finite for any R > 0.
The transition graph G(ϕ) of ϕ is defined as a directed graph with vertex set V.

For j, j̃ ∈ V, the pair (j, j̃) belongs to the edge set E of G(ϕ) if

ϕ(Qj) ⊂ R
m × R

n \ Uj̃ × (Rn \ Sj̃)(5.1)

and there exist positive constants η0 = η0(j, j̃) and κ0 = κ0(j, j̃) such that one of the
following two conditions is satisfied:

either

vj + κ(uj̃ − ϕu(vj , sj)) ∈ Uj whenever(5.2)

vj ∈ Uj , d(vj , ∂Uj) ≤ η0, sj ∈ Sj , uj̃ ∈ Uj̃ and 0 ≤ κ ≤ κ0

or

vj − κ(uj̃ − ϕu(vj , sj)) ∈ Uj whenever(5.3)

vj ∈ Uj , d(vj , ∂Uj) ≤ η0, sj ∈ Sj , uj̃ ∈ Uj̃ and 0 ≤ κ ≤ κ0 .

The definition of the transition graph in Section 2 is more restrictive. If m = n =
1, then condition (5.1) is equivalent to ϕ(Qj) ⊂ R

2 \ Ej̃ , a weakening of condition
(2.1) discussed in Remark 2. Similarly, with η0 = 1− ϑ0 and κ0 suitably chosen (it is
enough to take both ϑ0 > 0 and κ0 = κ0(ϑ0) > 0 sufficiently small), conditions (5.2)
and (5.3) are implied by conditions (2.2) and (2.3), respectively.

With the notion of the transition graph redefined in R
m ×R

n, m, n ≥ 1, the text
of Lemma 2.1 in higher dimension coincides with that of the original Lemma 2.1 word
for word. Now we pass to the proof of this generalization. Conditions (5.2) and (5.3)
will be illuminated and analyzed thereafter.

Proof. [Proof of Lemma 2.1 in R
m × R

n.] The strategy is to rewrite the system
of equations

xk+1 = ϕ(xk) and xk ∈ Qjk
, k = 0, 1, . . . , N

as a fixed point equation (x0, x1, . . . , xN ) = F(x0, x1, . . . , xN ) in the product space
∏N

k=0
Qjk

⊂ (Rm × R
n)

N+1
and to check that all conditions of Brouwer’s fixed point

theorem are satisfied.
Fix a positive constant

κ∗ ≤ min
k=0,1,...,N

κ0(jk, jk+1) such that κ∗C∗ ≤ min
k=0,1,...,N

η0(jk, jk+1)
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where

C∗ = max
k=0,1,...,N

max{‖uk+1 − ϕu(xk)‖
∣

∣ uk+1 ∈ Ujk+1
, xk ∈ Qjk

} .

For (x0, x1, . . . , xN ) ∈
∏N

k=0
Qjk

, we set coordinatewise

(F(x0, x1, . . . , xN ))k = (uk + εkκ∗(uk+1 − ϕu(xk)), rjk
(ϕs(xk−1))) ∈ R

m × R
n .

Here εk depends on the pair (j, j̃) = (jk, jk+1) by taking εk = 1 if condition (5.2) and
εk = −1 if condition (5.3) is satisfied, k = 0, 1, . . . , N .

Since xN+1 = x0, x−1 = xN by convention, we shift the indices in the R
n-

coordinate, and see that the fixed point equation (x0, x1, . . . , xN ) = F(x0, x1, . . . , xN )

in
∏N

k=0
Qjk

is equivalent to the system of equations

uk+1 = ϕu(xk) and sk+1 = rjk+1
(ϕs(xk)) , k = 0, 1, . . . , N .(5.4)

By using condition (5.1), ϕs(xk) ∈ Sjk+1
. Hence rjk+1

(ϕs(xk)) = ϕs(xk), and system
(5.4) simplifies to

uk+1 = ϕu(xk) and sk+1 = ϕs(xk) , i.e., xk+1 = ϕ(xk) , k = 0, 1, . . . , N .

