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We report on experiences with an adaptive subdivision method
supported by interval arithmetic that enables us to prove subset
relations of the form T (W ) ⊂ U and thus to check certain suffi-
cient conditions for chaotic behaviour of dynamical systems in a
rigorous way.

Our proof of the underlying abstract theorem avoids of referring
to any results of applied algebraic topology and relies only on
the Brouwer fixed point theorem.

The second novelty is that the process of gaining the subset
relations to be checked is, to a large extent, also automatized.
The promising subset relations come from solving a constrained
optimization problem via the penalty function approach.

Abstract results and computational methods are demonstrated
by finding embedded copies of the standard horseshoe dynamics
in iterates of the classical Hénon mapping.
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1 Introduction

The establishing of computer-assisted proofs for chaos is one of the great suc-
cess stories of dynamical systems theory in the last decade. The high-points
of this development are the Mischaikow-Mrozek proof for the existence of
a topological horseshoe [Mischaikow & Mrozek, 1995] and the Tucker proof
for the existence of a strange attractor [Tucker, 1999] in the Lorenz system.
Roughly speaking, a computer-assisted proof for chaos is a mixture of

• a theoretical part: the establishing of a sufficient condition for (a
certain type of) chaos that consists of a finite collection of inclusions of
the form Tj(Wj) ⊂ Uj where the Wj ’s and the Uj ’s are subsets of the
phase space and the Tj ’s are functions associated with the dynamics,

• and of a computational part: the verification of these inclusions by
a rigorous numerical method that consists of finding the Wj ’s and the
Uj ’s as well as of the verified checking of the relations Tj(Wj) ⊂ Uj ,
j = 1, 2, . . . , M .

The collection of of the subset relations Tj(Wj) ⊂ Uj , j = 1, 2, . . . , M forms
a sufficient condition for chaos in a region determined by the subset relations
themselves. In order to locate chaotic regions, one has to find the subset re-
lations to be checked. In [Mischaikow & Mrozek, 1995] and in [Tucker, 1999],
the Wj ’s and the Uj ’s are subsets of suitable Poincarè sections of the dynam-
ics and the Tj ’s are the corresponding return/Poincarè maps. Everywhere

in the literature we are aware of, the successful triplets {(Tj , Wj , Uj)}
M
j=1 are

found as a result of computer experimentation with human overhead, i.e.,
in a final analysis, by hand.

Much less human interaction is needed when the possible subset re-
lations are assumed to depend on certain parameters. Undoubtfully, the
choice of the parameter space Λ requires an “intelligent guess”, exploiting
numerical and theoretical results on the dynamics. However, the task of
finding a particular parameter value λ0 ∈ Λ for which the subset relations
Tj(λ0)(Wj(λ0)) ⊂ Uj(λ0), j = 1, 2, . . . , M are all satisfied — this tedious
task is the terrain of optimization methods and can be left entirely to the
computer.

As we shall see in the next subsec., the core of detecting horseshoe-type
chaos is to find periodic points with prescribed left-right itinaries. Periodic
points with prescribed left-right itinaries are fixed points for iterated func-
tions on certain product spaces. This is how fixed point theory leads to
horseshoe-type chaos, a dynamics at least as complicated as the one of the
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shift operator on the space of two symbols. The proof of the underlying
abstract [Zgliczynski, 1996] result, itself a simplification of the Conley index
argument [Mischaikow-Mrozek, 1995], is simplified further by observing that
fixed-point index and/or degree arguments can be replaced by applying the
more elementary Brouwer fixed point theorem.

The paper is organized as follows. The next section is devoted to the
subset relations to be checked. Subsec. 2.1 is also of introductory character.
The simplified proof of Zgliczynski’s theorem is given in Subsec. 2.2, his
horseshoe found in the dynamics of the seventh iterate of the classical Hénon
mapping is reconsidered in Subsec. 2.3. Our verified checking algorithm and
the optimization model are presented in Section 3. Subsec. 3.3. contains a
variety of rigorous numerical chaos results for iterates of the family of Hénon
mappings.

2 Theoretical Results

2.1 The definition of horseshoe-type L–R chaos

Let X be a metric space, L 6= ∅ and R 6= ∅ be disjoint compact subsets of X,
and let ϕ : L ∪ R → X be a continuous mapping. For brevity, we say that
{Qγk

}
k∈Z

is a doubly infinite L–R sequence if {γk}k∈Z
is a doubly infinite

0–1 sequence (with γk ∈ {0, 1} for k ∈ Z) and Q0 = L, Q1 = R. Finally, we
say that ϕ has a horseshoe-type L–R chaos in X if, given a doubly infinite
L–R sequence {Qγk

}
k∈Z

arbitrarily, there exists a doubly infinite sequence
of points {xk}k∈Z

⊂ X with the properties that xk+1 = ϕ(xk) and xk ∈ Qγk

for each k ∈ Z. Letters L and R are chosen to indicate that, when drawing
figures and thus visualizing the results below, the sets Q0 = L and Q1 = R

are placed on the left half and the right half of those figures, respectively.
Hence L–R chaos is an abbreviation for left–right chaos and refers to the
set L ∪ R as to a chaotic region or, more precisely, as to a subset of the
phase space containing a certain type of chaotic behaviour. For horseshoes
and chaos in general (as well as for the concept of topological entropy we
use in the last paragraph of Subsec. 3.3.2 below), see [Robinson, 1999] and
[Wiggins, 2003].

Given a multiindex α = (α0, α1, . . . , αN ) with αk ∈ {0, 1} for k =
0, 1, . . . , N (N ∈ N), set Qα = Qα0

× Qα1
× · · · × QαN

and consider the
mapping

Φα : Qα → Qα, q = (q0, q1, . . . , qN ) → Φα(q),

(Φα(q))k = ϕ(qN ) if k = 0 and ϕ(qk−1) if k = 1, . . . , N. (1)
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Theorem 1 Suppose that

given an arbitrary multiindex α,Φα has a fixed point in Qα. (2)

Then ϕ has a horseshoe-type L–R chaos in X.

Proof. Consider a 0–1 index sequence {γk}k∈Z
. Note that q = Φα(q)

if and only if qk = ϕ(q0) ∈ Qαk
for k = 0, 1, . . . , N and ϕN+1(q0) = q0.

Consequently, in view of condition (2), there exists a (2ℓ)-periodic sequence
of points {xk}k∈Z

⊂ X with the properties

xℓ
−ℓ+k = ϕk(xℓ

−ℓ) for k = 0, 1, . . . , 2ℓ and ℓ = 1, 2, . . . and

xℓ
−ℓ+k = Qγ

−ℓ+k
for k = 0, 1, . . . , 2ℓ − 1 and ℓ = 1, 2, . . . .

Passing to consecutive subsequences, we can see that there is no loss of gen-
erality when we assume that xℓ

−j → x∗
−j as ℓ → ∞, for each j ∈ N. For

j = 1, 2, . . . , set x∗
j = ϕj(x∗

0). By the construction, x∗
j+1 = ϕ(x∗

j ) ∈ Qγj+1
,

j ∈ Z. �

2.2 Practical criteria for horseshoe-type L–R chaos

It is fundamental that condition (2) — which is in fact an infinite collection
of individual conditions — is a consequence of a finite number of inclusions
appropriately chosen.

The derivation of condition (2) from the underlying finite collection of
inclusions is furnished by topological fixed point arguments. This is fairly
easy in one dimension and belongs to the elements of the theory of interval
maps [Robinson, 1999]. The proof is given here only for convenience.

Theorem 2 Let X = R and let L and R be disjoint compact intervals in
X. Finally, let ϕ : L ∪ R → X be a continuous mapping. Then condition
(2) is the consequence of inclusions L ∪ R ⊂ ϕ(L) and L ∪ R ⊂ ϕ(R).

Proof. In fact, let JαN
be a closed subinterval of QαN

such that
ϕ(JαN

) = Qα0
. The existence of JαN

follows from an elementary connect-
edness argument in one dimension. Similarly, for k = N − 1, . . . , 1, 0 there
exists a closed subinterval Jαk

of Qαk
with the property that ϕ(Jαk

) = Jαk+1
.

For k = 0, we conclude that ϕN+1(Jα0
) = Qα0

⊃ Jα0
. By a simple fixed

point argument in one dimension, q0 = ϕN+1(q0) for some q0 ∈ Jα0
. By

the construction, qk = ϕk(q0) ∈ Jαk
⊂ Qαk

for k = 0, 1, . . . , N . Thus
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q = (q0, q1, . . . , qN ) ∈ Qα is a solution of equation q = Φα(q). �

In higher dimension, however, condition (2) seems to have appeared
only in connection with the first computer-assisted proofs for complicated
dynamical behaviour. We restrict ourselves to present a model theorem in
two dimension which is, up to a self–homeomorphism of R2, equivalent to
a simplified version of the main result in [Zgliczynski, 1996] on what he
calls ϕ–coverings with transition matrix T = {ti,j}

1
i,j=0, ti,j = 1, i, j =

0, 1, the transition matrix of the standard horseshoe dynamics (full shift on
two symbols). The more recent development [Wójcik & Zgliczynski, 2000],
[Galias & Zgliczynski, 2001], [Gidea & Zgliczynski, 2004] witnessed various
combinatorial versions of condition (2) and refinements of the underlying
finite collection of inclusions. The {Q0, Q1} pair was replaced by the n-
tuple {Q0, Q1, . . . , Qn} of pairwise disjoint subsets, {0, 1}N+1 as the set
of multiindices in (2) was replaced by certain subsets of {0, 1, . . . , n}N+1

etc. but the geometry of the underlying inclusions preserved its rectangular
character.

Theorem 3 Set X = R2. With x = (x1, x2) ∈ R × R = X, define

E = {x ∈ X
∣

∣ 1 ≤ |x1| ≤ 2, |x2| ≥ 2}, OC = {x ∈ X
∣

∣ |x1| < 1},

OL = {x ∈ X
∣

∣ x1 < −2}, L = {x ∈ X
∣

∣ − 2 ≤ x1 ≤ −1, |x2| ≤ 2},

OR = {x ∈ X
∣

∣ x1 > 2}, R = {x ∈ X
∣

∣ 1 ≤ x1 ≤ 2, |x2| ≤ 2},

a = L ∩ cl(OL), b = L ∩ cl(OC), c = R ∩ cl(OC), d = R ∩ cl(OR).