It is clear that
∏N

k=0
Qjk

is a compact topological ball in (Rm × R
n)N+1 and

F :
∏N

k=0
Qjk

→ (Rm × R
n)

N+1
is a continuous function. It remains to prove that

(F(x0, x1, . . . , xN ))k ∈ Qjk
whenever (x0, x1, . . . , xN ) ∈

N
∏

k=0

Qjk
,

k = 0, 1, . . . , N . Since rjk
(ϕs(xk−1)) ∈ Sjk

, we can pass to the R
m-coordinate and

have to check only that

uk + εkκ∗(uk+1 − ϕu(xk)) ∈ Ujk
if xk = (uk, sk) ∈ Qjk

and uk+1 ∈ Ujk+1
.(5.5)

If uk ∈ Ujk
with d(uk, ∂Ujk

) ≤ η0(jk, jk+1), then—depending on the value of εk—
(5.5) reduces to (5.2) or (5.3) with κ = κ∗. On the other hand, if uk ∈ Ujk

with
d(uk, ∂Ujk

) > η0(jk, jk+1), then (5.5) follows via inequality κ∗‖uk+1 − ϕu(xk)‖ ≤
κ∗C∗ ≤ η0(jk, jk+1), k = 0, 1, . . . , N .

Geometrically, both condition (5.2) and the alternative condition (5.3) mean that
Uj̃ is ‘surrounded by’ ϕu(∂Uj × Sj). In the special case Uj = Uj̃ = Bm[0, 1] and
Sj = Bm[0, 1] (compact unit balls in the respective Euclidean spaces), condition (5.2)
is implied by inequality

〈ϕu(u, s) − ũ , u〉 > 1 whenever u, ũ ∈ R
m, s ∈ R

n, ‖u‖ = 1, ‖ũ‖, ‖s‖ ≤ 1

resembling certain geometric conditions in various consequences of Brouwer’s fixed
point theorem [44].

The rest of the paper is devoted to a technical analysis of conditions (5.2) and
(5.3). By symmetry, this analysis reduces to investigating (5.2). Condition (5.2) will
be replaced by the slightly stronger condition (5.6) which is stable with respect to
small perturbations of ϕu including numerical approximations with rounding errors.
A second advantage of (5.6) over (5.2) is that condition (5.6) can be checked more
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easily. All in all, condition (5.6) fits better to computer-assisted proofs than (5.2).
The paper ends with the somewhat more convenient and transparent condition (5.8).

Proposition 5.1. Condition (5.2) is a consequence of the following requirement.
There exist positive constants λ0 = λ0(j, j̃) and ∆ = ∆(j, j̃) such that

uj + λ(wj̃ − ϕu(uj , sj)) ∈ Uj whenever(5.6)

uj ∈ ∂Uj, sj ∈ Sj , wj̃ ∈ Bm[Uj̃, ∆] and 0 ≤ λ ≤ λ0 .

Proof. We omit indices j, j̃ in the sequel and write U = Uj , S = Sj , and W = Uj̃ .
To the contrary, assume that condition (5.6) is satisfied but (5.2) is not. Then

there are sequences {vℓ} ⊂ U , {sℓ} ⊂ S, {wℓ} ⊂ W , {κℓ} ⊂ R
+ with the properties

that

pℓ = vℓ + κℓ(wℓ − ϕu(vℓ, sℓ)) 6∈ U , for ℓ = 1, 2, . . .(5.7)

and either vℓ → ∂U or κℓ → 0.
Suppose first that κℓ → 0. Since vℓ ∈ U and pℓ 6∈ U , there exists a κ∗

ℓ ∈ [0, κℓ)
such that

zℓ = vℓ + κ∗
ℓ (wℓ − ϕu(vℓ, sℓ)) ∈ ∂U , for ℓ = 1, 2, . . . .

Note that 0 < κℓ − κ∗
ℓ ≤ λ0 and ‖ϕu(zℓ, sℓ) − ϕu(vℓ, sℓ)‖ ≤ ∆ for ℓ large enough. In

view of condition (5.6), we conclude that

pℓ = zℓ + (κℓ − κ∗
ℓ )[(wℓ + ϕu(zℓ, sℓ) − ϕu(vℓ, sℓ)) − ϕu(zℓ, sℓ)] ∈ U

for ℓ large enough, a contradiction to (5.7).
Suppose now that vℓ → ∂U . There is no loss of generality in assuming that

vℓ → v∗ for some v∗ ∈ ∂U , sℓ → s∗ for some s∗ ∈ S, and 0 < inf κℓ ≤ sup κℓ ≤ λ0.
In particular, ‖ vℓ−v∗

κℓ
− ϕu(vℓ, sℓ) + ϕu(v∗, s∗)‖ ≤ ∆ for ℓ large enough. In view of

condition (5.6), we conclude that

pℓ = v∗ + κℓ[

(

wℓ +
vℓ − v∗

κℓ
− ϕu(vℓ, sℓ) + ϕu(v∗, s∗)

)

− ϕu(v∗, s∗)] ∈ U

for ℓ large enough, a contradiction to (5.7).
Proposition 5.2. Condition (5.6) is a consequence of the following requirement.