Consider a continuous mapping ϕ : L ∪ R → X and suppose that

ϕ(a ∪ d) ⊂ OR , ϕ(b ∪ c) ⊂ OL and ϕ(L ∪ R) ⊂ X \ E (3)

or
ϕ(a ∪ c) ⊂ OR , ϕ(b ∪ d) ⊂ OL and ϕ(L ∪ R) ⊂ X \ E. (4)

See Fig. 1. Then condition (2) is satisfied.

Proof. The proof mimics the derivation of Miranda’s Theorem (see e.g.
in [Zeidler, 1986]) from the one of Brouwer’s in [Piccinini et al., 1984].

We may assume that condition (3) is satisfied. (The alternative condition
(4) can be handled in a similar way. With conditions (3) and (4), Theorem 3
can be interpreted as a topological perturbation result for the U–horseshoe
and the G–horseshoe, respectively.)
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Set–see Fig. 2–D = {x ∈ X
∣

∣ |x2| ≤ min{4 − |x1|, 2, 1 + |x1|} } and
consider a continuous mapping G : X → X with the properties that

G(x) = x whenever x ∈ L ∪ R, G(OL) ⊂ OL, G(OR) ⊂ OR,

G(X) ⊂ D, and (G(x))1 = x1 whenever x ∈ X with |x1| ≤ 2 .

For x ∈ L ∪ R, define δ(x) = G(ϕ(x)). By a simple compactness argument,
there exists a µ > 0 such that

δ(a ∪ d) ⊂ {x ∈ D
∣

∣ x1 ≥ 2 + µ}, δ(b ∪ c) ⊂ {x ∈ D
∣

∣ x1 ≤ −2 − µ},

δ(L ∪ R) ⊂ {x ∈ D
∣

∣ |x2| ≤ 2 − µ}.

Again, by compactness and continuity, there exists a ν ∈ (0, 1
2) such that

δ(LL,ν ∪ RR,ν) ⊂ {x ∈ D
∣

∣ x1 ≥ 2}, δ(LR,ν ∪ RL,ν) ⊂ {x ∈ D
∣

∣ x1 ≤ −2}

where LL,ν = {x ∈ L
∣

∣ x1 ≤ −2 + ν}, RR,ν = {x ∈ R
∣

∣ x1 ≥ 2 − ν}

and LR,ν = {x ∈ R
∣

∣ x1 ≥ −1 − ν}, RL,ν = {x ∈ L
∣

∣ x1 ≥ 1 + ν}.

Let δi denote the coordinate functions of δ, i = 1, 2. Observe that |δ1(x)| ≤ 4
and |δ2(x)| ≤ 2 for each x ∈ L ∪ R. With ϕ replaced by δ, mapping
∆α : Qα → Qα is defined by (1).

Given a multiindex α arbitrarily, we claim that equations q = Φα(q)
and q = ∆α(q) have exactly the same solutions in Qα. In other words,
qk = G(ϕ(qk−1)) with qk ∈ L∪R, k = 0, 1, . . . , N if and only if qk = ϕ(qk−1)
with qk ∈ L ∪ R, k = 0, 1, . . . , N (with the convention that q−1 = qN and
qN+1 = q0). The ‘if part’ follows simply by a coordinatewise composition
with G. In order to prove the ‘only if part’, observe first that

ϕ(qk−1) ∈ X \ E ⊂ (OL ∪ OR ∪ OC) ∪ (L ∪ R).

However, G(ϕ(qk−1)) = qk ∈ L ∪ R for some ϕ(qk−1) ∈ OL ∪ OR ∪ OC is
excluded by the properties of G. Hence ϕ(qk−1) ∈ L ∪ R and G(ϕ(qk−1)) =
ϕ(qk−1), k = 0, 1, . . . , N .

It remains to check that q = ∆α(q) for some q ∈ Qα. Set κ = ν
6 and

rewrite the fixed point equation q = ∆α(q) as the 2(N + 1)-dimensional
system

qk,1 = qk,1 + βkκ[δ1(qk) − qk+1,1], qk,2 = qk,2 + κ[δ2(qk−1) − qk,2], (5)

where qk = (qk,1, qk,2) ∈ Qαk
and βk = 1 if αk = 0 and −1 if αk = 1,

k = 0, 1, . . . , N . It is somewhat lengthy but straightforward to check that
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the compact convex set Qα is mapped into itself by the operator on the right-
hand side of (5), and thus the conditions of Brouwer’s fixed point theorem
are satisfied. In fact,

|qk,2 + κ[δ2(qk−1) − qk,2]| ≤ (1 − κ)|qk,2| + κ|δ2(qk−1)| ≤ (1 − κ)2 + κ · 2 = 2

whenever q ∈ Qα, k = 0, 1, . . . , N . As for the first coordinate of qk, we
distinguish two cases according to qk ∈ L or qk ∈ R. Case qk ∈ L is
equivalent to βk = 1 and consists of the three subcases qk ∈ LL,ν , qk ∈ LR,ν ,
and qk ∈ L \ (LL,ν ∪ LR,ν). If qk ∈ LL,ν , then δ1(qk) − qk+1,1 ∈ [0, 6] and
thus

qk,1 + βkκ[δ1(qk) − qk+1,1] ∈ [−2,−2 + ν + 6κ] ⊂ [−2,−1].

If qk ∈ LR,ν , then δ1(qk) − qk+1,1 ∈ [−6, 0] and thus

qk,1 + βkκ[δ1(qk) − qk+1,1] ∈ [−1 − ν − 6κ,−1] ⊂ [−2,−1].

Finally, if qk ∈ L \ (LL,ν ∪ LR,ν), then δ1(qk) − qk+1,1 ∈ [−6, 6] and thus

qk,1 + βkκ[δ1(qk) − qk+1,1] ∈ [−2 + ν − 6κ,−1 − ν + 6κ] = [−2,−1].

Case qk ∈ R (i.e. the remaining subcases qk ∈ RL,ν , qk ∈ RR,ν , and
qk ∈ R \ (RL,ν ∪ RR,ν) can be settled similarly. �

Replacing the respective arguments in [Mischaikow & Mrozek, 1995],
[Zgliczynski, 1997a], [Zgliczynski, 1997b] by the Miranda approach we used
in proving Theorem 3, we see that in the by now classical computer-assisted
proofs of horseshoe-type chaos in the Lorenz, Rössler, and Hénon systems,
algebraic-topological techniques are not necessary. The application of Bro-
uwer’s fixed point theorem suffices. This holds true for the Sharkovski-
type results on higher-dimensional small perturbations of one-dimensional
mappings in [Zgliczynski, 1999] as well.

2.3 An example

Together with Theorem 1, also Theorem 3 is of entirely topological character.
Let h be a self–homeomorphism of X = R2. Replacing S = X, E,OC , OL, L,
OR, R, a, b, c, d resp. ϕ by h(S) resp. hϕh−1, Theorem 3 remains valid and
ϕ : L∪R → X has a horseshoe–type L–R chaos in X. It is also clear that set
E in Theorem 3 can be replaced by the larger set {x ∈ X

∣

∣ |x1| ≤ 2, |x2| ≥ 2}.
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Such a homeomorphic version of Theorem 3 was used by [Zgliczynski,
1997a] to point out that the seventh iterate of the well–known Hénon map-
ping H : R2 → R2, (x1, x2) → (1 + x2 − Ax2

1, Bx1), with the classical
parameters A = 1.4 and B = 0.3, has a horseshoe–type L–R chaos.

In what follows we describe his construction. With parameters 0 <

E2,top < E1,bottom and E1,left < E2,right specified later, set

E1 = {(x1, x2) ∈ R2 | x1 ≥ E1,left , x2 ≥ E1,bottom},

E2 = {(x1, x2) ∈ R2 | x1 ≤ E2,right , 0 ≤ x2 ≤ E2,top}.

With E1,left ≤ xa
1 < xb

1 < xc
1 < xd

1 ≤ E2,right and 0 < tan α specified later,
define the straight line segments

σ = {(x1, x2) ∈ R2 | E2,top ≤ x2 = E2,top + (x1 − xσ
1 ) · tanα ≤ E1,bottom},

σ = a, b, c, d. Let Q0 and Q1 be the parallelograms between E1 and E2 with
parallel sides a, b and c, d, respectively. Note that α is the lower left angle
of these parallelograms. Let E = E1 ∪ E2. Finally, let OL and OR be the
unbounded components of the open set R2 \ (E ∪ Q1 ∪ Q2) containing the
points (−1 + E1,left, E1,bottom) and (1 + E2,right, 0), respectively. See Fig. 3.

Example 1 Taking E2,top = 0.01, E1,bottom = 0.28, E1,left = 0.4, E2,right =
0.64, A = 1.4, B = 0.3, tanα = 2, xa

1 = 0.460, xb
1 = 0, 556, xc

1 = 0.558,
xd

1 = 0.620, [Zgliczynski, 1997a] checked by interval arithmetic based rigor-
ous computation that the subset relations

H7(a ∪ d) ⊂ OR, H7(b ∪ c) ⊂ OL and H7(Q0 ∪ Q1) ⊂ R2 \ E (6)

are satisfied. See Fig. 4. Applying his version of Theorem 3 above, Zgliczyn-
ski arrived at the standard horseshoe dynamics embedded in the seventh it-
erate of mapping H.

In our terminology, he concluded that H7 has a horseshoe–type L–R

chaos with L = Q0 and R = Q1. Though the concept of L(left)–R(right)
chaos refers only to encodings with doubly–infinite 0–1 sequences (and not
to semiconjugacies with the shift operator on symbol spaces), we think it
does express what we see on the computer screen in natural terms of the
dynamics, in a vividly descriptive way.
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3 Computer Procedures in Proving Chaos

In order to check subset relations of the form T (W ) ⊂ U in a rigorous
way, several algorithms were developped in the last decade. They form an
integer part of what is called set–valued numerics and surveyed in [Dellnitz
& Junge, 2002]. The key task is, however, to establish the subset relations
themselves. We assume that T : Rn → Rn is continuous, W ⊂ Rn is
compact, U ⊂ Rn is open. The major assumption is that T , W , and U

depend on some vector λ ∈ Λ of parameters where Λ is a compact subset
of Rm. The parameter vector has to be specified in such a way that the
resulting subset relation T (λ0)(W (λ0)) ⊂ U(λ0) is fulfilled. To the best of
our knowledge, no general methods have been developed for this purpose in
the literature so far. Successful subset relations have always been found in
a trial and error interaction between computer and computer scientist.