There exists a positive constant δ = δ(j, j̃) such that

uj + µ(wj̃ − ϕu(uj , sj)) ∈ int(Uj) whenever(5.8)

uj ∈ ∂Uj, sj ∈ Sj , wj̃ ∈ Bm[Uj̃ , δ] and 0 < µ ≤ µ0 with some µ0 = µ0(uj , sj , wj̃) .

Proof. As before, we write U = Uj , S = Sj , and W = Uj̃.
Fix u∗ ∈ ∂U , s∗ ∈ S and w∗ ∈ W . By compactness, it is enough to point out

the existence of two positive constants τ = τ(u∗, s∗, w∗) and λ∗ = λ∗(u∗, s∗, w∗, τ)
such that, given u ∈ ∂U , s ∈ S and w ∈ Bm[W, δ] with ‖u − u∗‖ ≤ τ , ‖s − s∗‖ ≤ τ ,
‖w − w∗‖ ≤ τ , it holds true that

u + λ(w − ϕu(u, s)) ∈ U whenever 0 ≤ λ ≤ λ∗ .
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By continuity, there is a 0 < σ < δ such that, given w ∈ Bm[w∗, σ], q ∈ U ∩
Bm[u∗, σ] arbitrarily,

w̃ − ϕu(q, s∗) = w − ϕu(u∗, s∗) for some w̃ ∈ Bm[w∗, δ] .(5.9)

In view of condition (5.6) applied for (u∗, s∗, w∗), we may assume that

u∗ + α∗
+(w∗ − ϕu(u∗, s∗)) ∈ int(U) ∩ ∂Bm[u∗, σ] for some α∗

+ > 0 .

As a corollary, a simple geometric argument implies the existence of a constant 0 < η <
σ with the properties as follows. Given p ∈ Bm[u∗, η] and w ∈ Bm[w∗, η] arbitrarily,

p + α+(w − ϕu(u∗, s∗)) ∈ int(U) ∩ ∂Bm[u∗, σ] for some α+ = α+(p, w) > 0

where α+ is unique, function (p, w) → α+(p, w) is continuous, and α+(u∗, w∗) = α∗
+.

For later use, we note that

α∗ = inf{α+(p, w)
∣

∣ p ∈ Bm[u∗, η] , w ∈ Bm[w∗, η]} > 0

by compactness. Similarly, observe there exists a constant 0 < τ < η such that, given
w ∈ Bm[w∗, τ ], u ∈ U ∩ Bm[u∗, τ ], s ∈ S ∩ Bm[s∗, τ ] arbitrarily,

ŵ − ϕu(u∗, s∗) = w − ϕu(u, s) for some ŵ ∈ Bm[w∗, η] .(5.10)

Consider now the straight line segment

Lp,w = {p + λ(w − ϕu(u∗, s∗))
∣

∣ λ ≥ 0} ∩ Bm[u∗, σ]

and assume that q = p + γ0(w −ϕu(u∗, s∗)) ∈ ∂U ∩Lp,w for some γ0 < α+. By using
property (5.9), condition (5.6) (when applied for (q, s∗, w̃)) implies that

p + γ(w − ϕu(u∗, s∗)) = q + (γ − γ0)(w̃ − ϕu(q, s∗)) ∈ int(U)

for γ > γ0, |γ−γ0| small. By an elementary connectedness argument in one dimension,
we conclude that Lp,w ∩ U is a compact interval with an endpoint on ∂Bm[u∗, σ]. If,
in particular, p = u ∈ ∂U ∩ Bm[u∗, τ ], s ∈ S ∩ Bm[s∗, τ ] and w ∈ Bm[w∗, τ ], then

{u + λ(w − ϕu(u, s))
∣

∣ λ ≥ 0} ∩ Bm[u∗, σ] = Lu,ŵ

by property (5.10) and thus u + λ(w − ϕu(u, s)) ∈ U for 0 ≤ λ ≤ α+(u, ŵ). Hence
λ∗ = λ∗(u∗, s∗, w∗) can be taken for α∗ > 0.
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