In what follows the task of finding successful subset relations is modelled
as a constrained optimization problem. The checking algorithm presented
first will then be built in a framework optimization algorithm and numerical
results provided.

3.1 A checking algorithm

The checking algorithm is a branch–and–bound procedure using interval
arithmetic based inclusion functions [Alefeld & Mayer, 2001], [Ratschek &
Rokne, 1988]. The point–to–point transformation T : Rn → Rn is replaced
by its natural interval extension T : In → In where In stands for the set of
all closed rectangles in Rn. Note that T (x) ∈ T (I) whenever I ∈ In with
x ∈ I. For I, J ∈ In, I ⊂ J implies T (I) ⊂ T (J). The width of the rectangle
I =

∏n
i=1[xi, xi] is defined as w(I) = max{|xi − xi|

∣

∣ i = 1, 2, . . . , n}. For
any bounded subset S in Rn, note that w(T (Ij)) → 0 holds for all interval
sequences {Ij} with Ij ⊂ S for all j = 1, 2, . . . and w(Ij) → 0. To enclose
the rounding errors and to provide verified numerical results it suffices to
use the so–called outward rounding that gives computer representable result
intervals containing all the points of the real operations.

Algorithm 1 The Checking Routine

Inputs: – ε: the user set limit size — threshold — of subinter-
vals,

– W : the argument set,
– U : the aimed set for which T (W ) ⊂ U is to be

checked.
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1. Calculate the initial interval I ⊃ W

2. Push the initial interval into the stack
3. while ( the stack is nonempty )
4. Pop an interval I out of the stack
5. Calculate the width of I

6. Determine the widest coordinate direction
7. Calculate the transformed interval J = T (I)
8. if I ∩ W 6= ∅, and the condition J ⊂ U does not hold, then

9. if the width of interval I is less than ε then

10. print that T (W ) ⊂ U is hurt by I and stop

11. else bisect I along the widest side: I = I1 ∪ I2

12. push the subintervals into the stack
13. endif

14. endif

15. end while

16. print that T (W ) ⊂ U is proven and stop

For details as well as for a formal proof of the correctness of Algorithm
1, see our parallel paper [Csendes et al., 2006].

Fig. 5. belongs to the example discussed in Subsec. 2.3. The upper
left quadrant portrays the parallelograms Q0 and Q1. The rest of Fig.
5. shows the subintervals generated by Algorithm 1 when checking that,
with the parameters determined by [Zgliczynski, 1997a], the subset rela-
tions Tj(Wj) ⊂ Uj in (6), j = 1, 2, 3, are all satisfied. The initial interval
was chosen for [0.46, 0.755] × [0.01, 0.28], the smallest interval containing
Q0 ∪ Q1. The threshold value was set to be ε = 10−10. Then the three
subset relations in (6) were checked one after the other. (As in [Zgliczynski,
1997a], the sets U1 = OR and U2 = OL in (6) were replaced by the smaller
but more easily treatable sets {x1 < E1,left, x2 > E2,top} and {x2 < 0},
respectively.) The density of the subdivision on Fig. 5. indicates subregions
where the overestimation involved in the interval calculations required much
refinement. For j = 1, 2, 3, we ended up with a covering {Ij

1 , . . . , I
j
sj} ⊂ I2

of Wj satisfying Tj(I
j
s ) ⊂ Uj for each s = 1, . . . , sj . The CPU time was a

few seconds. The depth of the stack and the number of function evaluations
were (11; 273), (13; 523), and (14; 1613), respectively.

3.2 The accompanying optimization problem

Each relation Tj(Wj) ⊂ Uj , j = 1, 2, . . . , M is analyzed separately. The
j–th execution of Algorithm 1 may result in an interval Ij = Ij(λ) such that
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Ij ∩ Wj 6= ∅ but Tj(Ij) ⊂ Uj does not hold true. This means that the j–th
execution of Algorithm 1 ends at Step 10 — let J = J (λ) = {j1, . . . , jℓ} ⊂
{1, 2, . . . , M} denote the set of such indices. Otherwise, for j 6∈ {j1, . . . , jℓ},
the j–th execution of Algorithm 1 ends at Step 16.

Consider the optimization problem

min
λ∈Λ

g(λ) where g(λ) = p





∑

j∈J (λ)

max
v∈Tj(Ij(λ))

inf
u∈Uj(λ)

|u − v|



 . (7)

Here Ij(λ) is the interval returned by the checking routine for j ∈ J (λ)
(and the empty set for j 6∈ J (λ)), Λ ⊂ Rm is the search set (the compact
set of admissible parameter values), and p : R → R is a penalty function.
Note also that maxv∈Tj(Ij(λ)) infu∈Uj(λ) |u − v| is the Hausdorff distance of
the transformed subinterval Tj(Ij(λ)) to the set Uj(λ), j ∈ J (λ). The
computation of this Hausdorff distance can be easily accomplished provided
that n = 2 and that the boundary of each Uj(λ) consists of a moderate
number of finite or infinite straight line segments.

Motivated by earlier experiences [Csendes, 1988], [Markót & Csendes,
2005], our favorite choice for the penalty function in (7) is to take a nonneg-
ative value proportional to how much the given condition is hurt, plus a fixed
penalty term in case at least one of the constraints is not satisfied. Thus,
we let p(r) = r+1 if r is positive and p(r) = 0 otherwise. If an optimization
algorithm leads to a parameter vector λ0 with g(λ0) = 0, then—at the same
time—the built–in checking routine provides a guaranteed reliability com-
putational proof of the respective subset relations Tj(λ0)(Wj(λ0)) ⊂ Uj(λ0),
j = 1, 2, . . . , M . Unfortunately, due to the high degree of nonlinearity of the
problem, it is well possible that the output of the optimization algorithm is
inconclusive, even if minλ∈Λ g(λ) = 0.

For a detailed discussion of this optimization model and of the rele-
vant techniques of global optimization, see our parallel paper [Csendes et
al., 2006]. For the general theory of constraint satisfaction problems, see
[Neumaier, 2004].

3.3 Numerical results

We restrict ourselves to the two–dimensional case and remain in the general
setting of the example discussed in Subsec. 2.3. Our aim is to find horseshoe–
type L–R chaos for k ≤ 6 iterates of the family of Hénon mappings. (Case
k ≥ 8 will be investigated in a separate paper.)
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The computer–aided results were achieved both in the Linux and in the
Cygwin environment, on an average personal computer. We used the C–XSC
[Klatte et al., 1993] programming language supporting interval arithmetic.

The successful parameter values—for H6, H4, and H2 with the classi-
cal parameters A = 1.4 and B = 0.3—found below are, of course, in full
conformity with the inner structure of the respective Hénon mappings. The
homoclinic saddle point P = (0.63..., 0.18...) ∈ R2 of H is always in Q0∪Q1.
With a fairly good approximation, the unstable eigenvalue direction at P is
horizontal whereas tan(α) = 2 is not too far from the tangent of the stable
eigenvector.

3.3.1 Stability of Example 1 with respect to the parameters

Keeping Zgliczynski’s sets E1, E2, Q0 and Q1 fixed, the subset relations in
(6) are satisfied for parameters

(A, B) ∈ [1.377599, 1.401300] × [0.277700, 0.310301].

Slightly better results are shown on Fig. 6. On the other hand, if the angle
parameter is allowed to be changed (while the remaining 10 parameters
are kept constant), the subset relations in (6) are satisfied for 1.964775 ≤
tan(α) ≤ 2.067229.

Similarly, if only parameters xa
1, x

b
1, x

c
1 (satisfying xb

1 < xc
1), and xd

1 are
subject to changes, existence of horseshoe–type L–R chaos is proved for
points of the four–dimensional parameter interval

xa
1 ∈ [0, 455609, 0.516032],

xb
1, x

c
1 ∈ [0.544512, 0.590421],

xd
1 ∈ [0.605679, 0.64].

This latter task required 23 minutes CPU time.
The technique with which the above results were obtained is an earlier

interval arithmetic procedure [Csendes et al., 1995] worked out for solving
tolerance optimization problems.

3.3.2 Horseshoe–type L–R chaos for Hk, k = 6, 4, 2

We have applied the global optimization model introduced in Subsec. 3.2 for
the next plausible case, the sixth iterate of the Hénon mapping. After some
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LO ZO MV FE PE T

12 0 1.0947353 14,019 5,149 20
12 2 0.0 11,904 2,603 12
12 0 1.0760938 14,660 5,596 21
12 0 1.0000043 13,325 4,092 15
12 0 1.0395415 13,700 5,044 24
12 0 1.0255977 13,067 3,758 15
12 0 1.0402164 13,622 4,561 23
12 2 0.0 12,721 3,532 13
12 2 0.0 12,935 3,733 16
12 1 0.0 13,920 4,639 19

Table 1: k = 6: Numerical results of the search runs for identifying suitable
parameters. Here LO stands for number of local optima found, ZO for
the number of zero optimum values, MV for the smallest local minimum
value found, FE for the number of function evaluations, PE for the number
of penalty function evaluations, and finally T for the CPU time used in
minutes.

experimentation, the search domain for the parameters to be optimized was
chosen as

E1,bottom ∈ [0.1, 0.3], tan(α) ∈ [0.5, 3.0], xa
1, x

b
1, x

c
1, x

d
1 ∈ [0.10, 0.90],

while E1,left resp. E2,right were identified with xa
1 resp. xd

1, and the remain-
ing 3 parameters were the same as in Subsec. 2.3. The setting for the global
optimization algorithm was the following: in each iteration round we have
generated 5000 sample points with uniform distribution over the search do-
main, out of which the 10 best were kept for the local search phase, a version
of the gradient method. The stopping criterion threshold for the local search
was set to 15 digits. This iteration was repeated until no new local minimum
has been found. The ε stopping criterion parameter value for the checking
algorithm was set to 0.001. This relatively large value enabled the algorithm
to run quicker, to use a modest amount of CPU time. Table 1 presents the
numerical results of the search runs for identifying suitable parameters.

One example of the obtained optimized parameter values is

E1,bottom = 0.2491759, tan(α) = 1.9645949,

xa
1 = 0.5168849, xb

1 = 0.60155904, xc
1 = 0.62133119, xd

1 = 0.76488491.
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LO ZO MV FE PE T

4 0 1.0661465 33,742 17,396 43
1 0 1.1325119 24,730 21,820 172
1 0 1.00097 16,420 6,130 8
3 0 1.0929769 42,936 28,098 52
2 0 1.0004248 22,566 11,696 28
7 1 0.0 49,673 22,770 35
6 0 1.0006516 31,046 20,670 28
1 0 1.3397567 16,250 5,760 23
2 0 1.0003695 20,752 10,637 27
6 0 1.0007408 40,688 14,684 13

Table 2: k = 3: Numerical results of the search runs for identifying suitable
parameters. The notation is the same as in Table 1.

See Fig. 7. Although the clustering global optimization algorithm applied
intends to locate different local minima, all the found global optimum so-
lutions were similar to the one given above. (This means that each setting
with horseshoe–type L–R chaos we found for H6 corresponds to the same
returning portion of the unstable manifold of the homoclinic saddle point
P . All the obtained chaotic parallelogram configurations seem to be de-
formable into each other along a one–parameter path of two parallelograms
with horseshoe–type L–R chaos.)

It is known [Szymczak, 1997] that both H5 and H3, equipped with the
classical parameters, have exactly two fixed points. Consequently, in order
to find horseshoe–type L–R chaos for them, one has to vary the (A, B)–
parameters, too. As for H3, keeping only parameter E2,top = 0.01 fixed,
the optimization algorithm resulted in horseshoe–type L–R chaos at the
parameter values

E1,bottom = 0.18937143, E1,left = 0.21673342, E2,right = 0.84386042,

A = 2.5569088, B = 0.15963498, tan(α) = 3.3579163,

xa
1 = 0.29188440, xb

1 = 0.53887296, xc
1 = 0.74663494, xd

1 = 0.84359572.

Characteristics of the numerical results are presented in Table 2.
For this run the distances for the hurt conditions in the penalty function

were multiplied by 100. Case H5 was settled already in our parallel paper
[Csendes et al, 2006].
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Now we return to the classical parameters A = 1.4, B = 0.3 and consider
the fourth iterate H4. We leave Zgliczynski’s parallelograms completely and
work with 16 parameters this time, the coordinates of the vertices of two
general quadrangles Q0 = L and Q1 = R. Suggested by the position of the
fixed points of H4, the search domains for the individual vertices of L are
chosen for

V L
ul ∈ [0.0, 0.5] × [0.20, 0.25], V L

ur ∈ [0.2, 0.6] × [0.20, 0.25],

V L
ll ∈ [0.0, 0.4] × [0.01, 0.15], V L

lr ∈ [0.2, 0.6] × [0.01, 0.15],

whereas the search domains for the individual vertices of R are chosen for

V R
ul ∈ [0.3, 0.6] × [0.20, 0.25], V R

ur ∈ [0.6, 0.8] × [0.20, 0.25],

V R
ll ∈ [0.3, 0.6] × [0.01, 0.15], V R

lr ∈ [0.6, 0.8] × [0.01, 0.15].

(Here, of course, indices ul, ur, ll, lr stand for upper left, upper right, lower
left, and lower right, respectively.) These requirements do not exclude pos-
sible overlaps and self–intersections. What we actually require is a finite
number of geometric conditions on the relative position of the two quadran-
gles and of the four components of the forbidden set E. See Fig. 8. and cf.
Fig. 2.

More precisely, we require that quadrangle L be on the left of quadrangle
R and that the eight half–lines determining E be parallel to each other with
common tangent tan(ϑ) = 0.1; this latter value being the result of some
experimentation. Also the height order of these half–lines (in each group
of four belonging to the upper resp. lower vertices of the two quadrangles)
is prescribed. The fulfilment of these geometric conditions is guaranteed
by adding new terms to the penalty function. The optimization algorithm
ended with the existence of horseshoe–type L–R chaos and resulted e.g. in

V L
ul = (0.16411140, 0.25423058), V L

ur = (0.42592396, 0.23215738) ,

V L
ll = (0.10254433, 0.19021336), V L

lr = (0.31142238, 0.04691830),

as for the vertices of quadrangle L, and

V R
ul = (0.54081838, 0.23803993), V R

ur = (0.69119556, 0.21877527) ,

V R
ll = (0.43871354, 0.03378272), V R

lr = (0.64446463, 0.03638828),

as for the vertices of quadrangle R. See Fig. 9. Note that the local search
phase may lead to a global optimum outside the search domain (which refers
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LO ZO MV FE PE T

12 10 0.0 2,733 2,709 35
12 11 0.0 2,514 2,511 31
12 9 0.0 2,738 2,737 50
12 12 0.0 1,127 1,127 16
12 11 0.0 2,737 2,733 36
12 11 0.0 1,442 1,436 16
12 10 0.0 2,865 2,862 38
12 10 0.0 2,729 2,726 59
12 10 0.0 2,649 2,644 43
12 10 0.0 2,385 2,382 49

Table 3: k = 2: Numerical results of the search runs for identifying suitable
parameters. The notation is the same as in Table 1.

only to the first, random part of the optimization algorithm). This explains
why the upper left vertex V L

ul of quadrangle L above does not belong to the
search rectangle [0.0, 0.5] × [0.20, 0.25].

The method we used in handling H4 works for the second iterate as well.
The optimization algorithm ended with the existence of horseshoe–type L–R

chaos for H2 and resulted e.g. in

V L
ul = (−0.95008818, 0.38966840), V L

ur = (−0.11192965, 0.33756351),

V L
ll = (−0.92886824, 0.25677498) , V L

lr = (−0.13972836, 0.21535493),

V R
ul = (−0.01309659, 0.33113756), V R

ur = (0.70239604, 0.18263519) ,

V R
ll = (−0.13451910, 0.20890361), V R

lr = (0.63453236, 0.02108996).

See Fig. 10. Characteristics of the numerical results are presented in Table
3. For this run the number of sample points in the global search phase of the
optimization algorithm was taken for 500. The relatively small search do-
mains (squares with sidelength of §0.1§) were chosen after some preliminary
experimentation.

There is very strong numerical evidence that the classical Hénon map-
ping H itself has no horseshoe–type L–R chaos. The argument is based on
the concept of the topological entropy H. By an abstract result of [New-
house, 1988], H(H) ≤ log 2 ≈ 0.69. All numerical experiments suggest
that H(H) < 0.47 . This latter inequality—if rigorously confirmed—would
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imply that H had no horseshoe–type L–R chaos (because the topological en-
tropy of any continuous mapping with horseshoe–type L–R chaos is at least
log 2 ). By a recent result of [Galias, 2002], H(H) > 0.43 . The existence
of horseshoe–type L–R chaos for H2 established in the previous paragraph
implies that H(H) ≥ 2−1 log 2 > 0.34 . This is much worse than the lower
bound in [Galias, 2002] but slightly better than the one obtained by [Galias
& Zgliczynski, 2001].

4 Summary

We have shown that the task of finding regions with horseshoe-type dynami-
cal behaviour reduces to an interval arithmetic based constraint optimization
problem. This methodology has led to a pair of quadrangles on which the
k-th iterate of the classical Hénon mapping (for k = 7, 6, 4, 2, respectively)
is at least as complicated as the shift operator on two symbols.

Our approach is, in principle, fully automatic. However, the more a
priori information on the dynamics exploited, the smaller the starting search
region, together with the computational time necessary.

We hope that optimization methods within dynamical systems theory
will play an increasingly important role in locating and proving chaotic be-
haviour in the future, esp. for enlarging the parameter set of chaos via
tolerance optimization as well as—in order to find more complex symbolic
dynamics—for adding a new (topological) rectangle to an existing configu-
ration of rectangles.
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3 The notation used for the Hénon mapping investigation. Bán-

helyi et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Illustration of the H7 transformation with the chaotic region

of two parallelograms. Bánhelyi et al. . . . . . . . . . . . . . 25
5 The parallelograms and the starting interval covered by the

verified subintervals for which either the given condition holds
(in the order of mentioning in Example 1.), or they do not
contain a point of the argument set. See Subsec. 2.3 for the
details of the problem investigated. Bánhelyi et al. . . . . . . 26

6 Illustration of the obtained interval containing only such A

and B values that ensure horseshoe-type chaos in Zgliczyn-
ski’s two parallelograms. Those grid points that also fulfill
the conditions are denoted by small circles. Bánhelyi et al. . 27

7 Illustration of the H6 transformation with the chaotic region
of two parallelograms. Bánhelyi et al. . . . . . . . . . . . . . 28

8 Illustration of the setting for the two general quadrangles.
Bánhelyi et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Illustration of the H4 transformation with the chaotic region
of two quadrangles. Bánhelyi et al. . . . . . . . . . . . . . . . 30

10 Illustration of the H2 transformation with the chaotic region
of two quadrangles. Bánhelyi et al. . . . . . . . . . . . . . . . 31



Detecting Horseshoe-Type Chaos 21

List of Tables

1 k = 6: Numerical results of the search runs for identifying
suitable parameters. Here LO stands for number of local
optima found, ZO for the number of zero optimum values,
MV for the smallest local minimum value found, FE for the
number of function evaluations, PE for the number of penalty
function evaluations, and finally T for the CPU time used in
minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 k = 3: Numerical results of the search runs for identifying
suitable parameters. The notation is the same as in Table 1. . 14

3 k = 2: Numerical results of the search runs for identifying
suitable parameters. The notation is the same as in Table 1. . 16



Detecting Horseshoe-Type Chaos 22

OL OROC

L R

a b c d

x1

x2

ϕ(a)ϕ(b)

ϕ(c) ϕ(d)
OCOL OR

L R

a b c d

x1

x2

ϕ(a) ϕ(b)

ϕ(c) ϕ(d)

Figure 1: Two types of horseshoes. Bánhelyi et al.



Detecting Horseshoe-Type Chaos 23

D

OL OR

L

OC

R

x1

x2

a b c d

E E

EE

ϕ(a)
ϕ(b)

ϕ(c)
ϕ(d)

Figure 2: Illustration of the setup used in Theorem 3. Bánhelyi et al.



Detecting Horseshoe-Type Chaos 24

x1

x2

a b

c d

L R

(xd
1, E2,top)

E2,right

E1,bottom

E1,left

α

E1

E2

OL

OR

Figure 3: The notation used for the Hénon mapping investigation. Bánhelyi
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